A NELTA

IABU Headquarters

Delta Electronics, Inc.

Taoyuan Technology Center

No.18, Xinglong Rd., Taoyuan City,

Taoyuan County 33068, Taiwan

TEL: 886-3-362-6301/ FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd.

Wujiang Plant 3

1688 Jiangxing East Road,

Woujiang Economic Development Zone

Waujiang City, Jiang Su Province,

People's Republic of China (Post code: 215200)
TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd.

238 Min-Xia Road, Pudong District,
ShangHai, P.R.C.

Post code : 201209

TEL: 86-21-58635678 / FAX: 86-21-58630003

Delta Electronics (Japan), Inc.

Tokyo Office

2-1-14 Minato-ku Shibadaimon,

Tokyo 105-0012, Japan

TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc.

1511, Byucksan Digital Valley 6-cha, Gasan-dong,
Geumcheon-gu, Seoul, Korea, 153-704

TEL: 82-2-515-5303 / FAX: 82-2-515-5302

AH500
Programming Manual

Delta Electronics Int’l (S) Pte Ltd
4 Kaki Bukit Ave 1, #05-05, Singapore 417939
TEL: 65-6747-5155/ FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd.

Plot No 43 Sector 35, HSIIDC

Gurgaon, PIN 122001, Haryana, India
TEL:91-124-4874900/ FAX : 91-124-4874945

jenuep buiwwe.dbo.ldd 00SHY

Americas

Delta Products Corporation (USA)

Raleigh Office

P.O.Box 12173,5101 Davis Drive,

Research Triangle Park, NC 27709, U.S.A.
TEL: 1-919-767-3800/ FAX: 1-919-767-8080

Delta Greentech (Brasil) S.A

Sao Paulo Office

Rua ltapeva, 26 - 3° andar Edificio Itapeva One-Bela Vista
01332-000-Séo Paulo-SP-Brazil

TEL: +55 11 3568-3855/ FAX: +55 11 3568-3865

Europe

Deltronics (The Netherlands) B.V.

Eindhoven Office

De Witbogt 15, 5652 AG Eindhoven, The Netherlands
TEL: 31-40-2592850 / FAX: 31-40-2592851

AH-0109720-02

*We reserve the right to change the information in this catalogue without prior notice.

2016-08-15 www.delta.com.tw/ia A hELA

JOYCELW.CHOU
打字機文字
2016-08-15

JOYCELW.CHOU
打字機文字

JOYCELW.CHOU
打字機文字

JOYCELW.CHOU
打字機文字

JOYCELW.CHOU
打字機文字

JOYCELW.CHOU
打字機文字

JOYCELW.CHOU
打字機文字

JOYCELW.CHOU
打字機文字

JOYCELW.CHOU
打字機文字

JOYCELW.CHOU
打字機文字

JOYCELW.CHOU
打字機文字
*We reserve the right to change the information in this catalogue without prior notice.

JOYCELW.CHOU
打字機文字
 0109720-02

JOYCELW.CHOU
打字機文字

JOYCELW.CHOU
打字機文字

JOYCELW.CHOU
打字機文字

JOYCELW.CHOU
打字機文字

JOYCELW.CHOU
打字機文字

AH500 Programming Manual

Revision History

Version

Revision

Date

1§t

The first version is published.

2012/11/09

2nd

1.
2.

Chapter 1: update the model description in section 1.1.2

Chapter 2: update device list in section 2.1.1, latched areas in the
device range in section 2.1.4, strings in section 2.2.3, special auxiliary
relays in section 2.2.7, refresh time of special data registers in section
2.2.8, special data registers in section 2.2.14, refresh time of special
data registers in section 2.2.15, additional remarks on special auxiliary
relays and special data registers in section 2.2.16.

Chapter 3: add new instructions of API0117, API0118, API0708 and
API1812.

Chapter 4: update restrictions on the use of the instructions in section
4.2,

Chapter 6: add new instructions of API0O114, API0204, API0205,
AP10212, API10217, AP10218, AP10219, API0310, API0702, API0703,
API0705, API0707, API1000, API1002, API1003, API1004, API1301,
API1510, API1516, API1701, API1702, API1703, API1704, API1800,
API1803, API1806, API1807, API1809, API1810, API1811, API2100,
API2103, API2108, API2110, API2200, API2201, API2202, API2203,

API2204, AP12205, and API12300.

Chapter 7: update contents of 7.1.1,7.1.2,7.1.3,7.1.4,7.1.8,7.1.9,
and 7.1.10.

2016/08/15

AH500 Programming Manual

Contents
Chapter 1 Introduction
I O O V=T VT SRR URPPPUPRPPRR 1-2
111 Related ManUALSooouuiiiii e 1-2
1.1.2 MOdel DESCIIPLION.cciiiiiiiiiiee e 1-2
1.2 SOMWAIE et e e e e e et e e e e e eeaanaa 1-9
121 Program EditOrcoooiiiiiii e 1-9
1.2.2 Program Organization Units and TasksS...........cceuuiiiinniiiinieiiiiinnnn. 1-10
Chapter 2 Devices
2.1 INtroduction Of DEVICEScceeviiiiiiiee e 2-2
211 DEVISE LIST..eeiiiiiiei ettt e e e e 2-2
21.2 Basic Structure of 1/O StOragesuuuiiieiieieiieiiiiiiieee e 2-3
2.1.3 Relation between the PLC Action and the Device Typecccccccenn... 2-4
214 Latched Areas in the Device RanNgecocoovvviiiiiiiiiiiieeeeeeeeei 2-5
2.2 FUNCLONS Of DEVICES ...ttt s 2-6
2.2.1 Values and CONSIANTS..........iieii i 2-6
2.2.2 Floating-point NUMDBErS ... 2-7
22.2.1 Single-precision Floating-point Numbersccccoooiiiiiiiiiiinnns 2-7
2.2.2.2 Double-precision Floating-point NUmMberscccovvvvvvviinnnnn. 2-8
2.2.2.3 Decimal Floating-point NUMDErs...........coooiiiiiiiiieieeeinn 2-9
2.2.3 SN ettt e e e e 2-9
224 INPUE REIAYS ... 2-10
2.25 OULPUL REIAYS ... 2-11
2.2.6 AuXiliary Relays........ooooiimiiiii 2-11
2.2.7 Special Auxiliary Relays ... 2-11
2.2.8 Refresh Time of Special Auxiliary Relaysccccevieiiiiiiiiiiiiiinnnn. 2-42
2.2.9 SLEPPING REIAYS ..o 2-50
2.2.00 TIMEIS ettt ettt e e e e e et ettt e e e e e e e e aana s 2-51
2.2.01 COUNTEIS. ...ttt et e ettt e e e e et e e e e et e e e e eenn e e e eeennnaaaeeees 2-53
2.2.12 32-Dit COUNTEIS. ... e e s 2-54
2.2.13 Data REQISIEIS ... 2-55
2.2.14 Special Data REQISIEISuuiiiiie e 2-56
2.2.15 Refresh Time of Special Data RegiSters.............uuueiiiieiiieiieiiiiinnnn. 2-82

2.2.16 Additional Remarks on Special Auxiliary Relays and Special Data

REGISTEIS ...t 2-83
2.2.07 LINK REQISIEIS ...ttt e e e 2-96
2.2.18 INAEX REQISIEIS ... i 2-96

Chapter 3 Instruction Tables

3.1 INSTIUCTIONS ...t e e e e e e e enana e as 3-2
3.1.1 BaSIC INSIIUCLIONSciiiiiiiiiiie e 3-2
3.1.2 APPlied INSIIUCTIONS.uueiiie e 3-2

3.2 INSErUCTION TADIES ... 3-3
3.2.1 BaSIC INSIIUCLIONScoiiiiiiiiiie e 3-3
3.2.2 ApPPlied INSIIUCTIONS.uuieiiie e 3-4
3.2.3 Applied Instructions (Sorted Alphabetically).............ccoooviiiiiiiiiinnnnnnne. 3-5
3.24 DEVICE TaDIES... . 3-6

3.3 Lists Of BaSIC INSIIUCLIONSiiiiiiiiiiiiiiiiiiee e 3-7

3.4 Lists of Applied INSIUCLIONScooiiiiiiiiiiiee e 3-9
3.4.1 ApPPlied INSIIUCTIONS. ...ttt 3-9
3.4.2 Applied Instructions (Sorted Alphabetically)cccoooeeiiiiiiiiinnnnn. 3-35

Chapter 4 Analog Input/Output Module

4.1 Composition of Applied INStrUCIONSccovviiiiiiiiee e 4-2
4.2 Restrictions on the Use of the INStructions.............ccoooovoiiiiiiiiiiiiieeeeeee, 4-5
4.3 INAEX REQISTEIS ... e 4-6
4.4 POINtEr REQISIEIS ...t 4-7
4.5 Pointer Registers Of TIMEIS.......oooiiiiiiiiiie e 4-9
4.6 Pointer Registers of 16-bit COUNErScooviiiiiiiiiiii e 4-10
4.7 Pointer Registers of 32-bit COUNEIScooviiiiiiiiiii e 4-11

Chapter 5 Basic Instructions
51 LiSt Of BASIC INSTTUCLIONS .. e 5-2
5.2 BaSIC INSIUCHIONS ... e 5-3

Chapter 6 Applied Instructions

6.1 CompariSON INSIIUCTIONS.......ccuuiiiiiie et e e s 6-3
6.1.1 List of Comparison INSrUCLIONS..........ccoviuiiiiiiiee e 6-3
6.1.2 Explanation of Comparison INStruCtionS.............coovvvvivviiiiinneeeeeeeeinnnns 6-6

6.2 Arithmetic INStIUCHIONSccoiiiiiiiiie et 6-36
6.2.1 List of Arithmetic INStrUCIONScoooiiiiiiiiiie e 6-36
6.2.2 Explanation of Arithmetic INStruCtionsSocoovvviiiiiiiiiii s 6-37

6.3 Data Conversion INStIUCHIONS. ... ou e 6-74

6.3.1 List of Data Conversion INStruCtions..............ceeeiieeiiiiiiiiiiiieeeeeeeee 6-74
6.3.2 Explanation of Data Conversion INStructions..............cc.uvvciieeeeeenee. 6-75
6.4 Data Transfer INSIrUCHIONS.uuuuiiie e 6-112
6.4.1 List of Data Transfer INStruCtionS.............c.uuviiiiiiiiiiiiiiiiiee e 6-112
6.4.2 Explanation of Data Transfer INStructions..............cccoevvviiiiinneeenee. 6-113
6.5 JUMP INSIIUCTIONS ...eviiiiii e e e e e eeeaennes 6-135
6.5.1 List of JumMPpP INSLIUCLIONSoovviiiiiiee e 6-135
6.5.2 Explanation of Jump INStruCtionscoouuiiiiiiiiiiiiiiiice e 6-136
6.6 Program EXecution INStrUCHIONS.........cooiiiiiiiiiiiiee e 6-144
6.6.1 List of Program Execution INStructions.............ccoeevveevviiiiinnneeeenee. 6-144
6.6.2 Explanation of Program Execution Instructions...............cccceeeeeee. 6-148
6.7 1/O Refreshing INStrUCIONSiiiiiiiiiiiiice e 6-152
6.7.1 List of I/O Refreshing INStruCtionScouuviiiiiiiiiiiiiiiiee e 6-152
6.7.2 Explanation of I/0O Refreshing INStructionscooouvviiiinneeeenee. 6-153
6.8 Convenience INSIIUCTIONSuuuuiiiieieiiiieiiie e e eeeaeaees 6-155
6.8.1 List of Convenience INSrUCLIONScccevuiiiiiiiiiie e 6-155
6.8.2 Explanation of Convenience INStructionsccccoeevvvvviinneeeeenee. 6-156
6.9 LOQIC INSIIUCTIONS. ...ttt e et e e e e e eeeaennes 6-192
6.9.1 List of LOQIC INSIUCHIONS......cceviiiiiieeeeeeeeeeei e 6-192
6.9.2 Explanation of LOgiC INStrUCtiONS..........cocoviiiiiiiiiiiieeeeie e 6-193
6.10 ROtatioN INSTIUCHIONSccoiiiieiiiiiiiie e e e eeeeeenes 6-216
6.10.1 List of Rotation INStrUCtiONScuvviiiiieiiiiiee e 6-216
6.10.2 Explanation of Rotation INStructionS...........ccoovvvviiiiiniieiiiieiiiienn 6-217
6.11 BaSIC INSIIUCTIONS ...euuiiieiieiiieeeiiie et e e e e e eenennes 6-227
6.11.1 List of BaSIC INSIIUCHIONSccooeiiiiiiiiiiiee e 6-227
6.11.2 Explanation of BasiC INStrUCHIONSccoovieiiiiiiiiiiiiie e 6-228
6.12 Shift INSTIUCHIONSvvviiiee e eeaeanes 6-235
6.12.1 List of Shift INSTrUCHIONScoeiiiiiiiiei e 6-235
6.12.2 Explanation of Shift INStrUCtIONScoviiiiiiiiiiii e 6-236
6.13 Data Processing INSIIUCHIONSuiiiiiiiiiiiiiiiiiee e 6-261
6.13.1 List of Data Processing INStruCtionSccoovvvuvviiiiiieeieeeeeiiiinnnn 6-261
6.13.2 Explanation of Data Processing INStructions.............cccoeevvvvvvnnnnnnn. 6-262
6.14 Structure Creation INSITUCTIONSooiiiiiiiiiiiiiie e 6-308
6.14.1 List of Structure Creation INStruCtionsuuveiiinieiieiiiiiiiinnn. 6-308
6.14.2 Explanation of Structure Creation INStructionscccceeuvvunnnnnn. 6-309
6.15 MOdUle INSTFUCTIONSuiiiie i e e e eeaennes 6-316
6.15.1 List of Module INSIrUCLIONSccoviiiiiiiieee e 6-316

6.15.2 Explanation of Module INStructionsSccooevviiiiiiiiiiieeeeeeeeeeeiies 6-317

6.16 Floating-point Number INStrUCtIONS.........ccovviiiiiiii e 6-322
6.16.1 List of Floating-point Number InStructions..............cccceeveeieeiieieinnnnns 6-322
6.16.2 Explanation of Floating-point Number Instructions 6-323

6.17 Real-time CloCK INSIIUCHIONS........uuiiiieii e 6-363
6.17.1 List of Real-time Clock INStruCtioNS.........ccooeiiiiiiiiiiiiiiiie e 6-363
6.17.2 Explanation of Real-time Clock Instructions.............ccceeeeiivieinnnes 6-364

6.18 Peripheral INStIUCHIONS.........coiiiiiiiie e 6-377
6.18.1 List of Peripheral INStruCtioNnS.............uuuiiiiiiiiiiiiiiiiiieee e 6-377
6.18.2 Explanation of Peripheral INStructions..............ccoovvuiiiniiiiiiiniininnnns 6-378

6.19 Communication INStIUCHIONSuiiieiiiiiiiiiiiie e 6-392
6.19.1 List of Communication INStrUCtiONScooveeeeiiiiiiiiiiiie e 6-392
6.19.2 Explanation of Communication INStructions.............ccceeeeeeeeveeennnns 6-393

6.20 Other INSIIUCIONSuiiii et e e e e e eeaaeee 6-429
6.20.1 List of Other INStrUCIONSooiiiiiiiiiiiiiie e 6-429
6.20.2 Explanation of Other INStruCtioNS...........cooviiiiiiiiiiiiiiiiie e 6-430

6.21 String Processing INSIIUCHIONSuiiiiiiiiiiiiiiiicie et 6-439
6.21.1 List of String Processing INStrUCtIONScccoeviviiiiiiiiiiieee e 6-439
6.21.2 Explanation of String Processing INStructions..............cceeevveevnneees 6-440

6.22 Ethernet INSIrUCLIONSooiiiiiiiiiiee et eeeeaeeees 6-501
6.22.1 List of Ethernet INStruCtioNSoovuiiiiiiiiie e 6-501
6.22.2 Explanation of Ethernet INStructionsccccevvviiiiiinnni e eeeeeiiinns 6-502

6.23 Memory Card INSITUCHIONSuuuuiiiiie et eeeeeaeeees 6-527
6.23.1 List of Memory Card INStruCtioNScoiiiieiiiiiiiiiiiiee e 6-527
6.23.2 Explanation of Memory Card InStructionsccceeeeeeeiieeiennnnnns 6-528

6.24 Task Control INStIUCHIONScouuuuiiiiieee e 6-539
6.24.1 List of Task Control INStruCtionsccoovveieiiiiiiiiiiiiinee s 6-539
6.24.2 Explanation of Task Control INStructions................ceeeieiiiiiiiiiinnnnns 6-540

6.25 TSFC INSIIUCHONS.uuiiiiieiiiiiiiiiiie et e e e e e e e eeeannnes 6-542
6.25.1 List Of SFC INSIIUCHONS......uuuiiiiiiiiiieeiiiiee e 6-542
6.25.2 Explanation of SFC INStrUCIONS..........uvviiiiiiiiiiiieiiiicee e 6-543

Chapter 7 Error Codes

7.1 Error Codes and LED INAICALOIScccvveiiiiiiiiieieeeeeeeeiiie e 7-2
7.1.1 CPU MOUUIES ... 7-2
7.1.2 Analog I/O Modules and Temperature Measurement Modules........ 7-20
7.1.3 AHOZ2HC-5A/AHOAHC-5A. ... s 7-22
7.1.4 AHO5PM-5A/AH10PM-5A/AHL5PM-5A ... 7-22

7.1.5 AHZ0MGEC-5A e 7-23

7.1.6 AHILOEN-SA . ..o 7-24
T7.1.7 AHLOSCM-5A . e 7-25
7.1.8 AHILODNET-5A L. 7-25
7.1.9 AHIOPFBM-5A ... 7-26
7.1.10 AHIOPFBS-5A L. 7-26
7.1.11 AHIOCOPM-5A L 7-27

Chapter 1 Introduction

Table of Contents

L1 OVEIVIEW .o 1-2
111 Related ManUALSooovuiiii e 1-2
1.1.2 AV [0 [I D= od]) 1 o] o S 1-2

1.2 SOMWANE .t e et e e e e eeaaaaa 1-9
1.2.1 Program EQItOrcoovviiiiiiiie e 1-9
1.2.2 Program Organization Units and TasksS...........cceuuuiiiinriiiiiieiiiiinnn. 1-10

1-1

AH500 Programming Manual

1.1 Overview

This manual introduces the programming of the AH500 series programmable logic controllers, the
basic instructions, and the applied instructions.

1.1.1 Related Manuals

The related manuals of the AH500 series programmable logic controllers are composed of the

following.

® AH500 Quick Start
It guides users to use the system before they read the related manuals.
® AH500 Programming Manual

It introduces the programming of the AH500 series programmable logic controllers, the basic
instructions, and the applied instructions.

® |ISPSoft User Manual
It introduces the use of ISPSoft, the programming languages (ladder diagrams, instruction lists,
sequential function charts, function block diagrams, and structured texts), the concept of POUS,
and the concept of tasks.
® AH500 Hardware Manual
It introduces electrical specifications, appearances, dimensions, and etc.
® AH500 Operation Manual
It introduces functions of CPUs, devices, module tables, troubleshooting, and etc.
® AH500 Module Manual

It introduces the use of special I/O modules. For example, network modules, analog I/O
modules, temperature measurement modules, and etc.

® AH500 Motion Control Module Manual
It introduces the specifications for the motion control modules, the wiring, the instructions, and

the functions.

® PMSoft User Manual
It introduces the use of PMSoft, including the editing mode, the connection, and the password

setting.

1.1.2 Model Description

Classification Model Name Description
100~240 VAC
Power supply | AHPS05-5A 50/60 Hz
module
AHPS15-5A 240 VDC
It is a basic CPU module with two built-in RS-485 ports, one
AHCPU500-RS2 | built-in USB port, and one built-in SD interface. It supports
768 inputs/outputs. The program capacity is 32k steps.
It is a basic CPU module with one built-in Ethernet port, one
built-in RS-485 port, one built-in USB port, and one built-in
AHCPUS00-EN SD interface. It supports 768 inputs/outputs. The program
capacity is 32k steps.
It is a basic CPU module with two built-in RS-485 ports, one
CPU module | AHCPU510-RS2 | built-in USB port, and one built-in SD interface. It supports

1280 inputs/outputs. The program capacity is 64 ksteps.

AHCPUS510-EN

It is a basic CPU module with one built-in Ethernet port, one
built-in RS-485 port, one built-in USB port, and one built-in

SD interface. It supports 1280 inputs/outputs. The program
capacity is 64 ksteps.

AHCPU511-RS2

It is an advanced CPU module with two built-in RS-485
ports, one built-in USB port, and one built-in SD interface. It
supports 1280 inputs/outputs. The program capacity is 96k

1-2

Chapter 1 Introduction

Classification

Model Name

Description

steps.

AHCPUS11-EN

It is an advanced CPU module with one built-in Ethernet
port, one built-in RS-485 port, one built-in USB port, and
one built-in SD interface. It supports 1280 inputs/outputs.
The program capacity is 96k steps.

AHCPUS520-RS2

It is a basic CPU module with two built-in RS-485 ports, one
built-in USB port, and one built-in SD interface. It supports
2304 inputs/outputs. The program capacity is 128k steps.

AHCPU520-EN

It is a basic CPU module with one built-in Ethernet port, one
built-in RS-485 port, one built-in USB port, and one built-in

SD interface. It supports 2304 inputs/outputs. The program
capacity is 128k steps.

AHCPU521-EN

It is an advanced CPU module with one built-in Ethernet
port, one built-in RS-485 port, one built-in USB port, and
one built-in SD interface. It supports 2304 inputs/outputs.
The program capacity is 192k steps.

AHCPUS30-RS2

It is a basic CPU module with two built-in RS-485 ports, one
built-in USB port, and one built-in SD interface. It supports
4352 inputs/outputs. The program capacity is 256k steps.

AHCPUS30-EN

It is a basic CPU module with one built-in Ethernet port, one
built-in RS-485 port, one built-in USB port, and one built-in

SD interface. It supports 4352 inputs/outputs. The program
capacity is 256k steps.

AHCPUS531-EN

It is an advanced CPU module with one built-in Ethernet
port, one built-in RS-485 port, one built-in USB port, and
one built-in SD interface. It supports 4352 inputs/outputs.
The program capacity is 384k steps.

Main
backplane

AHBP04M1-5A

Four-slot main backplane for a CPU /RTU rack

AHBPO6M1-5A

Six-slot main backplane for a CPU/RTU rack

AHBPO8M1-5A

Eight-slot main backplane for a CPU/RTU rack

AHBP12M1-5A

Twelve-slot main backplane for a CPU/RTU rack

Extension
backplane

AHBPOG6E1-5A

Six-slot extension backplane for a CPU/RTU extension rack

AHBPOSE1-5A

Eight-slot extension backplane for a CPU/RTU extension
rack

Digital
input/output
module

AH16AM10N-5A

24 VDC

5mA

16 inputs
Terminal block

AH32AM10N-5A

24 VDC

5mA

32 inputs
Terminal block

AH32AM10N-5B

24 VDC

5mA

32 inputs

DB37 connector

AH32AM10N-5C

24 VDC

5mA

32 inputs

Latch connector

AH64AM10N-5C

24 VDC

1-3

AH500 Programming Manual

Classification

Model Name

Description

3.2mA
64 inputs
Latch connector

AH16AM30N-5A

100~240 VAC

4.5 mA/9 mA (100 V and 50 Hz)
16 inputs

Terminal block

AH16AR10N-5A

24VDC

5mA

16 inputs

Terminal block (with fast interrupt function)

AH16ANO1R-5A

240 VAC/24 VDC
2A

16 outputs

Relay

Terminal block

AH16ANO1T-5A

12~24 VDC
05A

16 outputs
Sinking output
Terminal block

AH16ANO1P-5A

12~24 VDC
05A

16 outputs
Sourcing output
Terminal block

AH32ANO02T-5A

12~24 VDC
0.1A

32 outputs
Sinking output
Terminal block

AH32ANO02T-5B

12~24 VDC
0.1A

32 outputs
Sinking output
DB37 connector

AH32ANO02T-5C

12~24 VDC
0.1A

32 outputs
Sinking output
Latch connector

AH32ANO02P-5A

12~24 VDC
0.1A

32 outputs
Sourcing output
Terminal block

AH32AN02P-5B

12~24 VDC
0.1A
32 outputs

1-4

Chapter 1 Introduction

Classification

Model Name

Description

Sourcing output
DB37 connector

AH32AN02P-5C

12~24 VvDC
0.1A

32 outputs
Sourcing output
Latch connector

AHG64AN02T-5C

12~24 VvDC
0.1A

64 outputs
Sinking output
Latch connector

AH64AN02P-5C

12~24 VvDC
0.1A

64 outputs
Sourcing output
Latch connector

AH16ANO01S-5A

100/220 VAC
05A

16 outputs
TRIAC
Terminal block

AH16AP11R-5A

24 VDC

5mA

8 inputs

240 VAC/24 VDC
2A

8 outputs

Relay

Terminal block

AH16AP11T-5A

24 VDC

5mA

8 inputs
12~24 VvDC
05A

8 outputs
Sinking output
Terminal block

AH16AP11P-5A

24VDC

5 mA

8 inputs

12~24 VDC
05A

8 outputs
Sourcing output
Terminal block

Analog
input/output
module

AHO4AD-5A

Four-channel analog input module
16-bit resolution

0/1~5V, -5~+5V, 0~10V, -10~+10 V, 0/4~20 mA, and

1-5

AH500 Programming Manual

Classification

Model Name

Description

-20~+20 mA
Conversion time: 150 us/channel

AHO8AD-5A

Eight-channel analog input module

16-bit resolution

0/1~5V, -5~+5V, 0~10V, -10~+10 V, 0/4~20 mA, and
-20~+20 mA

Conversion time: 150 us/channel

AHO8AD-5B

Eight-channel analog input module
16-hit resolution

0/1-5V, -5~+5V, 0~10V, -10~+10 V
Conversion time: 150 us/channel

AHOBAD-5C

Eight-channel analog input module
16-bit resolution

0/4~20 mA, and -20~+20 mA
Conversion time: 150 us/channel

AHO4DA-5A

Four-channel analog output module

16-bit resolution

0/1~5V, -5~5V, 0~10V, -10~10V, and 0/4~20mA
Conversion time: 150 us/channel

AHO8DA-5A

Eight-channel analog output module

16-bit resolution

0/1-5V, -5~5V, 0~10V, -10~10V, and 0/4~20mA
Conversion time: 150 us/channel

AHO8DA-5B

Eight-channel analog output module
16-hit resolution

0/1~5V, -5~5V, 0~10 V, -10~10V
Conversion time: 150 us/channel

AHO8DA-5C

Eight-channel analog output module
16-bit resolution

0/4~20mA

Conversion time: 150 us/channel

AHOG6XA-5A

Four-channel analog input module

16-bit resolution

0/1~-5V, -5~+5V, 0~10V, -10~+10 V, 0/4~20 mA, and
-20~+20 mA

Conversion time: 150 us/channel

Two-channel analog output module

16-bit resolution

0/1~5V, -5~5V, 0~10V, -10~10 V, and 0/4~20 mA
Conversion time: 150 us/channel

Temperature
measurement
module

AHO4PT-5A

Four-channel four-wire/three-wire RTD temperature sensor

Sensor type: Pt100/Pt1000/Ni100/Ni1000 sensor, and
0~300 Q input impedance

16-hit resolution: 0.1°C/0.1 °F
Four-wire conversion time: 150 ms/channel
Three-wire conversion time: 300 ms/channel

AHO8PTG-5A

Eight-channel four-wire/three-wire/two-wire RTD

temperature sensor

Sensor type: Pt100/Pt1000/Ni100/Ni1000 sensor, and
0~300 Q input impedance

1-6

Chapter 1 Introduction

Classification Model Name Description
16-bit resolution: 0.1 °C/0.1 °F
Four-wire conversion time: 20 ms/channel
Three-wire conversion time: 200 ms/channel
Four-channel thermocouple temperature sensor
Sensor type: J, K, R, S, T, E, N, and -150~+150 mV
AHO4TC-5A Resolution: 0.1°C/0.1°F
Conversion time: 200 ms/channel
Eight-channel thermocouple temperature sensor
Sensor type: J, K, R, S, T, E, N, and -150~+150 mV
AHOBTC-5A Resolution: 0.1 °C/0.1°F
Conversion time: 200 ms/channel
Two-channel high-speed counter module
AHO2HC-5A 200 kHz
Four-channel high-speed counter module
AHO4HC-5A 200 kHz
. AHO5PM-5A Two-axis pulse train motion control module (1 MHz)
Motion control Six-axis pulse train motion control module
module AH10PM-5A i
(Four axes: 1 MHz; Two axes: 200 kHz)
AH15PM-5A Four-axis pulse train motion control module
(1 MHz)
AH20MC-5A Twe_Ive—aX|s DMCNET (Delta Motion Control Network)
motion control module (10 Mbps)
It is an Ethernet master/slave module with two built-in
AHIO0EN-5A Ethernet ports, and supports a Modbus TCP master.
It is a serial communication module with two
RS-485/RS-422 ports, and supports Modbus and the UD
AH10SCM-5A Link protocol.
There is isolation between two parts of communication, and
Network there is isolation between two parts of power.
module It is a DeviceNet network module. It can function as a
AH10DNET-5A master or a slave. The maximum communication speed is 1
Mbps.
AH10PFBM-5A It is a PROFIBUS master communication module.
AH10PFBS-5A Itis a PROFIBUS slave communication module.
AH10COPM-5A It is a CANopen master/slave communication module .
RTU module AHRTU-DNET-5A | RTU module for DeviceNet
AHRTU-PFBS-5A | RTU module for PROFIBUS
AHACABO6-5A 0.6 meter extension cable for connecting an extension
backplane
AHACABL0-5A 1.0 meter extension cable for connecting an extension
backplane
Extension AHACAB1L5-5A 1.5 meter extension cable for connecting an extension
cable backplane

AHACAB30-5A

3.0 meter extension cable for connecting an extension
backplane

AHAADPO01/02EF- | Extension optical fiber cable for connecting an extension
5A backplane
1.0 meter I/O extension cable (latch connector) for
IO extension | DVPACABTALD 1 \1135 AM1ON-5C and AHE4AM10N-5C
cable DVPACAR7B10 1.0 meter I/O extension cable (latch connector) for

AH32ANO02T-5C, AH32AN02P-5C, AH64AN02T-5C and

1-7

AH500 Programming Manual

Classification Model Name Description

AHB64ANO2P-5C.

1.0 meter I/O extension cable (DB37) for AH32AM10N-5B,
DVPACAB7C10

AH32ANO02T-5B and AH32ANO2P-5B.

1.0 meter I/O extension cable for AHO4HC-5A and
DVPACAB7D10 AH20MC-5A.
DVPACAB7ELO 1.0 meter I/O extension cable (latch connector) for

AH10PM-5A and AH15PM-5A.

External
terminal
module

DVPAETB-ID32A

I/O external terminal module (32 inputs) for
AH32AM10N-5C and AH64AM10N-5C.

DVPAETB-OR16A

I/O external terminal module (16 relay outputs) for
AH32ANO02T-5C and AH64AN02T-5C.

DVPAETB-OR16B

I/O external terminal module (16 relay outputs) for
AH32AN02P-5C, AH64ANO2P-5C.

DVPAETB-ID32B

I/O external terminal module (32 relay outputs) for
AH32AM10N-5B.

DVPAETB-OR32A

I/O external terminal module (32 relay outputs) for
AH32ANO02T-5B.

DVPAETB-OR32B

I/O external terminal module (32 relay outputs) for
AH32AN02P-5B.

DVPAETB-OT32A

I/O external terminal module (32 relay outputs) for
AH32AN02T-5C, AH32AN02P-5C, AH64ANO2T-5C, and
AHB64ANO2P-5C.

DVPAETB-OT32B

I/O external terminal module (32 relay outputs) for
AH32ANO02T-5B and AH32ANO2P-5B.

DVPAETB-1016C

I/O external terminal module for AHO4HC-5A and
AH20MC-5A.

DVPAETB-1024C

I/O external terminal module for AH10PM-5A.

DVPAETB-1034C

I/O external terminal module for AH15PM-5A.

Space module

AHASPO1-5A

Space module used for an empty I/O slot

1-8

Chapter 1 Introduction

1.2 Software

1.2.1 Program Editor

The outline of program editor ISPSoft:

e There are five types of programming languages, including the instruction list, the structure text,
the ladder diagram, the sequential function chart, and the function block diagram.

Create Program rz|

POU Name rTask
|—| Cryelic (M -

v A otive

Protection (4~12 Characters)—] rLanguage

Enter Password + Ladder Diagram (LI

Sequential Function Chart (3FC)
. Function Block Diagram (FELN)
e ation Instraction List (IL)

Btructure Text (3T)

POU Comment

0K | Cancel |

e The use of variables which allows the user to define the variable symbol to replace the device
name of the PLC not only enhances the readability of the program, but also saves the user a lot
of time to allocate the address of the device.

Add Symbol
Identifier Address Type... Tnitial Comment...
COMFLETE 1 --- BOOL == FALSE -

Class VAR - v Auto-close Dialog Define global OK Cancel

|

\
N |

1-9

AH500 Programming Manual

e The introduction of the POU (Program Organization Unit) framework not only divides the main
program into several program units, but also replaces the traditional subroutines with functions
and function blocks. The framework of the program becomes more modular, and is easier to be
managed.

| The table of local symbols I
| The body of program I

B Frogl [PRG,LD]

1 t
Programming Language

PROG orFB

POU Name

— | The Icon for programming language

e The concept of tasks which is used to manage the execution order of the programs advances
the program development to the level of project management. The large-scale program
development becomes easier to be managed.

1.2.2 Program Organization Units and Tasks

The POUs (Program Organization Units) are the basic elements which constitute the PLC program.
Differing from the traditional PLC program, the character of the program framework introduced by

1-10

Chapter 1 Introduction

IEC 61131-3 lies in the fact that the large program is divided into several small units. These small

units are called POUs. The POUs can be classified into three types.

1. Program (PROG): The POU of the program type plays the role of the primary program in the
PLC program. The designer can define the execution of the POU of the program type as the
cyclic scan or the interrupt, and arrange the scan order in the task list for the POUs of the
program type.

2. Function block (FB): The meaning of the function block (FB) in itself is similar to the subroutine.
The program defined within the function block is executed after the function block is called by
the POU of the program type and the related parameters are entered.

3. Function (FC): The meaning of the function (FC) in itself is close to the macro instruction. That
is, users can write many operation instructions or functions into the function POU, and then
call them into use in the POU of the program type or the function block.

The task is a function which stipulates that programs are executed in certain order or according to

certain interrupt condition. The meaning of the task lies in the fact that it provides each POU of the

program type with a specific execution task, and specifies the execution order for the POUs of the
program type or the way to enable them.

Basically, not all of the POUSs of the program type in a project will take part in the practical execution.

Whether to execute the POU of the program type or not, and how to execute it depend on the

assignment of the task. If the POU of the program type is not assigned the task, it will be saved as

an ordinary source code with the project instead of being compiled as an execution code of the PLC.

In addition, only the POU of the program type needs to be assigned the task. The execution of the

function blocks or functions depends on the superior POU of the program type which calls them.

There are three types of tasks.

1. Cyclic task: The POUs of the program type assigned to the cyclic task will be scanned
cyclically, and executed in order.

2. Timed interrupt task: If the time of interrupting is reached, all POUs of the program type
assigned to the timed interrupt task will be executed in order.

3. Conditional interrupt task: Conditional Interrupts can be divided into several types. For
example, the external interrupts, the I/O interrupts, and etc. Users have to make sure of the
interrupts supported by the PLC before they create a project. If the POU of the program type is
assigned to the conditional interrupt task, the function of the POU of the program type is similar
to the interrupt subroutine. If the interrupt condition is satisfied, e.g. the contact of the external
interrupt is triggered, all POUs of the program type assigned to the task will be executed in
order.

1-11

AH500 Programming Manual

MEMO

1-12

Chapter 2 Devices

Table of Contents

2.1 INtroduCtion Of DEVICESccviiiiiiiiiiiiiiiiiiiiieieeeeeeteeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeeees 2-2
211 DRVISE LIST..eeeiiiieei ettt e e e 2-2
2.1.2 Basic Structure of /0O StOrages..........cceeieeeeeeiieeeiiiie e 2-3
2.1.3 Relation between the PLC Action and the Device Type......c.cccccc..... 2-4
2.1.4 Latched Areas in the Device RanNge..........ccccevvvvviiiiiiiee e 2-5

2.2 FUNCLONS Of DEVICES ...ttt 2-6
2.2.1 Values and CONSLANTSuuuuuruiiiiiiieiiiiiiiiieeeseseseseeeeseeeeeeeeeeeeeereeee 2-6
2.2.2 Floating-point NUMDBErSccooo i 2-7

22.2.1 Single-precision Floating-point Numbersccccooiiiiiiiiiiiiinns 2-7
2.2.2.2 Double-precision Floating-point NUmbersccccceevvevvvvinnnnnnnn. 2-8
2.2.2.3 Decimal Floating-point NUMDErs..........ccoooiiiiiiiiinieeen 2-9
A T 1 11T P 2-9
224 INPUE REIAYS ... 2-10
2.25 OULPUL REIAYS ..o e e 2-11
2.2.6 AuXiliary Relays........coooiiiiiiii 2-11
2.2.7 Special Auxiliary Relayscccooriiiiiiiiiiiiee e 2-11
2.2.8 Refresh Time of Special Auxiliary Relays...........cccoeeiiiiiiiiiiiiiiiiinn. 2-42
2.2.9 Stepping RElAYSccoveeeie e 2-50
2.2.00 TIMEIS ettt e e et et e e e e e aa s 2-51
2.2.11 COUNTEIS. ...t e e e e e e e e e e e e e e e e e nnn e eennes 2-53
2.2.12 32-Dit COUNTEIS. ... e e 2-54
2.2.13 Data REQISIEIS ... eiieeeeeiiee et e e e e e 2-55
2.2.14 Special Data REgISIEIS.iii i 2-56
2.2.15 Refresh Time of Special Data RegiSterscccccceeeeeeeeeeevveeiiiinnn. 2-82
2.2.16 Additional Remarks on Special Auxiliary Relays and Special Data
0 |] (=T £ 2-83
2.2.17 LINK REQISIEIS ...ttt e e e 2-96
2.2.18 INAEX REQISIEIS ... ceeeeeeeeei e e e e e s 2-96

2-1

AH500 Programming Manual

2.1 Introduction of Devices

This section gives an account of values/strings processed by the PLC. It also describes the
functions of devices which include input/output/auxiliary relays, timers, counters, and data registers.

2.1.1 Devise List
2.1.1.1 AH500 Basic CPU Modules (AHCPU500/510/520/530)

Type Device name Number of devices Range
1024 (AHCPU500) X0.0~X63.15
2048 (AHCPU510 X0.0~X127.15
Input refay X 4096 gAHCPU5zog X0.0~X255.15
8192 (AHCPU530) X0.0~X511.15
1024 (AHCPU500) Y0.0~Y63.15
2048 (AHCPU510 Y0.0~Y127.15
Output relay Y 4096 gAHCPU5zog Y0.0~Y255.15
8192 (AHCPU530) Y0.0~Y511.15
262144 (AHCPU500) D0.0~D16383.15
Bit Data register D 524288 (AHCPU510) D0.0~D32767.15
device 1048576(AHCPU520/530) | D0.0~D65535.15
16384 (AHCPU500) L0.0~ L16383.15
Link register L 32768 (AHCPU510) L0.0~ L32767.15
65536 (AHCPU520/530) L0.0~ L65535.15
Auxiliary relay M 8192 MO~M8191
Special auxiliary relay | SM | 2048 SM0~SM2047
Stepping relay S 2048 S0~S2047
Timer T 2048 TO~T2047
Counter C 2048 C0~C2047
32-bit counter HC | 64 HCO~HC63
64 (AHCPUS500) X0~X63
128 (AHCPU510 X0~X127
Input refay X 256 EAHCPUSZO; X0~X255
512 (AHCPU530) X0~X511
64 (AHCPUS500) YO~Y63
128 (AHCPU510 YO~Y127
Output relay Y 256 EAHCPUSZO; YO~Y255
512 (AHCPU530) YO~Y511
16384 (AHCPU500) D0~D16383
Word Data register D 32768 (AHCPU510) D0~D32767
device 65536 (AHCPU520/530) | DO~D65535
Special data register | SR | 2048 SR0~SR2047
16384 (AHCPU500) LO~L16383
Link register L 32768 (AHCPU510) LO~L32767
65536 (AHCPU520/530) LO~L65535
Timer T 2048 TO~T2047
Counter C 2048 C0~C2047
32-bit counter HC | 64 (128 words) HCO~HC63
Index register E 32 EO~E31
Decimal system K 16 bits: -32768~32767
32 bits: -2147483648~2147483647
* . 16 bits: 16#0~16#FFFF
Constant* | Hexadecimal system | 16# 32 bits: 164#0~164FFFEEFFE
A F | 32 bits: +1.17549435°%~+3.40282347"
oating-point number

2-2

Chapter 2 Devices

Type Device name Number of devices Range
Double-precision pE | 64bits: +2.2250738585072014 %~
floating-point number +1.7976931348623157"%®

String* | String “$” | 1~31 characters

*1: The decimal forms are notated by K in the device lists in chapters 5 and 6, whereas they are
entered directly in ISPSoft, for example, for K50, simply input 50.

*2: The floating-point numbers are notated by F/DF in the device lists in chapters 5 and, whereas
they are represented by decimal points in ISPSoft, for example, for F500, simply input 500.0.
*3: The strings are notated by “$” in chapters 5 and 6, whereas they are represented by “ " in

ISPSoft, for example, for “1234" , simply input 1234.

2.1.1.2 AH500 Advanced CPU Modules (AHCPU511/521/531)

Type Device name Number of devices Range
4096 (AHCPU511) X0.0~X255.15
Input relay X 8192 (AHCPU521) X0.0~X511.15
16384 (AHCPU531) X0.0~X1023.15
4096 (AHCPU511) Y0.0~Y255.15
Output relay Y 8192 (AHCPU521) Y0.0~Y511.15
16384 (AHCPU531) Y0.0~Y1023.15
786432 (AHCPU511) D0.0~D49151.15
Data register D 1572864 (AHCPU521) D0.0~D98303.15
2097152 (AHCPU531) D0.0~D131071.15
Bit 786432 (AHCPU511) L0.0~L49151.15
device Link register L 1572864 (AHCPU521) L0.0~L98303.15
2097152 (AHCPU531) L0.0~L131071.15
Auxiliary relay M 8192 MO~M8191
A 2048 SMO~SM2047
Special auxiliary relay | SM | (AHCPU511/521/531-EN)
4096 (AHCPU511-RS2) SM0~SM4095
Stepping relay S 2048 S0~S2047
Timer T 2048 TO~T2047
Counter C 2048 C0~C2047
32-bit counter HC | 64 HCO~HC63
256 (AHCPU511) X0~X255
Input relay X 512 (AHCPU521) X0~X511
1024 (AHCPU531) X0~X1023
256 (AHCPU511) Y0~Y255
Output relay Y 512 (AHCPU521) Y0~Y511
1024 (AHCPU531) Y0~Y1023
49152 (AHCPU511) D0~D49151
Data register D 98304 (AHCPU521) D0~D98303
131072 (AHCPU531) D0~D131071
eI 2048
device | gnecial dataregister | SR | (AHCPUS11/521/531-EN) | RO~ SR2047
4096 (AHCPU511-RS2) SM0~SM4095
49152 (AHCPU511) L0~L49151
Link register L 98304 (AHCPU521) LO~L98303
131072 (AHCPU531) L0~L131071
Timer T 2048 TO~T2047
Counter C 2048 C0~C2047
32-bit counter HC | 64 (128 words) HCO~HC63
Index register E 32 EO~E31
Constant* | Decimal system k | 16Dits:-32768~-32767

32 bits: -2147483648~2147483647

2-3

AH500 Programming Manual

Type Device name Number of devices Range
. 16 bits: 16#0~16#FFFF
Hexadecimal system | 16# | 3 pits: 16#0~16#FFFFFFFF
Single-precision F | 32bits: +1.17549435 *~+3.40282347*%
floating-point number
Double-precision pE | 64 bits: +2.2250738585072014 %~
floating-point number +1.7976931348623157"3%
String* String “$” | 1~31 characters

*1: The decimal forms are notated by K in the device lists in chapters 5 and 6, whereas they are
entered directly in ISPSoft, for example, for K50, simply input 50.

*2: The floating-point numbers are notated by F/DF in the device lists in chapters 5 and, whereas
they are represented by decimal points in ISPSoft, for example, for F500, simply input 500.0.

*3: The strings are notated by “$” in chapters 5 and 6, whereas they are represented by “ " in

ISPSoft, for example, for “1234" | simply input 1234.

2.1.2 Basic Structure of 1/0 Storages

Device Function Acce_ss of | Access of | Modification Forcing the bit
bits words by ISPSoft ON/OFF
X Input relay OK OK OK OK
Y Output relay OK OK OK OK
M Auxiliary relay OK - OK NO
SM rSepl):;/:lal auxiliary OK i OK NO
S stepping relay OK - OK NO
T Timer OK OK OK NO
C Counter OK OK OK NO
HC 32-bit counter OK OK OK NO
D Data register OK OK OK NO
sR | Special daa . oK oK NO
register
L Link register OK OK OK NO
E Index register - OK OK NO

2.1.3 Relation between the PLC Action and the Device Type

evice type Non-latched | Latched Output rela
PLC action area area P y
Power: OFF—ON Cleared Retained | Cleared
The output relay is cleared. | Retained Retained | Cleared
T sfrate of_the output Retained Retained | Retained
relay is retained.
STOP | The state of the output The state of the output
| relay returns to that before | Retained Retained | relay returns to that before
the PLC’s stopping. the PLC'’s stopping.
RUN - i
e Ol EEEE R [Cleared Retained | Cleared
cleared.
The s_tate Of Az e Retained Retained | Retained
area is retained.
RUN—STOP Retained Retained | Retained
SM204 is ON. .
(All non-latched areas are cleared.) Cleared Retained | Cleared

2-4

Chapter 2 Devices

evice type Non-latched = Latched
PLC action area area Output relay
SM205 is ON. . .
(All latched areas are cleared.) Retained Cleared | Retained
Default value 0 0 0

2.1.4 Latched Areas in the Device Range

Device

Function

Device range

Latched area

X

Input relay

X0~X511
(AHCPU5X0)

X0~X1024
(AHCPU5X1)

All devices are non-latched.

Output relay

YO0~Y511
(AHCPU5X0)

YO0~Y1024
(AHCPU5X1)

All devices are non-latched.

M*

Auxiliary relay

MO~M8191

The default range is MO~M8191.

SM

Special auxiliary
relay

SM0~SM2047
(AHCPU511-EN/
AHCPU521/AHCP
U531)
SM0~SM4095
(AHCPU511-RS2)

Some devices are latched, and can not be
changed.

Please refer to the function list of SM for
more information.

Stepping relay

S0~S2047

All devices are non-latched.

T*

Timer

TO~T2047

The default range is TO~T2047.

C*

Counter

C0~C2047

The default range is C0~C2047.

HC*

32-bit counter

HCO~HC63

The default range is HCO~HCG63.

D*

Data register

D0~D16383
(AHCPUS500)

The default range is DO~D16383.

D0~D32767
(AHCPU510/511/
521/531)

D0~D65535
(AHCPU520/530)

The default range is DO~D32767.
At most 32768 devices can be latched
areas.

SR

Special data register

SR0O~SR2047
(AHCPU510/
AHCPU 511-EN /
AHCPU 521/
AHCPU 531)
SR0O~SR4095
(AHCPU511-RS2)

Some are latched, and can not be
changed.

Please refer to the function list of SR for
more information.

Link register

LO~L16383
(AHCPU500)

LO~L32767
(AHCPUS510)

LO~L49151
(AHCPU511)

LO~L65535
(ACPU520/530)

LO~L98303
(ACPU521)

LO~L131071
(AHCPU531)

All devices are non-latched.

Index register

EO~E31

All devices are non-latched.

2-5

AH500 Programming Manual

*: * indicates that users can set the range of latched areas, and that the device can be set to
Non-latched Area. The range of latched areas can not exceed the device range. Above all, only
32768 data registers at most can be non-latched areas. For example, users can set D50~D32817
or D32768~D65535 to Latched Areas although the default range of latched areas is DO~D32767.

2.2 Functions of Devices

The procedure for processing the program in the PLC:
® Regenerating the input signal:
1. Before the program is executed, the state of the
Input terminal X external input signal is read into the memory of
the input signal.
2. When program is executed, the state in the
Device memory memory of the input signal does not change even
if the input signal changes from ON to OFF or
from OFF to ON. Not until the next scan begins
will the input signal be refreshed.
® Processing the program:
After the input signal is refreshed, the instructions in
the program are executed in order from the start

l Regenerating the input signal

\4
Processingthe program

Alowauw a21naQ

Device memory

address of the program, and the results are stored
l in the device memories.
Regenerating the outputsignal ® Regenerating the state of the output:
and sending itto the output terminal After the instruction END is executed, the state in
the device memory is sent to the specified output
terminal.

2.2.1 Values and Constants

Name Description
Bit A bit is the basic unit in the binary system. Its state is either 1 or 0.
A nibble is composed of four consecutive bits (e.g. b3~b0). Nibbles can
Nibble be used to represent 0~9 in the decimal system, or O~F in the

hexadecimal system.
A byte is composed of two consecutive nibbles (i.e. 8 bits, b7~b0).

Byte Bytes can be used to represent 00~FF in the hexadecimal system.
A word is composed of two consecutive bytes (i.e. 16 bits, b15~b0).
Word Words can be used to represent 0000~FFFF in the hexadecimal
system.
A double word is composed of two consecutive words (i.e. 32 bits,
Double word b31~b0). Double words can be used to represent

00000000~FFFFFFFF in the hexadecimal system.
A quadruple word is composed of four consecutive words (i.e. 64 bits,

b63~b0). Quadruple words can be used to represent
0000000000000000 — FFFFFFFFFFFFFFFF in the hexadecimal

Quadruple word

system.
The relation among bits, nibbles, bytes, words, and double words in the binary system is as follows.
bW <— Double word
— — — L —
o o +— word
— T~ T~
8y G sy BY0 By

NB7 NB6 NB5 NB4 NB3 NB2 NB1 NBO

— e (— —~

<+— Nibble

b31b30b29b28b27b26b25b24b23b22b2J.‘b20b19b18b17b16b15b14b13ble]_l b10/b9[b8[b7|b6 |b5[b4[b3]|b2|b1[b0| *— Bit

2-6

Chapter 2 Devices

The PLC uses four types of values to execute the operation according to different control purposes.
The functions of these values are illustrated as follows:
1. Binary number (BIN)
The PLC adopts the binary system to operate the values.
2. Decimal number (DEC)
The decimal number in the PLC is used as
® the setting value of the timer (T) or the setting value of the counter (C/HC). For example,
TMR CO 50 (constant K).
® the device number. For example, M10 and T30 (device number)
® as the number before or after the decimal point. For example, X0.0, Y0.11, and D10.0
(device number).
® the constant K: It is used as the operand in the applied instruction. For example, MOV 123
DO (constant K).
3. Binary-coded decimal (BCD)
A decimal value is represented by a nibble or four bits, and therefore sixteen consecutive bits
can represent a four-digit decimal value.
4. Hexadecimal number (HEX)
The hexadecimal number in the PLC is used as
® the constant 16#: It is used as the operand in the applied instruction. For example, MOV
16#1A2B DO (hexadecimal constant).
The following is the reference table:

Binary number | Decimal number | Binary-coded decimal number | Hexadecimal number
(BIN) (DEC) (BCD) (HEX)
Internal operation| Decimal constant, Instruction related to the Hexadecimal
in the PLC device number binary-code decimal number cpnstant,
device number
0000 0 0000 0
0001 1 0001 1
0010 2 0010 2
0011 3 0011 3
0100 4 0100 4
0101 5 0101 5
0110 6 0110 6
0111 7 0111 7
1000 8 1000 8
1001 9 1001 9
1010 10 - A
1011 11 - B
1100 12 - C
1101 13 - D
1110 14 - E
1111 15 - F
10000 16 0001 0000 10
10001 17 0001 0001 11

2.2.2 Floating-point Numbers

The floating-point numbers are represented by decimal points in ISPSoft. For example, the
floating-point number of 500 is 500.0.

2.2.2.1 Single-precision Floating-point Numbers

The floating-point number is represented by the 32-bit register. The representation adopts the
IEEE754 standard, and the format is as follows.

2-7

AH500 Programming Manual

L 8—b|t\ 23-hit
| S | Exponent Mantissa
bas bo
|—> Sign bit
0: Positive
1: Negative

Equation: (- 1)S x2F B x1.M:B =127

The single-precision floating-point numbers range from +2?° to +2*'*® and correspond to the range
from +1.1755x10°° to +3.4028x10"%,

The AH500 series PLC uses two consecutive registers to form a 32-bit floating-point number. Take
(D1, DO) for example.

|[|¢——— D1(b15~-b0) »>|« DO (b15~b0) ——»|

= T~ 2T 2T 2 2T 2T 2T 2T 2T 2T
[s [E7[E6]E5] § [E1] E0JA22]A21]A20[G G [A6 [A5[A4[A3[A2[AL[A0]
b31 b30 b29 b28 b24 b23 b22 b2l b20 b6 b5 b4 b3 b2 bl bo

lepl—Exponent (8 bits) —»j¢e———— Mantissa (23bits) ——|

The position where the decimal point is hidden

Mantissa sign bit (0: Positive; 1: Negative)
When b0~b31 are zeros, the contentis zero.

2.2.2.2 Double-precision Floating-point Numbers

The floating-point number is represented by the 64-bit register. The representation adopts the
IEEE754 standard, and the format is as follows.

’fll-blt\ 52-bit
| S | Exponent Mantissa
bes bo
|—> Signbit
0: Positive
1: Negative

Equation: (-1)° x25°® x1.M; B =1023

The double-precision floating-point numbers range from +2°
range from +2.2250x10°% to +1.7976x10"%,

The AH500 series PLC uses four consecutive registers to form a 64-bit floating-point number. Take
(D3, D2, D1, DO) for example.

[e——— D3(b15~b0) >|e D2-D0 ——>|

1022 +1024

to £2 , and correspond to the

210 29 28 21 20 2»1 2»2 2-3 -46 -47 -48 2-49 2-50 2-51 2-52
[s [er0]E9|[E8[§G [E1[E0[A51]A50[A49]§ G [Ae | A5 [A4][A3[A2[A1]A0]
b63 b62 b6l b6O b53 b52 b51 b50 b49 b6 b5 b4 b3 b2 bl b0
|l Exponent —je——— Mantissa (52 bits) ——»|

(11 bits; signed value)
T— The position where the decimal pointis hidden

Mantissa sign bit (0: Positive; 1: Negative)
When b0~b63 are zeros, the content is zero.

Example 1:

23 is represented by the single-precision floating-point number.

Step 1: Convert 23 into the binary number, i.e. 23.0=10111.

Step 2: Normalize the binary number, i.e. 10111=1.0111 x2* (0111 is the mantissa, and 4 is the
exponent.).

Step 3: Get the value of the exponent.

"E-B=4—E-127=4 ...E=131=10000011,

2-8

Chapter 2 Devices

Step 4: Combine the sign bit, the exponent, and the mantissa to form the floating-point number.
0 10000011 01110000000000000000000,=41B80000;4

23 is represented by the double-precision floating-point number.

Step 1: Convert 23 into the binary number, i.e. 23.0=10111.

Step 2: Normalize the binary number, i.e. 10111=1.0111 x2* (0111 is the mantissa, and 4 is the
exponent.).

Step 3: Get the value of the exponent.

"E-B=4—E-1023=4 ..E=1027=10000000011,

Step 4: Combine the sign bit, the exponent, and the mantissa to form the floating-point number.
0 10000000011 011100,
=4037000000000004¢

Example 2:

-23 is represented by the single-precision floating-point number.

The steps of converting -23.0 into the floating-point number are the same as those of converting

23.0 into the floating-point number, except that the sign bit is 1.

110000011 01110000000000000000000,=C1B80000;¢

-23 is represented by the double-precision floating-point number.

The steps of converting -23.0 into the floating-point number are the same as those of converting

23.0 into the floating-point number, except that the sign bit is 1.

110000000011 011100,

=C037000000000004¢

2.2.2.3 Decimal Floating-point Numbers

€ Since single-precision floating-point numbers and double-precision floating-point numbers are
not widely accepted by people, they can be converted into decimal floating-point numbers for
people to make judgement. However, as to the operation of the decimal point, the PLC still
uses single-precision floating-point numbers and double-precision floating-point numbers.

€ A 32-bibt decimal floating-point number is represented by two consecutive registers. The
constant is stored in the register whose number is smaller while the exponent is stored in the

register whose number is bigger. Take (D1, DO) for example.
[Exponent D1]

Decimal floating-point number=[Constant DO]* 10
Base number DO=+1,000~%9,999
Exponent D1=-41~+35

The base number 100 does not exist in DO because 100 is represented by 1,000x10™. In
addition, 32-bit decimal floating-point numbers range from +1175x10™*" to +402x10"%.

2.2.3 Strings

What strings can process are ASCII codes (*1). A complete string begins with a start character, and
ends with an ending character (NULL code). If what users enter is a string, they can enter 31
characters at most, and the ending character 16#00 will be added automatically in ISPSoft.
1. No string (NULL code) is moved.

NETWORK 1

Mo MO

| En
I

DO=0 (NULL)

2-9

AH500 Programming Manual

2. The string is an even number.

NETWORK 1
Mo FMOY
— | -
"abcd” = Ol-po
DO 16#62 (b) 16#61 (a)
D1 16#64 (d) 16#63 (c)
D2 0 (NULL)
3. The string is an odd number.
NETWORK 1
Mo oY
| I En
"abcde" |5 Ol-Do
DO 16#62 (b) 16#61 (a)
D1 16#64 (d) 16#63 (c)
D2 0 (NULL) 16#65 (e)

*1: ASCII code chart

Hex 0 1 2 3 4 5 6 7 8 9 A B | C D E F

ASCH X | X | X XX X K| X X X XX X X X|]KX

Hex 10 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1A | 1B | 1C 1D | 1E | 1F

ASCI X X XX XXX KK K X X XXX X

Hex 20 21 | 22 | 23 |24 | 25 | 26 | 27 | 28 | 29 | 2A | 2B | 2C 2D | 2E | 2F

ASCIH| SP | 1 " | # | $ % & | " (|)y | < |+ -
Hex | 30 | 31 32 33|34 35 3 37 38 39 3A 3B 3C 3D 3E 3F

ASCIl| 0 1 2|3 4|5 6|7 8|9 | <|=|>]2
Hex | 40 | 41 |42 43 | 44 45 | 46 | 47 48 49 4A 4B | 4C 4D | 4E | 4F

AsCli @ |A B | C D E | F |G H| 1l J | K|L M/ N|O

Hex 50 51 | 52 | 53 | 54 | 55 56 | 57 | 58 | 59 | 5A | 5B | 5C K 5D | 5E | 5F

ASCIl| P Q|/R | S| T|U |V W X|Y |z X X K| X X

Hex | 60 61 | 62 | 63 | 64 | 65 66 | 67 | 68 | 69 | 6A | 6B | 6C 6D | 6E | 6F

ASCII : a b C d e f g h i i k I M n o}

Hex 70 71|72 | 73|74 |75 76 |77 |78 |79 | 7A| 7B |7C 7D | 7E | T7F

ASCIl| p q r s t u vV | w | X y z { | } ~

Note: [X] represents an invisible character. Please do not use it.

2.2.4 Input Relays

® The function of the input
The input is connected to the input device (e.g. external devices such as button switches,
rotary switches, number switches, and etc.), and the input signal is read into the PLC. Besides,
contact A or contact B of the input can be used several times in the program, and the ON/OFF
state of the input varies with the ON/OFF state of the input device.

2-10

Chapter 2 Devices

® The input number (the decimal number):

For the PLC, the input numbers start from X0.0. The number of inputs varies with the number

of inputs on the digital input/output modules, and the inputs are numbered according to the

order in which the digital input/output modules are connected to the CPU module. The
maximum number of inputs on the PLC can reach up to 8192, and the range is between X0.0
and X511.15.

® The input type

The inputs are classified into two types.

1. Regenerated input: Before the program is executed, the data is fed into the PLC
according to the states of the inputs which are regenerated. For
example, LD X0.0.

2. Direct input: During the execution of the instructions, the data is fed into the PLC

according to the states of the inputs. For example, LD DXO0.0.

2.2.5 Output Relays

® The function of the output

The task of the output is sending the ON/OFF signal to drive the load connected to the output.

The load can be an external signal lamp, a digital display, or an electromagnetic valve. There

are three types of outputs. They are relays, transistors, and TRIACs (AC thyristors). Contact A

or contact B of the output can be used several times in the program, but the output should be

used only once in the program. Otherwise, according the program-scanning principle of the

PLC, the state of the output depends on the circuit connected to the last output in the program.

® The output number (the decimal number)

For the PLC, the input numbers start from X0.0. The number of outputs varies with the number

of outputs on the digital input/output modules, and the outputs are numbered according to the

order in which the digital input/output modules are connected to the PLC. The maximum
number of outputs on the PLC can reach up to 8192, and the range is between Y0.0 and

Y511.15.

The output which is not practically put to use can be used as a general device.

® The output type

The outputs are classified into two types.

1. Regenerated output: Not until the program executes the instruction END is the
information fed out according to the states of the outputs. For
example, OUT YO0.0.

2. Direct output: When the instructions are executed, the information is fed out according to

the states of the outputs. For example, OUT DYO0.0.

2.2.6 Auxiliary Relays

The auxiliary relay has contact A and contact B. It can be used several times in the program. Users
can combine the control loops by means of the auxiliary relay, but can not drive the external load by
means of the auxiliary relay. The auxiliary relays can be divided into two types according to their
attributes.

1. For general use: If an electric power cut occurs when the PLC is running, the auxiliary relay for
general use will be reset to OFF. When the power supply is restored, the
auxiliary relay for general use is still OFF.

2. For latched use: If an electric power cut occurs when the PLC is running, the state of the
auxiliary relay for latched use will be retained. When the power supply is
restored, the state remains the same as that before the power electric cut.

2.2.7 Special Auxiliary Relays

Every special auxiliary relay has its specific function. Please do not use the special auxiliary relays
which are not defined.

2-11

AH500 Programming Manual

The special auxiliary relays and their functions are listed as follows. As to the SM numbers marked
“** users can refer to the additional remarks on special auxiliary relays/special data registers. “R” in
the attribute column indicates that the special auxiliary relay can read the data, whereas “R/W” in
the attribute column indicates that it can read and write the data. In addition, the mark “—" indicates
that the status of the special auxiliary relay does not make any change. The mark “#” indicates that
the system will be set according to the status of the PLC, and users can read the setting value and
refer to the related manual for more information.

O o000
c clS ¢ oFFsTOPRUIN B | ©
g alo|a (=4 @D
SM Function IRk IF- I 4 4 o By
o ml ol m ON RUN STOP S @ £
0wz nlz i
N N
SMO | Operation error o|lo|o|o|OFF| OFF | - R | OFF
SM1 | The operation error is locked. o|lo|o|o|OFF| OFF | - R | OFF
SM5 Instruction/Operand inspection error o|lo|o|o|OFF| OFF | - R | OFF
*SM8 | Watchdog timer error olo|o|o|OFF| - - R | OFF
SM9 System error o|lo|o|o|OFF| - - R | OFF
SM10 |I/O bus error olo|o|o|OFF| - - R | OFF
*SM22 | Clearing the error log olo|o|o|OFF| - - | RIW | OFF
SM23 | Clearing the download log o|lo|o|o|OFF| - - | R\W | OFF
SM24 ICDIII_eélring the state-changing log of the ol ool o OFE - _ |'RW OEE
SM25 The online-e_diting _p_rocessing flag is on ol ool o OFE - _ R | OFE
when the online-editing mode starts.
SM26 The debugging mod_e processing flag is ol ool o OFE - _ R | OFE
on when the debugging mode starts.
*SM96 | The data is sent through COM1. o|lo|o|o|OFF| OFF | - | R/W |OFF
*SM97 | The data is sent through COM2. o|x|o|x|OFF| OFF | - | R/W |OFF
*SM98 \CI:VS:SIr}-g to receive the reply through olololo OFE OFE - R | OFE
*SM99 \c/:Vg:\t/llgg to receive the reply through ol/x| ol x OFE OFF - R | OFF
*SM100 | Reception through COML1 is complete. o|lo|o|o|OFF| OFF| - | R/MW |OFF
*SM101 | Reception through COM2 is complete. o|x|o|x|OFF| OFF | - | R/MW |OFF
An error occurs during the reception of
the data through COM1 by using the
SM102 instruction MOgDRW or they instrgction ©|o|o||OFF OFF) - R | OFF
RS.
An error occurs during the reception of
the data through COM2 by using the
*SM103 instruction MOgDRW or thg instrSction ©| x| o x|OFFI OFF | - R | OFF
RS.
*SM104 No dat_a_ is rec_eived through COM1 after ol ool o OFE OFE - |RW OEE
a specified period of time.
*SM105 No dat_a_ is rec_eived through COM2 after o x| ol x OFE OFF - |RW OEE
a specified period of time.
Choice made by COM1 between the 8-bit
processing mode and the 16-bit
*SM106 | processing mode olo|ol| o|OFF| - - | R\W | OFF
ON: The 8-bit processing mode
OFF: The 16-bit processing mode
Choice made by COM2 between the 8-bit
*SM107 |processing mode and the 16-bitf o | x| o| x OFF| - - | RIW | OFF
processing mode

2-12

Chapter 2 Devices

OO0 0 0
S ¢ C S orFSTOPRUIN & | ©
SM Function SRR 4 g 4 = =
QIP|R|E g | E
o m 1 m ON|RUN STOP & =
0wz wnz (L
N N
ON: The 8-bit processing mode
OFF: The 16-bit processing mode
SM108 Igriprleeﬁ.lvmg of data through COM1 is olxlolol _ B _ 'RW OFF
SM109 Igriprleeﬁ.lvmg of data through COM2 is olxlolx| B _ 'RW OFF
*SM204 | All non-latched areas are cleared. o| o|OFF| - - | R\W | OFF
*SM205 | All latched areas are cleared. o| o|OFF| - - | R\W | OFF
SM206 | Inhibiting all output o| o|OFF| - - | R\W | OFF
The communication protocol of COM1
*SM209 |changes (in accordance with SM210,/o | o | o| o |OFF| - - | R\W | OFF
SR201, SR209, and SR215).
Choice made by COM1 between the
*SM210 | ASCII mode and the RTU mode olo|o| o|OFF| - - | RIW | OFF
ON: The RTU mode
The communication protocol of COM2
*SM211 |changes (in accordance with SM212,/ o | x| o | x |OFF| - - | R\W | OFF
SR202, SR212, and SR216).
Choice made by COM2 between the
*SM212 | ASCII mode and the RTU mode o|x|o| x|OFF| - - | R\W | OFF
ON: The RTU mode
SM215 | Running state of the PLC o|o|o|o|OFF| ON | OFF | R\W | OFF
SM220 SCea(il(l)aizztSmg the real-time clock within £30 ololololoEEl OFE| - | RW | OEE
*SM400 | Normally-open contact o/l o| ON| ON | ON R ON
*SM401 | Normally-closed contact o| o|OFF| OFF | OFF| R |OFF
*SM402 The pulse is ON at the time when the ololololOEEl ON | OFF OFEE
PLC runs.
*SM403 The pulse is OFF at the time when the ololololON| OFE | ON R | ON
PLC runs.
10 millisecond clock pulse during which
*SM404 | the pulse is ON for 5 milliseconds andis| o | o | o | o |OFF| - - R | OFF
OFF for 5 milliseconds
100 millisecond clock pulse during which
*SM405 | the pulse is ON for 50 milliseconds andis| o | o | o | o |OFF| - - R | OFF
OFF for 50 milliseconds
200 millisecond clock pulse during which
*SM406 | the pulse is ON for 100 milliseconds and| o | o | o | o |OFF| - - R | OFF
is OFF for 100 milliseconds
One second clock pulse during which the
*SM407 | pulse is ON for 500 milliseconds and is| o | o | o| o |OFF| - - R | OFF
OFF for 500 milliseconds
Two second clock pulse during which the
*SM408 | pulse is ON for one second and is OFF| o | o | o| o |[OFF| - - R | OFF
for one second
2n second clock pulse during which the
*SM409 pulse is ON for n seconds and is OFF for olol ol o OFE - B R | OFF

n seconds
The interval n is specified by SR409.

2-13

AH500 Programming Manual

SM

Function

¢SH-0XSNdD

N3-0XSNdD
¢SH-TXSNdD

N3-TXSNdD

OFF

ON

STOP

RUN

RUN

STOP

aINguUNY

lnejad

*SM410

2n millisecond clock pulse during which
the pulse is ON for n milliseconds and is
OFF for n milliseconds

The interval n is specified by SR410.

o

o

OFF

OFF

*SM450

Whether the memory card exists
ON: The memory card exists.
OFF: The memory card does not exist.

OFF

OFF

*SM451

Write protection switch on the memory
card

ON: The memory card is write protected.
OFF: The memory card is not write
protected.

OFF

OFF

*SM452

The data in the memory card is being
accessed.

ON: The data in the memory card is
being accessed.

OFF: The data in the memory card is not
accessed.

OFF

OFF

*SM453

An error occurs during the operation of
the memory card.
ON: An error occurs.

OFF

OFF

SM600

Zero flag

OFF

OFF

SM601

Borrow flag

OFF

OFF

SM602

Carry flag

OFF

OFF

SM604

Setting the working mode of the
instruction SORT.

ON: The descending order
OFF: The ascending order

OFF

R/W

OFF

SM605

Designating the working mode of the
instruction SMOV

OFF

RW

OFF

SM606

8-bit or 16-bit working mode

OFF

R/W

OFF

SM607

It is the matrix comparison flag.
ON: Comparing the equivalent values
OFF: Comparing the different values

OFF

R/W

OFF

SM608

The matrix comparison comes to an end.
When the last bits are compared, SM608
is ON.

OFF

OFF

SM609

When SM609 is ON, the comparison
starts from bit O.

OFF

OFF

SM610

It is the matrix bit search flag. When the
matching bits are compared, the
comparison stops immediately, and
SM610 is ON.

OFF

OFF

SM611

It is the matrix pointer error flag. When
the value of the pointer exceeds the
comparison range, SM611 is ON.

OFF

OFF

SM612

It is the matrix pointer increasing flag.
The current value of the pointer
increases by one.

OFF

RW

OFF

2-14

Chapter 2 Devices

OO0 0 0
Slele|e >
_ $ 3G G OFF |STOP REN § 8..
SM Function S 38 & 4 4 g 2
o m 1 m ON|RUN STOP & =
0wz wnz (L
N N
It is the matrix pointer clearing flag. The
SM613 | current value of the pointer is cleared to| o | o | o | o |[OFF| — - | R\W | OFF
zero.
SM614 It is the_ carry flag for the matrix ololololoEEl - _ R | OFE
rotation/shift/output.
SM615 It is the borrow flag for the matrix ololololoEEl - _ |RW OEE
shift/output.
It is the direction flag for the matrix
rotation/shift. The bits are shifted leftward
SM616 |\ /hen SM616 is OFF, whereas the bits | | ° | ° OFF| - - | RW | OFF
are shifted rightward when SM616 is ON.
SM617 The bits with the value 0 or 1 are ololololOFE - _ RW | OFE
counted.
SM618 :)tlsONwhenthematrlxcountlngresult|s ololololOFE - _ RW | OFE
SM619 It is ON when the instruction El is ololololOFE OFF i R | OFE
executed.
When the results gotten from the
comparison by using the instruction _ _
SM620 CMPT# are that all devices are ON, ©|o| o] c|OFF R | OFF
SM620 is ON.
It sets the counting mode of HCO.
Sme21 (HCO counts down when SM621isON.) | © | 7| 7 ° OFF) - — | RW | OFF
It sets the counting mode of HC.
SM622 (HC1 counts down when SM622is ON.) | ~ | © | °| ° OFF| - - | RW | OFF
It sets the counting mode of HC2.
SM623 (HC2 counts down when SM623is ON.) | © | ©| | ° OFF| - - | RW | OFF
It sets the counting mode of HC3.
SM624 (HC3 counts down when SM624is ON.) | © | 7| | ° OFF| - - | RW | OFF
It sets the counting mode of HCA4.
SM625 (HC4 counts down when SM625is ON.) | © | ©| | ° OFF| - - | RW | OFF
It sets the counting mode of HC5.
SM626 (HC5 counts down when SM626is ON.) | © | © | © | ° OFF| - - | RW | OFF
It sets the counting mode of HCB6.
SMé27 (HC6 counts down when SM627isON.) | © | ©| © | ° OFF| - - | RW | OFF
It sets the counting mode of HC7.
SMe28 (HC7 counts down when SM628is ON.) | © | 7| | ° OFF) - — | RW | OFF
It sets the counting mode of HCS8.
SM629 (HC8 counts down when SM629is ON.) | © | 7| | ° OFF) - — | RW | OFF
It sets the counting mode of HCO.
SM630 (HC9 counts down when SM630is ON.) | © | 7| | ° OFF) - — | RW | OFF
It sets the counting mode of HC10.
SM631 (HC10 counts down when SM631is ON.)| © | | | ° OFF| - - |RW|OFF
It sets the counting mode of HC11.
SM632 (HC11 counts down when SM632is ON.)| © | | | ° OFF| - - |RW| OFF
It sets the counting mode of HC12.
SM633 (HC12 counts down when SM633isON.)| © | © | ° | ° OFF| - - | RW | OFF
SM634 | It sets the counting mode of HC13./0|o| o| o |OFF| - - | R\W | OFF

2-15

AH500 Programming Manual

0O 000
T U|U | T >
$ 55 & OFF STOP RUN | = 9
SM Function BRI I R 4 = g
o/ m 3 m ON RUN STOP &5 =
wzagz (L
(HC13 counts down when SM634 is ON.)
It sets the counting mode of HC14.
SM635 (HC14 counts down when SM635is ON.)| © | | | ° OFF| - - | RW|OFF
It sets the counting mode of HC15.
SM636 (HC15 counts down when SM636is ON.)| © | | | ° OFF| - - | RW|OFF
It sets the counting mode of HC16.
SMe37 (HC16 counts down when SM637is ON.)| © | | | ° OFF| - - | RW|OFF
It sets the counting mode of HC17.
SM638 (HC17 counts down when SM638isON.) © | © | ¢ ° OFF| - - | RW | OFF
It sets the counting mode of HC18.
SM639 (HC18 counts down when SM639isON.)| © | | ¢ ° OFF| - - | RW/|OFF
It sets the counting mode of HC19.
SM640 (HC19 counts down when SM640isON.)| © | © | ¢ ° OFF| - - | RW/|OFF
It sets the counting mode of HC20.
SM641 (HC20 counts down when SM641isON.) © | © | ¢ ° OFF| - - | RW/|OFF
It sets the counting mode of HC21.
counts down when is ON. B -
SM642 (HC21 d hen SM642 is ON.) o|lo| ol o|OFF RW | OFF
It sets the counting mode of HC22.
counts down when is ON. B -
SM643 (HC22 d hen SM643 is ON.) o|lo| ol o|OFF R/W | OFF
It sets the counting mode of HC23.
counts down when is ON. B a
SM644 HC23 d hen SM644 is ONY © | © 1 © | © OFF R/W | OFF
It sets the counting mode of HC24.
counts down when is ON. B a
SM645 HC24 d hen SM645 is ONY © | © 1 ° | © OFF R/W | OFF
It sets the counting mode of HC25.
counts down when is ON. B a
SM646 HC25 d hen SM646 is ONY © | © 1 © | © OFF R/W | OFF
It sets the counting mode of HC26.
counts down when is ON. B a
SM647 HC26 d hen SM647 is ONY © | © 1 ° | © OFF R/W | OFF
It sets the counting mode of HC27.
counts down when is ON. B a
SM648 HC27 d hen SM648 is ONY © | © 1 ° | © OFF R/W | OFF
It sets the counting mode of HC28.
counts down when is ON. B a
SM649 (HC28 d hen SM649 is ON.) o|o| of| o|OFF R/W | OFF
It sets the counting mode of HC29.
counts down when is ON. B -
SM650 (HC29 d hen SM650 is ON.) o|o| ol o|OFF R/W | OFF
It sets the counting mode of HC30.
counts down when is ON. B -
SM651 (HC30 d hen SM651 is ON.) o|o| ol o|OFF R/W | OFF
It sets the counting mode of HC31.
SM652 (HC31 counts down when SM652is ON.)| © | © | @ ° OFF| - - | RW/|OFF
It sets the counting mode of HC32.
SM653 (HC32 counts down when SM653isON.)| © | | @ ° OFF| - - | RW/|OFF
It sets the counting mode of HC33.
SM654 (HC33 counts down when SM653is ON.)| © | | © | ° OFF| - - | RW/|OFF
It sets the counting mode of HC34.
SM655 (HC34 counts down when SM655 is ON.)| © | | | ° OFF| - - | RW|OFF
It sets the counting mode of HC35.
SM656 (HC35 counts down when SM656 is ON.)| © | © | | ° OFF| - - | RW|OFF
It sets the counting mode of HC36.
SMe57 (HC36 counts down when SM657 is ON.)| © | | | ° OFF| - - | RW|OFF
SM658 It sets the counting mode of HC37. ol ool o OFE - _ |'RW OEE

(HC37 counts down when SM658 is ON.)

2-16

Chapter 2 Devices

OO0 0 0
T|(U T T >
515§ §|OFFSTOP RUN | = 9
SM Function XXXX 8 8 8 3 5
o m o m ON RUN STOP 5 =
0wz 0=z (L
It sets the counting mode of HCS38.
SM659 (HC38 counts down when SM659is ON.)| © | © | | ° OFF| - - |RW|OFF
It sets the counting mode of HC39.
SM660 (HC39 counts down when SM660is ON.)| © | | | ° OFF| - - |RW|OFF
It sets the counting mode of HCA40.
SM661 (HC40 counts down when SM661is ON.)| © | | | ° OFF| - - |RW|OFF
It sets the counting mode of HCA41.
SM662 (HC41 counts down when SM662is ON.)| | © | © | ° OFF| - — | RW | OFF
It sets the counting mode of HC42.
SM663 (HC42 counts down when SM663isON.)| © | © | ° | ° OFF| - - |RMW|OFF
It sets the counting mode of HCA43.
SM664 (HC43 counts down when SM664is ON.)| © | © 1 © | ° OFF| - - |RMW|OFF
It sets the counting mode of HCA44.
SM665 (HC44 counts down when SM665is ON.)| | © 1 © | ° OFF| - - |RMW|OFF
It sets the counting mode of HCA45.
SM666 (HC45 counts down when SM666is ON.)| | © | ° | ° OFF| - - |RMW|OFF
It sets the counting mode of HCA46.
SMe67 (HC46 counts down when SM667isON.)| © | © | ° | ° OFF| - - |RMW|OFF
It sets the counting mode of HCA47.
SM668 (HC47 counts down when SM668is ON.)| © | © | | ° OFF| - - |RW|OFF
It sets the counting mode of HCA48.
SM669 (HC48 counts down when SM669is ON.)| © | | | ° OFF| - - |RW|OFF
It sets the counting mode of HCA49.
SM670 (HC49 counts down when SM670is ON.)| © | © | | ° OFF| - - |RW|OFF
It sets the counting mode of HC50.
SM671 (HC50 counts down when SM671is ON.)| © | | | ° OFF| - - |RW|OFF
It sets the counting mode of HC51.
SM672 (HC51 counts down when SM672is ON.)| © | | | ° OFF| - - |RW|OFF
It sets the counting mode of HC52.
SMé73 (HC52 counts down when SM673isON.)| | ¢ © | ° OFF| - — | RW | OFF
It sets the counting mode of HC53.
SM674 (HC53 counts down when SM674isON.)| © | © | ° | ° OFF| - - |RMW|OFF
It sets the counting mode of HC54.
SM675 (HC54 counts down when SM675is ON.)| © | © | © | ° OFF| - - |RMW|OFF
It sets the counting mode of HC55.
SM676 (HC55 counts down when SM676is ON.)| © | © | © | ° OFF| - - |RMW|OFF
It sets the counting mode of HC56.
SMe77 (HC56 counts down when SM677isON.)| | © | ° | ° OFF| - - |RMW|OFF
It sets the counting mode of HC57.
SM678 (HC57 counts down when SM678isON.)| | © | ° | ° OFF| - - |RMW|OFF
It sets the counting mode of HC58.
counts down when is ON. a a
SM679 HCES d hen SM679is ONY © | © 1 ° | © OFF R/W | OFF
It sets the counting mode of HC59.
counts down when is ON. a a
SM680 HC59 d hen SM680is ONY © | © 1 ° | ° OFF R/W | OFF
It sets the counting mode of HC60.
counts down when is ON. a a
SM681 HC6B0 d hen SM681is ONY © | € ° | © OFF R/W | OFF
SM682 It sets the counting mode of HC61. ololololoEEl - _ 'RW OEE

(HC61 counts down when SM682 is ON.)

2-17

AH500 Programming Manual

0O 000
T U|U | T >
$ 55 & OFF STOP RUN | = <
SM Function .é .é § § 4 4 4 é.- g
o/ m o m ON | RUN [STOP| = =
wzagz (L
It sets the counting mode of HC62.
SMe83 (HC62 counts down when SM683is ON.)| © | | | ° OFF| - - | RW|OFF
It sets the counting mode of HC63.
SM684 (HC63 counts down when SM684is ON.)| © | | | ° OFF| - - | RW|OFF
SM685 The_ |nstr_uct|on DSCLP uses the ol ool o OFE - _ |'RW OEE
floating-point operation.
SM686 | Mode of the instruction RAMP o|lo|ol|o|OFF| - - | R\W | OFF
SM687 Ig;r?lﬁgunon of the instruction RAMP is ol ool o OFE - _ |'RW OEE
SM688 '(I:'g;;)éteecunon of the instruction INCD is ol ol ol o OFE - _ |'RW OEE
SM690 | String control mode o|lo|o|o|OFF| - - | RIW | OFF
The input mode of the instruction HKY is
the 16-bit mode.
SM691 | The input is the hexadecimal input iff o | o | o| o |OFF| - - | RIW | OFF
SM691 is ON, whereas A~F are function
keys if it is OFF.
After the execution of the instruction HKY
SM692 |is complete, SM692 is ON for a scan/o | o | x| o |OFF| - - | R\W | OFF
cycle.
After the execution of the instruction
SM693 | SEGL is complete, SM693 is ON for aj o | o | x| o |OFF| - - | RIW | OFF
scan cycle.
After the execution of the instruction
SM694 |DSW is complete, SM694 is ON for ajo | o | x| o |OFF| — - | R\W | OFF
scan cycle.
It is the radian/degree flag.
SM695 ON: The degree o|lo| x| o|OFF| - - | RIW | OFF
SM699 An_error occurs when MODBUS TCP is x| VI« oloFEl - _ R | OFF
initialized. 1.01
SM700 | Enabling Modbus TCP connection 1 X 1.\61 x| o|OFF| - - | R\W | OFF
SM701 |Enabling Modbus TCP connection 2 X 1.\61 x| o|OFF| - - | R\W | OFF
SM702 |Enabling Modbus TCP connection 3 X 1.\61 x| o|OFF| - - | RIW | OFF
SM703 Enabling Modbus TCP connection 4 X 1.\61 x| o|OFF| - - | R\W | OFF
SM704 Enabling Modbus TCP connection 5 X 1.\61 x| o|OFF| - - | R\W | OFF
SM705 Enabling Modbus TCP connection 6 X 1.\61 x| o|OFF| - - | R\W | OFF
SM706 |Enabling Modbus TCP connection 7 X 1.\61 x| o|OFF| - - | RIW | OFF
SM707 |Enabling Modbus TCP connection 8 X 1.\61 x| o|OFF| - - | RIW | OFF
SM708 Enabling Modbus TCP connection 9 X 1.\61 x| o|OFF| - - | R\W | OFF
SM709 | Enabling Modbus TCP connection 10 X 1.\61 x| o|OFF| - - | R\W | OFF
SM710 |Enabling Modbus TCP connection 11 X 1.\61 x| o|OFF| - - | RIW | OFF

2-18

Chapter 2 Devices

OO0 0 0
§ § g g OFF STOP RUN| & | ©
SM Function SI8I5IB8 8| O 4 5 | =

%' m o m ON|RUN STOP S | =

0w zo=z w
SM711 |Enabling Modbus TCP connection 12 X 1'\61 x| o|OFF| - - | R\W | OFF
SM712 |Enabling Modbus TCP connection 13 X 1.\(/)1 x| o |OFF| - - | R\W | OFF
SM713 |Enabling Modbus TCP connection 14 x 1.\61 x| o |OFF| - - | R\W | OFF
SM714 |Enabling Modbus TCP connection 15 x 1.\61 x| o|OFF| - - | R\W | OFF
SM715 |Enabling Modbus TCP connection 16 X 1'\61 x| o|OFF| - - | R\W | OFF
SM716 |Enabling Modbus TCP connection 17 X 1'\61 x| o |OFF| - - | R\W | OFF
SM717 |Enabling Modbus TCP connection 18 x 1.\61 x| o |OFF| - - | R\W | OFF
SM718 |Enabling Modbus TCP connection 19 x 1.\61 x| o |OFF| - - | R\W | OFF
SM719 |Enabling Modbus TCP connection 20 x 1.\61 x| o|OFF| - - | R\W | OFF
SM720 |Enabling Modbus TCP connection 21 X 1'\61 x| o|OFF| - - | R\W | OFF
SM721 |Enabling Modbus TCP connection 22 X 1'\61 x| o |OFF| - - | R\W | OFF
SM722 |Enabling Modbus TCP connection 23 x 1.\61 x| o |OFF| - - | R\W | OFF
SM723 |Enabling Modbus TCP connection 24 x 1.\61 x| o |OFF| - - | R\W | OFF
SM724 |Enabling Modbus TCP connection 25 x 1%1 x| o|OFF| - - | R\W | OFF
SM725 |Enabling Modbus TCP connection 26 X 1'\61 x| o|OFF| - - | R\W | OFF
SM726 |Enabling Modbus TCP connection 27 X 1'\61 x| o |OFF| - - | R\W | OFF
SM727 |Enabling Modbus TCP connection 28 x 1.\61 x| o |OFF| - - | R\W | OFF
SM728 |Enabling Modbus TCP connection 29 x| vl % *OFF - | - |RMW OFF
SM729 |Enabling Modbus TCP connection 30 x 1'\61 x | o*OFF| - - | R\W | OFF
SM730 |Enabling Modbus TCP connection 31 x 1'\61 x | o*OFF| - - | R\W | OFF
SM731 |Enabling Modbus TCP connection 32 x 1'\61 x| o OFF| - - | R\W | OFF
SM732 |Enabling Modbus TCP connection 33 x 0% x | o OFF| - - | RIW | OFF
SM733 |Enabling Modbus TCP connection 34 x 0% x | o OFF| - - | RIW | OFF
SM734 |Enabling Modbus TCP connection 35 x 0% x |o* OFF| - - | R\W | OFF
SM735 |Enabling Modbus TCP connection 36 x 07 x |o* OFF| - - | R\W | OFF
SM736 |Enabling Modbus TCP connection 37 x 07 x |o* OFF| - - | R\W | OFF
SM737 |Enabling Modbus TCP connection 38 x 0% x | o OFF| - - | RIW | OFF
SM738 |Enabling Modbus TCP connection 39 x 0% x | o OFF| - - | RIW | OFF
SM739 |Enabling Modbus TCP connection 40 x 0% x |o* OFF| - - | R\W | OFF

2-19

AH500 Programming Manual

3998 g
S S & G OFFSTOPRUN| & | O
SM Function BRI I R 4 = | o
o m o m ON RUN|STOP| & | =
0 zan=z D
SM740 Enabling Modbus TCP connection 41 x 0% x| oY OFF| - - | RW | OFF
SM741 Enabling Modbus TCP connection 42 x |02 x| oY OFF| - - | RW | OFF
SM742 |Enabling Modbus TCP connection 43 x |02 x| o OFF - - | RW | OFF
SM743 |Enabling Modbus TCP connection 44 x |02 x| o* OFF| - - | RW | OFF
SM744 Enabling Modbus TCP connection 45 x |07 x| oY OFF| - - | RW | OFF
SM745 Enabling Modbus TCP connection 46 x 0% x| oY OFF| - - | RW | OFF
SM746 |Enabling Modbus TCP connection 47 x |07 x| o OFF - - | RW | OFF
SM747 |Enabling Modbus TCP connection 48 x |02 x| o OFF - - | RW | OFF
SM748 |Enabling Modbus TCP connection 49 x |02 x| o* OFF - - | RW | OFF
SM749 Enabling Modbus TCP connection 50 x |07 x| oY OFF| - - | RW | OFF
SM750 Enabling Modbus TCP connection 51 x |07 x| oY OFF| - - | RW | OFF
SM751 |Enabling Modbus TCP connection 52 x |07 x| o OFF - - | RW | OFF
SM752 |Enabling Modbus TCP connection 53 x |07 x| o OFF - - | RW | OFF
SM753 |Enabling Modbus TCP connection 54 x |02 x| o* OFF| - - | RW | OFF
SM754 Enabling Modbus TCP connection 55 x |07 x| oY OFF| - - | RW | OFF
SM755 Enabling Modbus TCP connection 56 x |07 x| o*OFF| - - | RW | OFF
SM756 |Enabling Modbus TCP connection 57 x |07 x| o OFF - - | RW | OFF
SM757 |Enabling Modbus TCP connection 58 x |07 x| OFF| - - | RW | OFF
SM758 Enabling Modbus TCP connection 59 x |07 x| oY OFF| - - | RW | OFF
SM759 Enabling Modbus TCP connection 60 x 0% x| oY OFF| - - | RW | OFF
SM760 Enabling Modbus TCP connection 61 x 0% x|o°|OFF| - - | RW | OFF
SM761 |Enabling Modbus TCP connection 62 x [0 x |o° OFF| - - | RW | OFF
SM762 |Enabling Modbus TCP connection 63 x |07 x |o° OFF| - - | RW | OFF
SM763 Enabling Modbus TCP connection 64 x [0 x|o°|OFF| - - | RW | OFF
SM764 Enabling Modbus TCP connection 65 x |07 x |o°|OFF| - - | RW | OFF
SM765 Enabling Modbus TCP connection 66 x |07 x| o°|OFF| - - | RW | OFF
SM766 |Enabling Modbus TCP connection 67 x |07 x| o°OFF| - - | RW | OFF
SM767 |Enabling Modbus TCP connection 68 x |07 x| o°OFF| - - | RW | OFF
SM768 Enabling Modbus TCP connection 69 x |07 x| o°|OFF| - - | RW | OFF

2-20

Chapter 2 Devices

O 000

§ § g g OFF STOP RUN| & | ©
SM Function SI8I5IB8 8| O 4 5 | =

o m o/ m ON|RUN STOP & | =

0w zo=z D
SM769 |Enabling Modbus TCP connection 70 x 0% x |o°|OFF| - - | R\W | OFF
SM770 |Enabling Modbus TCP connection 71 x 0% x |o°|OFF| - - | R\W | OFF
SM771 |Enabling Modbus TCP connection 72 x 0% x |o°|OFF| - - | RIW | OFF
SM772 |Enabling Modbus TCP connection 73 x 0% x |o°|OFF| - - | RIW | OFF
SM773 |Enabling Modbus TCP connection 74 x 0% x |o°|OFF| - - | RIW | OFF
SM774 |Enabling Modbus TCP connection 75 x 0% x |o°|OFF| - - | R\W | OFF
SM775 |Enabling Modbus TCP connection 76 x 0% x |o°|OFF| - - | RIW | OFF
SM776 |Enabling Modbus TCP connection 77 x 0% x |o°|OFF| - - | RIW | OFF
SM777 |Enabling Modbus TCP connection 78 x 0% x |o°|OFF| - - | RIW | OFF
SM778 |Enabling Modbus TCP connection 79 x 0% x |o°|OFF| - - | RIW | OFF
SM779 |Enabling Modbus TCP connection 80 x 0% x |o°|OFF| - - | RIW | OFF
SM780 |Enabling Modbus TCP connection 81 x 0% x |o°|OFF| - - | RIW | OFF
SM781 |Enabling Modbus TCP connection 82 x 0% x |o°|OFF| - - | RIW | OFF
SM782 |Enabling Modbus TCP connection 83 x 0% x |o°|OFF| - - | RIW | OFF
SM783 |Enabling Modbus TCP connection 84 x 0% x |o°|OFF| - - | R\W | OFF
SM784 |Enabling Modbus TCP connection 85 x 0% x |o°|OFF| - - | R\W | OFF
SM785 |Enabling Modbus TCP connection 86 x 0% x |o°|OFF| - - | RIW | OFF
SM786 |Enabling Modbus TCP connection 87 x 0% x |o°|OFF| - - | RIW | OFF
SM787 |Enabling Modbus TCP connection 88 x 0% x |o°|OFF| - - | R\W | OFF
SM788 |Enabling Modbus TCP connection 89 x 0% x |o°|OFF| - - | R\W | OFF
SM789 | Enabling Modbus TCP connection 90 x 0% x |o°|OFF| - - | R\W | OFF
SM790 |Enabling Modbus TCP connection 91 x 0% x |o°|OFF| - - | RIW | OFF
SM791 |Enabling Modbus TCP connection 92 x 0% x |o°|OFF| - - | RIW | OFF
SM792 |Enabling Modbus TCP connection 93 x 0% x |o°|OFF| - - | R\W | OFF
SM793 |Enabling Modbus TCP connection 94 x 0% x |o°|OFF| - - | R\W | OFF
SM794 |Enabling Modbus TCP connection 95 x 0% x |o°|OFF| - - | R\W | OFF
SM795 |Enabling Modbus TCP connection 96 x 0% x |o°|OFF| - - | RIW | OFF
SM796 |Enabling Modbus TCP connection 97 x 0% x |o°|OFF| - - | RIW | OFF
SM797 |Enabling Modbus TCP connection 98 x 0% x |o°|OFF| - - | R\W | OFF

2-21

AH500 Programming Manual

3998 g
S S & G OFFSTOPRUN| & | O
SM Function BRI I R 4 = | o
o m o m ON RUN|STOP| & | =

0 zan=z D
SM798 Enabling Modbus TCP connection 99 x |07 x| o°|OFF| - - | RW | OFF
SM799 Enabling Modbus TCP connection 100 | x 0| x |o°|OFF| - - | RW | OFF
SM800 |Enabling Modbus TCP connection 101 | x [0 x | o OFF | - - | RW | OFF
SM801 |Enabling Modbus TCP connection 102 | x (0| x | o OFF| - - | RW | OFF
SM802 Enabling Modbus TCP connection 103 | x 0| x |o°|OFF| - - | RW | OFF
SM803 Enabling Modbus TCP connection 104 | x 0| x |o°|OFF| - - | RW | OFF
SM804 |Enabling Modbus TCP connection 105 | x [0 x | o OFF| - - | RW | OFF
SM805 |Enabling Modbus TCP connection 106 | x (0| x | o OFF | - - | RW | OFF
SM806 |Enabling Modbus TCP connection 107 | x [0 x | o OFF| - - | RW | OFF
SM807 Enabling Modbus TCP connection 108 | x 0| x |o°|OFF| - - | RW | OFF
SM808 Enabling Modbus TCP connection 109 | x 0| x |o°|OFF| - - | RW | OFF
SM809 | Enabling Modbus TCP connection 110 | x [0 x | o OFF| - - | RW | OFF
SM810 Enabling Modbus TCP connection 111 | x 0| x |0 °|OFF| - - | RW | OFF
SM811 Enabling Modbus TCP connection 112 | x 0| x |o°|OFF| - - | RW | OFF
SM812 |Enabling Modbus TCP connection 113 | x [0 x | o OFF| - - | RW | OFF
SM813 |Enabling Modbus TCP connection 114 | x [0 x |o° OFF | - - | RW | OFF
SM814 |Enabling Modbus TCP connection 115 | x [0 x | o°|OFF| - - | RW | OFF
SM815 Enabling Modbus TCP connection 116 | x 0| x |o°|OFF| - - | RW | OFF
SM816 Enabling Modbus TCP connection 117 | x 0| x |o°|OFF| - - | RW | OFF
SM817 |Enabling Modbus TCP connection 118 | x [0 x | o OFF - - | RW | OFF
SM818 |Enabling Modbus TCP connection 119 | x [0 x | o OFF | - - | RW | OFF
SM819 Enabling Modbus TCP connection120 x |07 x| o°|OFF| - - | RW | OFF
SM820 Enabling Modbus TCP connection 121 | x 0| x |o°|OFF| - - | RW | OFF
SM821 Enabling Modbus TCP connection 122 | x 0| x |o°|OFF| - - | RW | OFF
SM822 |Enabling Modbus TCP connection 123 | x [0 x |o°|OFF | - - | RW | OFF
SM823 |Enabling Modbus TCP connection 124 | x [0 x |o°|OFF | - - | RW | OFF
SM824 Enabling Modbus TCP connection 125 | x 0| x | o |OFF| - - | RW | OFF
SM825 Enabling Modbus TCP connection 126 | x 0| x | o |OFF| - - | RW | OFF
SM826 Enabling Modbus TCP connection 127 | x 0| x | o |OFF| - - | RW | OFF
SM827 |Enabling Modbus TCP connection 128 | x [0 x | o |OFF| - - | RMW | OFF

2-22

Chapter 2 Devices

O o000
el >
- S5 & §|OFF STOP RUN = 8..
SM Function 1381283 4 g | B
5 m % m ON RUNSTOP & | =
0wz nlz ®
N N
SM828 An error occurs in Modbus TCP « Vil olorr - 3 R | oFF
connection 1. 1.01
SM829 An error occurs in Modbus TCP « Vil olorE - 3 R | oFF
connection 2. 1.01
SM830 An error occurs in Modbus TCP x| Vil olorE - 3 R | oFF
connection 3. 1.01
SM831 An error occurs in Modbus TCP x| Vil olorE - 3 R | oFF
connection 4. 1.01
SM832 An error occurs in Modbus TCP <« Vo oFEl - B R | oFF
connection 5. 1.01
SM833 An error occurs in Modbus TCP « Vil olore - 3 R | OFF
connection 6. 1.01
SM834 An error _occurs in Modbus TCP Vil olore - 3 R | OFF
connection 7. 1.01
SM835 An error occurs in Modbus TCP Vil olore - 3 R | OFF
connection 8. 1.01
SM836 An error occurs in Modbus TCP Vil olore - 3 R | OFF
connection 9. 1.01
SM837 An error occurs in Modbus TCP « V1l olorE - 3 R | OFF
connection 10. 1.01
SM838 An error occurs in Modbus TCP « Vil olorE - 3 R | oFF
connection 11. 1.01
SM839 An error occurs in Modbus TCP « Vil olorE - 3 R | oFF
connection 12. 1.01
SM840 An error occurs in Modbus TCP « Vil olorE - 3 R | oFF
connection 13. 1.01
SM841 An error occurs in Modbus TCP « Vil olorr - 3 R | oFF
connection 14. 1.01
SM842 An error occurs in Modbus TCP « | Vil olorE - 3 R | oFF
connection 15. 1.01
SM843 An error occurs in Modbus TCP <« Vo oFEl - B R | oFF
connection 16. 1.01
SM844 An error occurs in Modbus TCP x| x| o OFE| - B R | oFF
connection 17.
SMsa5 /AN error occurs in Modbus TCP| | ..« | OFF - 3 R | OFF
connection 18.
SM846 An error occurs in Modbus TCP x|o1 x| o OFE| - B R | oFF
connection 19.
SMsa7 /AN error occurs in Modbus TCP| _ | ../ |, OFF - 3 R | OFF
connection 20.
SMgag |An error occurs in Modbus TCP| _ | ../ | OFF| — B R | OFF
connection 21.
SM849 An error occurs in Modbus TCP _ | | | OFF| — B R | OFF
connection 22.
SM850 An error occurs in Modbus TCP _ | I | OFF| — B R | OFF
connection 23.
SM851 An error occurs in Modbus TCP _ | & | OFF| — B R | OFF
connection 24.
SM852 An error occurs in Modbus TCP _ | & | OFF| — B R | OFF
connection 25.
SM853 |An error occurs in Modbus TCP| x |o*1| x| o |OFF| - - R | OFF

2-23

AH500 Programming Manual

0O 00 0
2|2 E| 2 >
_ $ & & & OFF STOP RUN = <
SM Function é é 5 5 4 34 4 = g
% m Do m ON| RUN STOP| 5 £
0wz on z ®
N N
connection 26.
SM854 An error occurs in Modbus TCP | | | OFF| _ B OFE
connection 27.
SM855 An error occurs in Modbus TCP | 1 | OFF| _ B R | OFF
connection 28.
SMesg AN error occurs in Modbus TCP| ' .0 |, OFF — 3 R | OFF
connection 29.
SMgs7 A error occurs in Modbus TCP| ' .0 |, OFF — 3 R | OFF
connection 30.
SMesg /AN error occurs in Modbus TCP| ' ../ |, OFF — 3 R | OFF
connection 31.
SMesg AN error occurs in Modbus TCP| _ | .| .|, OFF — 3 R | OFF
connection 32.
SsMeeo /AN error occurs in Modbus TCP| | w2 | OFF — 3 R | OFF
connection 33.
SM861 An error occurs in Modbus TCP x 02 x| o OFEl - 3 R | oFF
connection 34.
SM862 An error occurs in Modbus TCP | 2 | OFF| _ B R | OFF
connection 35.
SM863 An error occurs in Modbus TCP x 02 x| o OFEl - 3 R | oFF
connection 36.
SM864 An error occurs in Modbus TCP x 02 x| o OFEl - 3 R | oFF
connection 37.
SM865 An error occurs in Modbus TCP | 2 | OFF| _ B R | OFF
connection 38.
SM866 An error occurs in Modbus TCP | 2 | OFF| _ B R | OFF
connection 39.
SMee7 /AN error occurs in Modbus TCP| | w2 | OFF — 3 R | OFF
connection 40.
SMeeg /AN error occurs in Modbus TCP| | 2 | OFF — 3 R | OFF
connection 41.
SMeeg AN error occurs in Modbus TCP| | w2 | OFF — 3 R | OFF
connection 42,
sMmg7o /AN error occurs in Modbus TCP| | w2 | OFF — 3 R | OFF
connection 43.
SM871 An error occurs in Modbus TCP x 02 x| o OFE - 3 R | OFF
connection 44.
SM872 An error occurs in Modbus TCP | 2 | OFF| _ B R | OFF
connection 45.
SM873 An error occurs in Modbus TCP x 02 x| o OFEl - 3 R | oFF
connection 46.
SM874 An error occurs in Modbus TCP x 02 x| o OFEl - 3 R | oFF
connection 47.
SM875 An error occurs in Modbus TCP | 2 | OFF| _ B R | OFF
connection 48.
SM876 An error occurs in Modbus TCP | 2 | OFF| _ B R | OFF
connection 49.
SM877 An error occurs in Modbus TCP | 2 | OFF| _ B R | OFF
connection 50.
SM878 An error occurs in Modbus TCP x 02 x| o OFE - 3 R | OFF

connection 51.

2-24

Chapter 2 Devices

O 000
S22 2loFFsToP RUN & | ©
ala gl g = @
SM Function é é 5 5 4 4 4 = g
o' m T m ON | RUN STOP & =
0wz nlz ®
N N
SM879 An error occurs in Modbus TCP x 02 x| o OFE - B R | OFF
connection 52.
SM880 An error occurs in Modbus TCP _ | = | OFF| — B R | OFF
connection 53.
SM8s1 An error occurs in Modbus TCP _ | = | OFF| — B R | OFF
connection 54.
SMB8?2 An error occurs in Modbus TCP _ | = | OFF| — B R | OFF
connection 55.
SMsg3 /AN error occurs in Modbus TCP| | 2 | OFF - 3 R | OFF
connection 56.
SM8s4 An error occurs in Modbus TCP x 02 x| o|OFE - B R | OFF
connection 57.
SMsgs /AN error occurs in Modbus TCP| | 2 | OFF — 3 R | OFF
connection 58.
SM8s6 An error occurs in Modbus TCP x 02 x| o |OFE - B R | OFF
connection 59.
SM887 An error occurs in Modbus TCP x 02 x| o |OFE - B R | OFF
connection 60.
SM8ss An error occurs in Modbus TCP x 02 x| o OEE| - B R | OFF
connection 61.
SM889 An error occurs in Modbus TCP x 02 x| o OFE - B R | OFF
connection 62.
SM890 An error occurs in Modbus TCP x 02 x| o OFE - B R | OFF
connection 63.
SM891 An error occurs in Modbus TCP _ | = | OFF| — B R | OFF
connection 64.
SMB92 An error occurs in Modbus TCP | s3 | OFF| — B R | OFF
connection 65.
SM893 An error occurs in Modbus TCP | »3 | OFF| — B R | OFF
connection 66.
SM894 An error occurs in Modbus TCP x 0% x| o |OFE - B R | OFF
connection 67.
SMgos /AN error - occurs in Modbus TCP| | = | OFF - 3 R | OFF
connection 68.
SM896 An error occurs in Modbus TCP x 0% x| o |OFE - B R | OFF
connection 69.
SM897 An error _occurs in Modbus TCP x 0% x| o|OFE - B R | OFF
connection 70.
SM898 An error _occurs in Modbus TCP x 0% x| o|OFE - B R | OFF
connection 71.
SM899 An error _occurs in Modbus TCP x 0% x| o OEE| - B R | OFF
connection 72.
SM900 An error _occurs in Modbus TCP x 0% x| o | OFE - B R | OFF
connection 73.
SM901 An error _occurs in Modbus TCP x 0% x| o | OFE - B R | OFF
connection 74.
SM902 An error occurs in Modbus TCP | »a | OFF| — B R | OFF
connection 75.
SM903 An error occurs in Modbus TCP _ | 3 | OFF| — B R | OFF
connection 76.
SM904 |An error occurs in Modbus TCP| x [0®| x| o |OFF| - - R | OFF

2-25

AH500 Programming Manual

O 000
cleE|e >
_ Q Q Q Q OFF |[STOP REN § 8..
SM Function S 88 & 4 4 g o
o/ m o m ON | RUN [STOP| = =
0w 2 wnz @
N N
connection 77.
SM905 An error _occurs in Modbus TCP x 0% x| o OFEl - B R | OFF
connection 78.
SM906 An error _occurs in Modbus TCP x 0% x| o OFEl - B R | OFF
connection 79.
SM907 An error occurs in Modbus TCP x 0% x| o OFEl - B R | OFF
connection 80.
SM908 An error occurs in Modbus TCP x 0% x| o OFEl - B R | OFF
connection 81.
SM909 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 82.
SM910 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 83.
SM911 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 84.
SM912 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 85.
SM913 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 86.
SM914 An error occurs in Modbus TCP x 0% x| o OEE| - B R | OFF
connection 87.
SM915 An error occurs in Modbus TCP x 0% x| o OFEl - B R | OFF
connection 88.
SM916 An error occurs in Modbus TCP x 0% x| o OFEl - B R | OFF
connection 89.
SM917 An error occurs in Modbus TCP x 0% x| o OFEl - B R | OFF
connection 90.
SM918 An error occurs in Modbus TCP x 0% x| o OFEl - B R | OFF
connection 91.
SM919 An error occurs in Modbus TCP x 0% x| o OFEl - B R | OFF
connection 92.
SM920 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 93.
SM921 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 94.
SM922 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 95.
SM923 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 96.
SM924 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 97.
SM925 An error occurs in Modbus TCP x 0% x| o OFEl - B R | OFF
connection 98.
SM926 An error occurs in Modbus TCP x 0% x| o OFEl - B R | OFF
connection 99.
SM927 An error occurs in Modbus TCP x 0% x| o OFEl - B R | OFF
connection 100.
SM928 An error occurs in Modbus TCP x 0% x| o OFEl - B R | OFF
connection 101.
SM929 An error occurs in Modbus TCP x 0% x| o OFEl - B R | OFF

connection 102.

2-26

Chapter 2 Devices

O o000
S22 2loFFsToP RUN & | ©
ala gl g = @
SM Function é é 5 5 4 4 4 = g
5 m % m ON RUNSTOP & | =
0wz nlz ®
N N
SM930 An error occurs in Modbus TCP x 0% x| o | OFE - B R | OFF
connection 103.
SM931 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 104.
SM932 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 105.
SM933 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 106.
SM934 An error occurs in Modbus TCP x 0% x| o |OFE - B R | OFF
connection 107.
SM935 An error occurs in Modbus TCP x 0% x| o|OFE - B R | OFF
connection 108.
SM936 An error occurs in Modbus TCP x 0% x| o |OFE - B R | OFF
connection 109.
SM937 An error occurs in Modbus TCP x 0% x| o|OFE - B R | OFF
connection 110.
SM938 An error occurs in Modbus TCP x 0% x| o|OFE - B R | OFF
connection 111.
SM939 An error occurs in Modbus TCP x 0% x| o OEE| - B R | OFF
connection 112.
SM940 An error occurs in Modbus TCP x 0% x| o | OFE - B R | OFF
connection 113.
SM941 An error occurs in Modbus TCP x 0% x| o | OFE - B R | OFF
connection 114.
SM942 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 115.
SM943 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 116.
SM944 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 117.
SM945 An error occurs in Modbus TCP x 0% x| o |OFE - B R | OFF
connection 118.
SM946 An error occurs in Modbus TCP x 0% x| o |OFE - B R | OFF
connection 119.
SM947 An error occurs in Modbus TCP x 0% x| o |OFE - B R | OFF
connection 120.
SM948 An error occurs in Modbus TCP x 0% x| o|OFE - B R | OFF
connection 121.
SM949 An error occurs in Modbus TCP x 0% x| o|OFE - B R | OFF
connection 122.
SM950 An error occurs in Modbus TCP x 0% x| o OEE| - B R | OFF
connection 123.
SM951 An error occurs in Modbus TCP x 0% x| o | OFE - B R | OFF
connection 124.
SM952 An error occurs in Modbus TCP x 0% x| o | OFE - B R | OFF
connection 125.
SM953 An error occurs in Modbus TCP | sa | OFF| — B R | OFF
connection 126.
SM954 An error occurs in Modbus TCP x 0% x| o OFE - B R | OFF
connection 127.
SM955 |An error occurs in Modbus TCP| x [0®| x| o |OFF| - - R | OFF

2-27

AH500 Programming Manual

0O 000
c S corFsToPRIN B | O©
Gl Gl al| G = @
SM Function S8 v 4 4 o g
o m o/ m| ON | RUN STOP % =
wzagz
connection 128.
It is the Ethernet setting flag. When
SM1000 is ON, the data in
SM1000 | 5p1000~SR1006 is written into the flash| * | © | * | °| - | = | — |RWJOFF
memory.
SM1090 | The TCP connection is busy. x x| o|OFF| - - R | OFF
SM1091 | The UDP connection is busy. x x| o|OFF| - - R | OFF
SM1100 | The network cable is not connected x x| o|OFF| - - R | OFF
SM1106 Srarzirc management—Ethernet connection « ol x! olOFE - _ R | OFF
SM1107 sB(?t?ilr?g g]r?g?gement of Ethernet—Basic <ol x| o OFF - _ R | OFE
SM1108 sB:t?ilr?g (r:r?gragement of Ethernet—Filter <ol x| o OFF - _ R | OFE
SM1109 Basic management pf the TCP/UDP «lol x| olOEE - _ R | OFF
socket—The local port is already used.
*SM1112 | Email setting error x|o| x|o|lOFF| - - R | OFF
*SM1113 | Email service error x| o|x|o|OFF| - - R | OFF
*SM1116 | It is the switch of trigger 1 in the email. x|o| x|o|lOFF| - - R | OFF
*SM1117 | Trigger 1 in the email x|o| x|o|lOFF| - - R | OFF
When trigger 1 is triggered but the email
*SM1118 | cannot be sent due to the Ethernet| x | o | x| o |OFF| - - R | OFF
connection failure; SM1118 is ON.
When trigger 1 is triggered and the email
*SM1119 | has been sent successfully; SM1119 is| x | o | x | o |OFF| — - R | OFF
ON.
When trigger 1 is triggered but the email
*SM1120 | cannot be sent due to email content| x | o | x| o |OFF — - R | OFF
error; SM1120 is ON.
When trigger 1 is triggered and the email
"SM1121 isbeingggnt; SMllggisON. x| o] x| o|OFF - a R | OFF
When trigger 1 is triggered and there is
*SM1122 |an SMTP server response timeout,| x | o | x| o |OFF — - R | OFF
SM1122 is ON.
When trigger 1 is triggered and there is
*SM1123 | an SMTP server response error, SM1123| x | o | x | o |OFF| — - R | OFF
is ON.
When trigger 1 is triggered and the size
*SM1124 | of the attachment exceeds the limit,| x | o | x| o |OFF| - - R | OFF
SM1124 is ON.
When trigger 1 is triggered and the
"SM1125 attachmegtgisnotfound,ggM1125isON. x| o] x| o|OFF - a OFF
*SM1126 | It is the switch of trigger 2 in the email. x x| o|OFF| - - R | OFF
*SM1127 | Trigger 2 in the email x x| o|OFF| - - R | OFF
When trigger 2 is triggered but the email
*SM1128 | cannot be sent due to the Ethernet| x | o | x| o |OFF — - R | OFF
connection failure; SM1128 is ON.
*SM1129 When trigger 2 is triggered and the email| o x| o OFF - _ R | OFF

has been sent successfully; SM1129 is

2-28

Chapter 2 Devices

OO0 0 0
S ¢ C S orFSTOPRUIN & | ©
. ala ala = @
SM Function SI528l Y 4 4 o g
o m o m ON RUN STOP 5 =
0wz wnz (L
N N
ON.
When trigger 2 is triggered but the email
*SM1130 | cannot be sent due to email content| x | o | x| o |OFF| — - R | OFF
error; SM1130 is ON.
When trigger 2 is triggered and the email
"SM1131 i being sent; SM1131 is ON. x| o] x| e|OFF - a R | OFF
When trigger 2 is triggered and there is
*SM1132 |lan SMTP server response timeout,| x | o | x| o |OFF| - - R | OFF
SM1132 is ON.
When trigger 2 is triggered and there is
*SM1133 | an SMTP server response error, SM1133| x | o | x | o |OFF| — - R | OFF
is ON.
When trigger 2 is triggered and the size
*SM1134 | of the attachment exceeds the limit,| x | o | x| o |OFF| — - R | OFF
SM1134 is ON.
When trigger 2 is triggered and the
"SM1135 attachmer?tgis notfound,ggM1135 isON, | *|© | * o OFF - a OFF
*SM1136 | It is the switch of trigger 3 in the email. x x| o|OFF| - - R | OFF
*SM1137 | Trigger 3 in the email x x| o|OFF| - - R | OFF
When trigger 3 is triggered but the email
*SM1138 | cannot be sent due to the Ethernet| x | o | x| o |OFF| - - R | OFF
connection failure; SM1138 is ON.
When trigger 3 is triggered and the email
*SM1139 | has been sent successfully; SM1139 is| x | o | x | o |OFF| - - R | OFF
ON.
When trigger 3 is triggered but the email
*SM1140 | cannot be sent due to email content| x | o | x| o |OFF| — - R | OFF
error; SM1140 is ON.
. When trigger 3 is triggered and the email
SM1141 14 being sent; SM1141 is ON. x| o] x| o|OFF - - R | OFF
When trigger 3 is triggered and there is
*SM1142 |lan SMTP server response timeout,| x | o | x| o |OFF| - - R | OFF
SM1142 is ON.
When trigger 3 is triggered and there is
*SM1143 | an SMTP server response error, SM1143| x | o | x | o |OFF| — - R | OFF
is ON.
When trigger 3 is triggered and the size
*SM1144 | of the attachment exceeds the Iimit,| x | o | x| o |OFF| - - R | OFF
SM1144 is ON.
When trigger 3 is triggered and the
"SM1145 attachmer?tgis notfound,ggM1145 isON, | *|©| * o OFF - a OFF
*SM1146 | It is the switch of trigger 4 in the email. x x| o |OFF| - - R | OFF
*SM1147 | Trigger 4 in the email x x| o |OFF| - - R | OFF
When trigger 4 is triggered but the email
*SM1148 | cannot be sent due to the Ethernet| x | o | x| o |OFF| - - R | OFF
connection failure; SM1148 is ON.
When trigger 4 is triggered and the email
*SM1149 | has been sent successfully; SM1149 is| x | o | x | o |OFF| - - R | OFF

ON.

2-29

AH500 Programming Manual

0O 000
T U|U | T >
_ $ & & & OFF STOP RUN = <
SM Function S8 v 4 4 o g
o/ m 3 m ON RUN STOP &5 =
0w zZzlun z (L
N N
When trigger 4 is triggered but the email
*SM1150 | cannot be sent due to email content| x | o | x| o |OFF — - R | OFF
error; SM1150 is ON.
When trigger 4 is triggered and the email
"SM1151 is being sent; SM1151 is ON. x| o] x| o|OFF - a R | OFF
When trigger 4 is triggered and there is
*SM1152 |lan SMTP server response timeout,| x | o | x| o |OFF — - R | OFF
SM1152 is ON.
When trigger 4 is triggered and there is
*SM1153 | an SMTP server response error, SM1153| x | o | x | o |OFF| — - R | OFF
is ON.
When trigger 4 is triggered and the size
*SM1154 | of the attachment exceeds the limit,| x | o | x| o |OFF| - - R | OFF
SM1154 is ON.
When trigger 4 is triggered and the
"SM1155 attachmegtgisnotfound,ggM1155isON. x| o] x| o|OFF - a OFF
*SM1156 | It is the switch of trigger 5 in the email. x x| o|OFF| - - R | OFF
*SM1157 | Trigger 5 in the email x x| o|OFF| - - R | OFF
When trigger 5 is triggered but the email
*SM1158 | cannot be sent due to the Ethernet| x | o | x| o |OFF — - R | OFF
connection failure; SM1158 is ON.
When trigger 5 is triggered and the email
*SM1159 | has been sent successfully; SM1159 is| x | o | x | o |OFF| — - R | OFF
ON.
When trigger 5 is triggered but the email
*SM1160 | cannot be sent due to email content| x | o | x| o |OFF| - - R | OFF
error; SM1160 is ON.
. When trigger 5 is triggered and the email
SM1161 is being sent; SM1161 is ON. x| 0| x| o|OFF - - R | OFF
When trigger 5 is triggered and there is
*SM1162 |an SMTP server response timeout,| x | o | x| o |OFF — - R | OFF
SM1162 is ON.
When trigger 5 is triggered and there is
*SM1163 | an SMTP server response error, SM1163| x | o | x | o |OFF| — - R | OFF
is ON.
When trigger 5 is triggered and the size
*SM1164 | of the attachment exceeds the Ilimit,| x | o | x| o |OFF — - R | OFF
SM1164 is ON.
When trigger 5 is triggered and the
"SM1165 attachmegtgisnotfound,ggM1165isON. x| o] x| o|OFF - a OFF
*SM1166 | It is the switch of trigger 6 in the email. x x| o|OFF| - - R | OFF
*SM1167 | Trigger 6 in the email x x| o|OFF| - - R | OFF
When trigger 6 is triggered but the email
*SM1168 | cannot be sent due to the Ethernet| x | o | x| o |OFF| - - R | OFF
connection failure; SM1168 is ON.
When trigger 6 is triggered and the email
*SM1169 | has been sent successfully; SM1169 is| x | o | x | o |OFF| — - R | OFF
ON.
*SM1170 When trigger 6 is triggered but the email| o x| o OFEl - _ R | OEE

cannot be sent due to email content

2-30

Chapter 2 Devices

OO0 0 0
S ¢ C S orFSTOPRUIN & | ©
. ala ala = @
SM Function SI528l Y 4 4 o g
o m o m ON RUN STOP 5 =
0wz wnz (L
N N
error; SM1170 is ON.
When trigger 6 is triggered and the email
SMI171 i being sent; SM1171 is ON. x| o] x| °|OFF| - a R | OFF
When trigger 6 is triggered and there is
*SM1172 |lan SMTP server response timeout,| x | o | x| o |OFF| - - R | OFF
SM1172 is ON.
When trigger 6 is triggered and there is
*SM1173 | an SMTP server response error, SM1173| x | o | x | o |OFF| — - R | OFF
is ON.
When trigger 6 is triggered and the size
*SM1174 | of the attachment exceeds the limit,| x | o | x| o |OFF| — - R | OFF
SM1174 is ON.
When trigger 6 is triggered and the
"SMIL75 | ottachment is not found, SM1175isON. | * | © | *| ° OFF| - B OFF
*SM1176 | It is the switch of trigger 7 in the email. x x| o|OFF| - - R | OFF
*SM1177 | Trigger 7 in the email x x| o|OFF| - - R | OFF
When trigger 7 is triggered but the email
*SM1178 | cannot be sent due to the Ethernet| x |o| x| o |OFF| - - R | OFF
connection failure; SM1178 is ON.
When trigger 7 is triggered and the email
*SM1179 | has been sent successfully; SM1179 is| x | o | x | o |OFF| — - R | OFF
ON.
When trigger 7 is triggered but the email
*SM1180 | cannot be sent due to email content| x | o | x| o |OFF| — - R | OFF
error; SM1180 is ON.
When trigger 7 is triggered and the email
*SM1181 g being sent; SM1181 is ON. x| o] x| OFF) - h R | OFF
When trigger 7 is triggered and there is
*SM1182 |lan SMTP server response timeout,| x | o | x| o |OFF| - - R | OFF
SM1182 is ON.
When trigger 7 is triggered and there is
*SM1183 | an SMTP server response error, SM1183| x | o | x | o |OFF| — - R | OFF
is ON.
When trigger 7 is triggered and the size
*SM1184 | of the attachment exceeds the limit,| x | o | x| o |OFF| — - R | OFF
SM1184 is ON.
When trigger 7 is triggered and the
"SM1185 attachmer?tgis notfound,ggM1185 isON, | | © *|°|OFF - a OFF
*SM1186 | It is the switch of trigger 8 in the email. x x| o|OFF| - - R | OFF
*SM1187 | Trigger 8 in the email x x| o|OFF| - - R | OFF
When trigger 8 is triggered but the email
*SM1188 | cannot be sent due to the Ethernet| x | o | x| o |OFF| - - R | OFF
connection failure; SM1188 is ON.
When trigger 8 is triggered and the email
*SM1189 | has been sent successfully; SM1189 is| x | o | x | o |OFF| - - R | OFF
ON.
When trigger 8 is triggered but the email
*SM1190 | cannot be sent due to email content| x | o | x| o |OFF| — - R | OFF

error; SM1190 is ON.

2-31

AH500 Programming Manual

0O 000
clele|e >
_ § GGG OFF |STOP REN § 8.,
SM Function S 88 & 4 4 g 2
o/ m o m ON | RUN [STOP| = =
0w zwnlz (L
N N
When trigger 8 is triggered and the email
* —_ —_
SM1191 is being sent; SM1191 is ON. || x| o|OFF R | OFF
When trigger 8 is triggered and there is
*SM1192 |an SMTP server response timeout,| x | o | x| o |OFF — - R | OFF
SM1192 is ON.
When trigger 8 is triggered and there is
*SM1193 | an SMTP server response error, SM1193| x | o | x | o |OFF| — - R | OFF
is ON.
When trigger 8 is triggered and the size
*SM1194 | of the attachment exceeds the limit,| x |o| x| o |OFF| - - R | OFF
SM1194 is ON.
When trigger 8 is triggered and the
* - —_
SM1195 attachment is not found, SM1195is ON. | * | © | ™| ° OFF R | OFF
*SM1196 | Socket configuration error x|o| x|o|lOFF| - - | R\W | OFF
*SM1270 TCP socket 1—The connection is| ol x| olOEEl - _ R | OFF
successful.
*SM1271 TCP_ socket 1—The data has been | | | OFF - _ OFEE
received.
*SM1272 | TCP socket 1—The data has beensent. | x | o | x| o |OFF| - - OFF
*SM1273 TCP socket 1—The connection is being| ol x| oloFE = _ R | OFE
started.
*SM1274 TCP socket 1—The connection is being| ol xlolon| = _ R | ON
closed.
*SM1275 | TCP socket 1—The data is being sent. x| o|x|o|OFF| - - R | OFF
*SM1276 TCP_ socket 1—The data is being ol x| oloFE = _ R | OFE
received.
*SM1277 | TCP socket 1—Error flag x|o| x|o|OFF| - - R | OFF
*SM1278 TCP socket 2—The connection is| ol x| oloFE = _ R | OFE
successful.
*SM1279 TCP socket 2—The data has been| | | | OFF - _ R | OFE
received.
*SM1280 | TCP socket 2—The data has beensent. | x | o | x| o |OFF| - - R | OFF
*SM1281 TCP socket 2—The connection is being <ol x| o OFF - _ R | OFE
started.
*SM1282 TCP socket 2—The connection is being <ol xl o ON| - _ R ON
closed.
*SM1283 | TCP socket 2—The data is being sent. x|o| x|o|OFF| - - R | OFF
*SM1284 TCP. socket 2—The data is being| ol x| olOEEl - _ R | OFF
received.
*SM1285 | TCP socket 2—Error flag x|o| x|o|lOFF| - - R | OFF
*SM1286 TCP socket 3—The connection is <ol x| o OFF - _ R | OFE
successful.
*SM1287 TCP_ socket 3—The data has been ol x| olOEEl - _ R | OFF
received.
*SM1288 | TCP socket3—The data has beensent. | x | o | x| o |OFF| - - OFF
*SM1289 TCP socket 3—The connection is being| ol x| oloFE = _ OFEE
started.
*SM1290 TCP socket 3—The connection is being| | | | ON | - B R | ON

closed.

2-32

Chapter 2 Devices

O 000
2lg|ele >
_ S5 & §|OFF STOP RUN = <
SM Function é é 5 5 3 4 4 = g
o m o m ON RUN STOP 5 =
0wz nz (L
N N
*SM1291 | TCP socket 3—The data is being sent. x|o|x|o|OFF| - - R | OFF
*SM1292 TCP_ socket 3—The data is being | | | _ OFF| — 3 R | OFF
received.
*SM1293 | TCP socket 3—Error flag x|o|x|o|OFF| - - R | OFF
*SM1294 TCP socket 4—The connection is «lolx o OFF - 3 R | OFF
successful.
*SM1295 TCP_ socket 4—The data has been <ol x| olOEEl - B R | OFF
received.
*SM1296 | TCP socket 4—The data has beensent. | x | o | x| o |OFF| - - R | OFF
*SM1297 l’grljezocket 4—The connection is being| | | | _ OFF| - 3 R | OFF
*SM1298 '(I:'lgsejocket 4—The connection is being| ol xl oloON| = B R | oN
*SM1299 | TCP socket 4—The data is being sent. x|o| x| o|OFF| - - R | OFF
*SM1300 TCP. socket 4—The data is being | ' | _ OFF — B R | OFF
received.
*SM1301 | TCP socket 4—Error flag x|o| x| o|OFF| - - R | OFF
*SM1302 TCP socket 5—The connection is <ol x olOEEl - B R | OFF
successful.
*SM1303 TCP_ socket 5—The data has been < ol x| ol OFF - B R | OFF
received.
*SM1304 | TCP socket 5—The data has beensent. | x | o | x| o |OFF| — - R | OFF
*SM1305 TCP socket 5—The connection is being ol x| olOFE| - B R | OFF
started.
*SM1306 Ilgge;;ocket 5—The connection is being| ol xl oloON| - B R | ON
*SM1307 | TCP socket 5—The data is being sent. x|o|x|o|OFF| - - R | OFF
*SM1308 TCP socket 5—-The data is being | | | _ OFF| — 3 R | OFF
received.
*SM1309 | TCP socket 5—Error flag x|o|x|o|OFF| - - R | OFF
*SM1310 TCP socket 6—The connection is < o x| ol OFF - 3 R | OFF
successful.
*SM1311 TCP_ socket 6—The data has been <ol x| olOEEl - B R | OFF
received.
*SM1312 | TCP socket 6—The data has beensent. | x | o | x| o |OFF| - - R | OFF
*SM1313 l’giezocket 6—The connection is being| | | | _ OFF| - 3 R | OFF
*SM1314 TCP socket 6—The connection is being| | | | ON | — B R | oN
closed.
*SM1315 | TCP socket 6—The data is being sent. x|o| x| o|OFF| - - R | OFF
*SM1316 TCP_ socket 6—The data is being | ' | _ OFF - B R | OFF
received.
*SM1317 | TCP socket 6—Error flag x|o| x| o|OFF| - - R | OFF
*SM1318 TCP socket 7—The connection is <ol x olOEEl - B R | OFF
successful.
*SM1319 TCP_ socket 7—The data has been < ol x| ol OFF - B R | OFF
received.
*SM1320 | TCP socket 7—The data has beensent. | x | o | x| o |OFF| - - OFF

2-33

AH500 Programming Manual

O 000
el >
_ $ & & & OFF STOP RUN = g
SM Function .é .é 5 5 4 4 4 é.- g
o m|xo m| ON | RUN |[STOP = =
0wz nlz
N N
*SM1321 TCP socket 7—The connection is being| | | | OFF — 3 R | oFF
started.
*SM1322 '(I:'ISSPe;ocket 7—The connection is being | | | ON | — 3 R | oN
*SM1323 | TCP socket 7—The data is being sent. x| o|x|o|OFF| - - R | OFF
*SM1324 ;I'e(él;ves(,jocket 7—The data is being | | | _ OFF — 3 R | oFF
*SM1325 | TCP socket7—Error flag x|o| x|o|OFF| - - R | OFF
*SM1326 TCP socket 8—The connection is < ol x| o OFF - 3 R | oFF
successful.
*SM1327 :’eCCI;V:(;Jcket 8—The data has been < ol x| olOFEl - 3 R | OFF
*SM1328 | TCP socket 8—The data has beensent. | x | o | x| o |OFF| - — R | OFF
*SM1329 TCP socket 8—The connection is being| ol x| olOEEl - B R | OFF
started.
*SM1330 Ilg§e§00ket 8—The connection is being| olx oloON| - B R | ON
*SM1331 | TCP socket 8—The data is being sent. x|o|x|o OFF| - - R | OFF
*SM1332 :;aCcZivestCket 8—The data is being | | | OFF — 3 R | OFF
*SM1333 | TCP socket 1—Error flag x|o| x|o|lOFF| - - R | OFF
*SM1334 lthngeZOCket 1—The connection has been « ol xlo OFEl - B R | OFF
*SM1335 :JeEgePivesdocket 1—The data has been <ol x olOFEl - B R | oFF
*SM1336 | UDP socket 1—The data has beensent. | x | o | x| o |OFF| - - R | OFF
*SM1337 (L:JI(IZ))SPegocket 1—The connection has been «lolxl ol ON 3 B R ON
*SM1338 | UDP socket 1—Error flag x|o| x| o|OFF| - - R | OFF
*SM1339 ;thrlf[’ezocket 2—The connection has been <ol x olOFEl - B R | oFF
*SM1340 :JeligePivesdocket 2—The data has been «lolx olOFEl - B R | oFF
*SM1341 | UDP socket 2—The data has beensent. | x | o | x| o |OFF| - - R | OFF
*SM1342 (L:JI(E))SZSOCket 2—The connection has been «lolxl ol ON 3 B R ON
*SM1343 | UDP socket 2—Error flag x|o| x|o|OFF| - - R | OFF
*SM1344 ;thgezocket 3—The connection has been <ol x| olOEE - B R | OFF
*SM1345 :Je[c)zveSdOCket 3—The data has been < ol x| o OFE - B R | OFF
*SM1346 | UDP socket 3—The data has beensent. | x | o | x| o |OFF| - - R | OFF
*SM1347 lCJIESF;jocket 3—The connection has been < ol x| o ON 3 B R ON
*SM1348 | UDP socket 3—Error flag x|o| x|o|OFF| - - R | OFF
*SM1349 gtgrl:t)e?jOCket 4—The connection has been «lolx olOEEl - B R | OFF
*SM1350 | UDP socket 4—The data has been| x | o | x| o |OFF — - R | OFF

2-34

Chapter 2 Devices

OO0 0 0
clele|e >
o Cuneti $ 3G G OEF STJ}OP REN = 8..
unction T
QIP|R|E g | E
o m 1 m ON|RUN STOP & =
nzwnz (L
N N
received.
*SM1351 | UDP socket 4—The data has beensent. | x | o | x| o |OFF| - - R | OFF
*SM1352 UDP socket 4—The connection has been| ol x ol ON| - _ R | ON
closed.
*SM1353 | UDP socket 4—Error flag x| o| x| o|OFF| - - R | OFF
*SM1354 UDP socket 5—The connection has been ol x| o OFFl - _ R | OFE
started.
*SM1355 UDP_ socket 5—The data has been| ol x| o OFFl - _ R | OFE
received.
*SM1356 | UDP socket 5—The data has beensent. | x | o | x| o |OFF| — - R | OFF
«gM1357 | UDP socket 5—The connection has been | ' | ' o\ | _ _ R | ON
closed.
*SM1358 | UDP socket 5—Error flag x|o| x| o|OFF| - - R | OFF
*SM1359 UDP socket 6—The connection has been <ol x| o OFF - _ R | OEE
started.
*SM1360 UDP_ socket 6—The data has been <ol x| o OFF - _ R | OEE
received.
*SM1361 | UDP socket 6—The data has beensent. | x | o | x| o |OFF| — - R | OFF
*SM1362 UDP socket 6—The connection has been <ol x o ON| - _ R ON
closed.
*SM1363 | UDP socket 6—Error flag x|o| x| o|OFF - - R | OFF
*SM1364 UDP socket 7—The connection has been <ol x| ol OFFl - _ R | OEE
started.
*SM1365 UDP_ socket 7—The data has been <ol x| ol OFFl - _ R | OEE
received.
*SM1366 | UDP socket 7—The data has beensent. | x | o | x| o |OFF| - - R | OFF
*SM1367 UDP socket 7—The connection has been| | | | oN| - _ R | ON
closed.
*SM1368 | UDP socket 7—Error flag x| o| x| o|OFF| - - R | OFF
*SM1369 UDP socket 8—The connection has been| ol x| olOFFl - _ R | OFE
started.
*SM1370 UDP_ socket 8—The data has been ol x| olOFFl - _ R | OFE
received.
*SM1371 | UDP socket 8—The data has beensent. | x | o | x| o |OFF| - - R | OFF
*SM1372 UDP socket 8—The connection has been ol x ol ON| - _ R | ON
closed.
*SM1373 | UDP socket 8—Error flag x x| o |OFF| - - R | OFF
SM1374 | Web setting error x x| o |OFF| - - R | OFF
SsMm1375 | TCP socket 1—Sending an odd number of| 1\(/): < o OFEl - - |rRW | OEF
characters 7
SM1376 | TCP socket 2—Sending an odd number of| 1\(/): < o OFEl - - |rRW | OEF
characters 7
sMm1377 |TCP socket 3—Sending an odd number of| 1\(/): «| o lOFE|l - - |rRW | OEF
characters 7
sMm1378 | TCP socket 4—Sending an odd number of| 1.\(/)5 «| o lOFE|l - - |rRW | OEF

characters

2-35

AH500 Programming Manual

0000
U U U |T >
$ 55 & OFF STOP RUN | = 9
SM Function BRI I R 4 = g
T m|o m ON | RUN | STOP & =
wzagz ®
SM1379 T;:P sczcket 5—Sending an odd number of| _ 1\(/)= «| o OFE - R\W | OEE
characters]
SM1380 T;:P sczcket 6—Sending an odd number of| 1\(/)= «| o OFE - - |RW OEE
characters]
SM1381 TE:P socket 7—Sending an odd number of| 1\(/)= «| o OFE - - |RW OEE
characters 7
SM1382 TrC]:P S(zcket 8—Sending an odd number of| 1\(/): <! o OFF - - |RW OFF
characters 7
SM1383 UfDI:] socret 1—Sending an odd number| 1\6: <! o OFF - - |RW OFF
of characters 7
SM1384 UfDI:] socret 2—Sending an odd number| 1\6: <! o OFF - - |RW OFF
of characters 7
SM1385 UfDI:] socret 3—Sending an odd number| 1\6: «| o OFF - - |RW OFF
of characters 7
SM1386 UfDI:] socret 4—Sending an odd number| 1\6: «| o OFF - - |RW OFF
of characters 7
SM1387 UfDI:] socret 5—Sending an odd number| 1\6: «| o OFF - - |RW OFF
of characters 7
SM1388 UfDI:] socret 6—Sending an odd number| 1\6: «| o OFF - - |RW OFF
of characters 7
SM1389 UfDI:] socret 7—Sending an odd number| 1\6: «| o OFF - - |RW OFF
of characters 7
SM1390 UfD: soc!:et 8—Sending an odd number| 1\6: «| o OFE - - |RMW OEE
of characters 7
*SM1392 | PLC Link flag (slave 1~32) olo|x|x|OFF| - - | RIW | OFF
! COML1 is connected to slave 1~32 by
SM1423 | means of Modbus. e A R S — | RW | OFF
*SM1424 ?f;z;)exchange in the PLC Link (slave ololx x OFE - _ R | OFF
! . . .
SM1455 f%l\éllbyllsvloedxt;:fsngmg data with slave <« xlololOFEl - _ R | OFE
*SM1456 | A read error in the PLC Link (slave 1~32)| o | o | x | x |OFF| - - R | OFF
|
An error occurs when COM1 reads data
SMI487 | tom slave 1~32 by Modbus. x| x| oo |OFF - a R | OFF
*SM1488 | A write error in the PLC Link (slave 1~32)| o | o | x | x |OFF| - - R | OFF
! An error occurs when COM1 writes data
SM1519 | to slave 1~32 by Modbus. x| x| oo |OFF - - R | OFF
*SM1520 The data reading in the PLC Link is olol x| x OFE - _ R | OFF
! complete. (slave 1~32)
SM1551 f%lgtglmzziisreadlng data from slave «| '« olo OFE - _ R | OFF
*SM1552 | The data writing in the PLC Link is ol ol x| x OFE - _ R | OFE
! complete. (slave 1~32)

2-36

Chapter 2 Devices

O 000
C S CCorFlsToPRUN B | ©
alo al g = @
SM Function SI8I5IB8 8| O 4 5 | =
3@35 ON |RUN STOP & =
N N
SM1583 | coM1 finishes writing data to slave 1~32 | ololorel - _ R | OFF
by Modbus.
Starting a connection in the PLC Link olo|x|x |OFF| - - | RIW | OFF
*SM1584 CE:r(w)al\t/l)lling the Modbus connection of < ol o OFF - _ |RW OFF
ASS|gn_ment of the slaves by users in the olol x|l — _ _ |RW OFF
. PLC Link
SM1585 Assignment of slaves by users for the
Modbus connection of COM1 x| x|o|o|OFF - - | RW | OFF
Automatic mode of the PLC Link olo| x| x| — - - | RIW | OFF
*SM1586 | Automatic mode of the Modbus
connection of COM1 x| x| o|o|OFF - - | RW|OFF
*SM1587 | Manual mode of the PLC Link x| x| — - - | RIW | OFF
Detection of the slaves in the PLC Link x| x |OFF| - - R | OFF
*SM1588 | Detection of slaves for the Modbus
connection of COM1 x| x|o|o|OFF - B R | OFF
*SM1589 | PLC Link flag error x| x|OFF| - - R | OFF
Device address error in the PLC Link x| x |OFF| - - R | OFF
*SM1590 | A device address error occurs in the
Modbus connection of COM1 x| x|o|o|OFF - h R | OFF
PLC Link timeout o|lo| x| x|OFF| - - R | OFF
*SM1591 | A timeout occurs in the Modbus
connection of COM1. x| x|o|o|OFF - h R | OFF
*SM1592 T_he _nu_mber of polling cycles in the PLC olol x| «loOEEl - _ R | OFE
Link is incorrect.
Standard Modbus communication
protocol is used in the PLC Link when
*SM1593 | SM1593 is OFF, whereas AH|o|o| x| x| — - - | R\W | OFF
communication protocol is used in the
PLC Link when SM1593 is ON.
The slaves are automatically detected in
the PLC Link in the current environment.
Only when the PLC Link is in the stop
mode can SM1594 be used. o|lo| x| x|OFF| - - | RIW | OFF
OFF: The detection is complete or the
PLC is waiting to detect the slaves.
ON: The PLC is detecting the slaves.
. Automatically detecting slaves for the
SM1594 Modbus coznection (?f COM1 in the
current environment: Only when the
Modbus connection of COM1 stops can
SM1594 be used. x| x| o| o|OFF| - - | R\W | OFF
OFF: The detection of slaves is complete
or the PLC is waiting to detect slaves.
(default value)
ON: The PLC is detecting slaves.
The slave IDs are assigned by users
*SM1595 | when SM1595 is ON, whereas they are| o [0 | o | o| — - - | RIW | OFF

assigned automatically when SM1595 is

2-37

AH500 Programming Manual

0O 000
T U|T|T >
$ 55 & OFF STOP RUN | = 9
SM Function BRI I R 4 = | o
T m B m ON RUNSTOP & =
0w zwnlz
N N
OFF.
'Il_'it;ire is an operation error in the PLC ol ol x| x OFE - _ R | OFE
*SM1596 ' . .
An operation error occurs in the Modbus < x| ol o OFF R | OFF
connection of COM1. a B
When SM1597 is ON, the extension port
* ' —_ —_ -
SM1597 is used in the PLC Link. Clel RMW | OFF
When SM1598 is ON, the function of
reading/writing synchronously in the PLC| o | o | x | x| — - - | RIW | OFF
*SM1598 | Link is enabled.
ON: COML1 reads data and writes data
simultaneously by Modbus. Sl B I Il - - | RW | OFF
SM1599 . .
| Eréa’\lzling Modbus connection 1~32 for < x| ololOFEl - _ |RW OFF
SM1630
Changing the function code used for a
SM1720 | 5| ¢ link to 0404 (slave 1) °|°| x| >|OFF| OFF | - | RMW | OFF
Changing the function code used for a
SM1721 o) ¢ Jink to 0#04 (slave 2) °|°| x| *|OFF| OFF | - | RMW OFF
Changing the function code used for a
SM1722 |5 ¢ jink to 0#04 (slave 3) °|°| x| *|OFF| OFF | - | RMW OFF
Changing the function code used for a
SM1723 15| ¢ Jink to 0#04 (slave 4) °|°| x| *|OFF| OFF | - | RMWOFF
Changing the function code used for a
SM1724 5| ¢ Jink to 0#04 (slave 5) °|°| x| *|OFF| OFF | - | RMWOFF
Changing the function code used for a
SML725 15| ¢ jink to 0#04 (slave 6) °|°| x| *|OFF| OFF | - | RMWOFF
Changing the function code used for a
SM1726 5| ¢ jink to 0#04 (slave 7) °|°| x| *|OFF| OFF | - | RMWOFF
Changing the function code used for a
SML727 5| ¢ Jink to 0#04 (slave 8) °|°| x| *|OFF| OFF | - | RMW OFF
Changing the function code used for a
SM1728 |5 < Jink to 0#04 (slave 9) °|°| x| >|OFF| OFF | - | RMW | OFF
Changing the function code used for a
SM1729 |5 < Jink to 0#04 (slave 10) °|°| x| >|OFF| OFF | - | RMW | OFF
Changing the function code used for a
SM1730 15| = jink to 0#04 (slave 11) °|°| x| >|OFF| OFF | - | RMW | OFF
Changing the function code used for a
SM1731 5| ¢ link to 0#04 (slave 12) °|°| x| >|OFF| OFF | - | RMW | OFF
Changing the function code used for a
SM1732 |5 = Jink to 0#04 (slave 13) °|°| x| *|OFF| OFF | - | RMW OFF
Changing the function code used for a
SM1733 |5 ¢ Jink to 0#04 (slave 14) °|°| x| *|OFF| OFF | - | RMW OFF
Changing the function code used for a
SM1734 5| ¢ link to 0#04 (slave 15) °|°| x| *|OFF| OFF | - | RMWOFF
Changing the function code used for a
SML735 15| ¢ Jink to 0#04 (slave 16) °|°| x| *|OFF| OFF | - | RMWOFF
Changing the function code used for a
SM1736 5| ¢ Jink to 0#04 (slave 17) °|°| x| *|OFF| OFF | - | RMWOFF
SM1737 |Changing the function code used for a| o| o | x| x |OFF| OFF | — | R/W | OFF

2-38

Chapter 2 Devices

OO0 0 0
Slele|e >
_ S5 & §|OFF STOP RUN = <
. e 'é 'é 5 5 OJ}N RJSN ST%P g g
X m o m = =
0wz wnz (L
N N
PLC link to 0#04 (slave 18)
Changing the function code used for a
SM1738 5| ¢ Jink to 0#04 (slave 19) °|°| x| *|OFF| OFF | - | RW OFF
Changing the function code used for a
SML739 5| ¢ jink to 0#04 (slave 20) °|°| x| x|OFF| OFF | - | RW OFF
Changing the function code used for a
SM1740 5| ¢ jink to 0#04 (slave 21) °|°| x| x|OFF| OFF | - | RW OFF
Changing the function code used for a
SM1741 PLC link to 0#04 (slave 22) °|°|X|*|OFF|OFF | - |RW/OFF
Changing the function code used for a
SMI742 15| < Jink to 0#04 (slave 23) °|°| x| x|OFF| OFF | - | RW | OFF
Changing the function code used for a
SMI743 15| ¢ Jink to 0#04 (slave 24) °|°| x| x|OFF| OFF | - | RW | OFF
SM1744 . .
Changing the function code used for a
! - N ol o| x| x OFF| OFF | - |RMW | OFF
SM1751 PLC link to 0#04 (slave 25~32)
SM1752] | COM2 is exchanging data with slave
SM1768 | 1~17 by Modbus. | *|°|*|OFF| - | - | R |OFF
Status of the Ether Link ol ol x| x|OFF| - - OFF
SM1769 [i i
bCyOI\I\//llgdLsu?changmg data with slave 18 < x| ol x|OFFl - B OFF
Starting the Ether Link (CPU) ol o| x| x|OFF| - - | R\W | OFF
*SM1770 bC}E)I\I\/fIgdi';sugxchanging data with slave 19/ | o x| OFE| - B R | OFF
. . . .
SM1771 bC}E)I\I\/fIgdL;sugxchangmg data with slave 20| | o x| OEE| - _ R | OFE
Starting the Ether Link (port 0)
*SM1772 || o| o| x| x|OFF| - - | RMW | OFF
! Starting the Ether Link (port 11)
SM1783 | COM2 is exchanging data with slave
21~32 by Modbus. | x| | *|OFF - | - | R |OFF
Starting the Ether Link (port 12)
*SM1784 || ol ol x| x|OFF| = - | R\W | OFE
! Starting the Ether Link (port 15)
SM1787 | An error occurs when COM2 reads data
from slave 1~4 by Modbus. | x| o *|OFF - B R | OFF
Ether Link error flag (CPU) x| o| x| o|OFF| - - R | OFF
*SM1788 " An error occurs when COM2 reads data < x| ol x| OFF R | OFF
from slave 5 by Modbus. B B
Ether Link error flag (port 0)
*SM1790l x| o| x| o|OFF - - R OFF
! Ether Link error flag (port 15)
SM1805 | An error occurs when COM2 reads data
from slave 7~22 by Modbus. | X o *|OFF - B R | OFF
Status of the Ether Link (CPU) x| o| x| o|OFF| - - OFF
*SM1806 | An error occurs when COM2 reads data
from slave 23 by Modbus. | X 2| *|OFF| - B OFF
*SM1807 An error occurs when COM2 reads data| | | |, OFF| - _ R | OEE

from slave 24by Modbus.

2-39

AH500 Programming Manual

3998
S S|G G OFFSTOPRUN & | ©
SM Function BRI I R 4 = | o
o m % m ON RUN STOP = =
0wz nlz
N N
Status of the Ether Link (port 0)
*SM1808 || olo| x| x OFF - | - | R |OFF
! Status of the Ether Link (port 7)
SM1815 |An error occurs when COM?2 reads data
from slave 25~32 by Modbus. X1 %] °| *|OFF| - B R | OFF
*SM1816 | Status of an Ether link (port 8~15) olo| x| x|OFF| - - R | OFF
! An error occurs when COM2 writes data
SMI1823 |4 glave 1~8 by Modbus. x| %] 0| *|OFF| - B R | OFF
SM1824 | Block 1~24 for an Ether link is active. ol o| x| x|OFF| - - R | OFF
! An error occurs when COM2 writes data
SM1847 to slave 9~32 by Modbus. x| %] °| *|OFF| - B R | OFF
SM1848 | Block 25~56 for an Ether link is active. ol ol x| x|OFF| - - R | OFF
| COM2 finishes reading data from slave
SM1879 1~32 by Modbus. X X1 %] °| *|OFF| - B R | OFF
SM1880 | Block 57~88 for an Ether link is active. ol o| x| x|OFF| - - R | OFF
! ini it -
SMI911 bCyOI\I\//llgdft;?;Ssheswr|t|ng data to slave 1~32) | ol x OFF - _ R | OFF
Block 89 for an Ether link is active. ol o| x| x|OFF| = — R | OFF
SM1912 :
QOMZ reads data and writes data «| x| ol x OFEl - _ RW | OFE
simultaneously by Modbus.
SM1913 | Block 90~121 for an Ether link is active. | o | o| x| x |OFF| - - R | OFF
| Enablin i
g a Modbus connection between _ _
SM1944 | com2 and slave 1~32. | x| °| *|OFF RMW | OFF
SM1945
l Block 122~128 for an Ether link is active.| o | o | x| x |OFF| — - R | OFF
SM1951
The data is sent by using the instruction
*
SM2000 EMDRW 1. x| o| x| o|OFF| OFF | OFF | R\W | OFF
The PLC waits for the data after the
*
SM2001 instruction EMDRW 1 is used. x| o|x|°|OFF) OFF | OFF| R | OFF
The data is received by using the
*
SM2002 | struction EMDRW 1. x| o| x| °|OFF| OFF | OFF | RIW | OFF
An error occurs when the instruction
*
SM2003 EMDRW 1 is used. x| o| x| o|OFF| OFF | OFF| R | OFF
There is a timeout after the instruction
*
SM2004 EMDRW 1 is used. x| o| x| o|OFF| OFF | OFF| R | OFF
The connection is closed after the
*
SM2005 instruction EMDRW 1 is used. | e[*|°|ON| ON | ON R ON
The data is sent by using the instruction
*
SM2006 EMDRW 2. x| o| x| o|OFF| OFF | OFF | R\W | OFF
The PLC waits for the data after the
*
SM2007 instruction EMDRW 2 is used. x| o|x|o|OFF| OFF | OFF R | OFF
The data is received by using the
*
SM2008 instruction EMDRW 2. x| o| x| o|OFF| OFF | OFF | R\W | OFF
*SM2009 An error occurs when the instruction ol x| o|OFF OFF | OFF R | OFF

EMDRW 2 is used.

2-40

Chapter 2 Devices

O/0 0 0
clcle|e >
_ ARG OFF |STOP REN =2 g
SM Function S 38 & ¢ ¢ g o
o' m o m ON | RUN STOP = =
nzwnz ®
N N
*SM2010 Efsﬂelg%x ;iStTSee%ut after the instruction| | | | ofel oee lore | R | OFF
The connection is closed after the
*
SM2011 instruction EMDRW 2 is used. *|°|*|°|ON| ON | ON R | ON
*SM2012 'IE'rlc/leDdRa\L}\f;lés sent by using the instruction| | | | ofe! oee | o | R | OFF
“SM2015 énMDeé:/?/rgci);:%usr:d when the instruction| | | orel oee lore | R | oFF
“SM2016 -lE—rl\]/lelg(le?\l/i gi;lTsee%Ut after the instruction | | | orel oee lore | R | oFF
The connection is closed after the
*
SM2017 instruction EMDRW 3 is used. || *|°|ON| ON | ON | R | ON
*SM2018 -lE—rl\]/leDdRa\L/t\?AI,s sent by using the instruction| | | | orel oee | ore | R | oFE
"SM2019 ;g(frulz:}(?n I\évha;lllgsRI/?/r4ti2eusdeaga e e oo OFF| OFF | OFF | R | OFF
*SM2020 ;gfrugi;i E'l\SADrS\‘;\fZ’Ed by using the | | .| . OFF OFF OFF RMW OFF
*SM2021 énMDeé:/(:/rAl(i);:(;usresd when the instruction | | | ofel oee lore | R | OFF
*SM2022 Efsﬂelg%x jist|rsj15ee%ut after the instruction| | ' | ofel oee lore | R | OFF
The connection is closed after the
*
SM2023 instruction EMDRW 4 is used. *|°|*|°|ON| ON | ON R | ON
*SM2024 'IE'rlc/leDdRa\L/t\f;lés sent by using the instruction| | | | ofe! ofe | o | R | OFF
"SM2025 ;Z?rulzc)tlfc?n I\évl\e/lIIIE)SR{/(\)/rStigeusdeaga ST OFF| OFF | OFF | R | OFF
*SM2026 I]Zfrugtfgi E':ADrFf\f\le'E‘_)’ed by using the| . ||, OFF OFF OFF | RW | OFF
“SM2027 énMDeé:/?/rSCi);:%usr:d when the instruction| | | orel oee lore | R | oFF
*SM2028 -lE—rl\]/lelg(le?\l/i Sai;ITSeec:jUt after the instruction| | | | orel oee lore | R | oFF
The connection is closed after the
*
SM2029 instruction EMDRW 5 is used. || *|°|ON| ON | ON | R | ON
*SM2030 'IE'rlc/leDdRa\L}\f;lés sent by using the instruction| | | | ofe! oee | o | R | OFF
"SM2031 ;gfrulztli_gn I\évl\a}lllgsR{/(\)/rGtigeusdeiﬁa e e oo OFF| OFF | OFF | R | OFF
*SM2032 ;gfrugi;i E'l\SADrS\‘;\f'(‘S’Ed by using the | | .| . OFF OFF OFF RMW OFF
*SM2033 énMDeé:/(:/rE;(i);:(;usresd when the instruction| | | | OFF | OFF | OFF OFF
*SM2034 | There is a timeout after the instruction| x | o | x | o |OFF| OFF | OFF OFF

2-41

AH500 Programming Manual

0000
Zlee|e >
_ $ 3 GG OFF |[STOP REN § g
SM Function S 88 & 4 4 g o
o m|x|m| ON | RUN |[STOP = =
0w zZzlun z (L
N N
EMDRW 6 is used.
The connection is closed after the
*
SM2035 instruction EMDRW 6 is used. x| o/ x] o ON | ON | ON R ON
*SM2036 'glc/leD(Ijqw;s sent by using the instruction | | oee! ofe | o | R | OFF
"SM2037 ;Ir-wt;?ruz':ifn Evl\a/lllltDSRI/(\)/r;itjseusdeata afier the o x| o|OFF OFF | OFF | R | OFF
*SM2038 L';frugfgﬁ E'I\SADrFf\‘;\f';’ed by using the | ' .| . OFF OFF OFF | RW OFF
*SM2039 ér'\LIDng/c\)/r??Sccuusrsdwhen the instruction| | | | oeel oee lore | R | oFF
*SM2040 Er’:/legla?\lz ?i;u:;eeodut after the instruction «lolx|oloeel ofe lore| R | OFF
The connection is closed after the
*
SM2041 1 struction EMDRW 7 is used. x| o|x]°|/ON|ON | ON | R | ON
*SM2042 Er’:AeD(Ij:{a\;\}aés sent by using the instruction «| ol x| oloee! of | oFe | RAW | OFE
"SM2043 I]gtterult::)':ifn EvlalgR{/?/rStgeusde%ta atter the x| o| x| |OFF| OFF |OFF| R | OFF
*SM2045 Q&Deé@rfgci);:iiresdwhen the instruction | | | oeel ofe | ore | R | OFF
*SM2046 'étlcﬂeéel:?\lz ;istlrlFseeodut after the instruction | | | oeel ofe | ore | R | OFF
The connection is closed after the
*
SM2047 instruction EMDRW 8 is used. x| o/ x[o ON | ON | ON R ON

Note: As to the SM numbers marked “*”, users can refer to the additional remarks on special
auxiliary relays/special data registers.

*1 . Only available for AHCPU530-EN, AHCPU520-EN and AHCPU510-EN
*2 . Only available for AHCPU530-EN and AHCPU520-EN
*3 . Only available for AHCPUS530-EN
*4 . Only available for AHCPU531-EN and AHCPU521-EN
*5 : Only available for AHCPU531-EN
*6 : If the model is AHCPU5x1-EN, the value should be set to OFF.

2.2.8 Refresh Time of Special Auxiliary Relays
Limited | Special auxiliary Refresh time
to relay
The system automatically sets the flag to ON and resets it to OFF.
SM0~SM1 The flag is automatically set to ON when there is an operation

error.

2-42

Chapter 2 Devices

Limited | Special auxiliary Refresh time
to relay

The system automatically sets SM5 to ON and resets it to OFF.

SM5 (1) SM5 is refreshed when the program is rewritten in the PLC.
(2) SM5 is refreshed when the PLC is supplied with power and

starts to run for the first time.

The system automatically sets SM8 to ON and resets it to OFF.

SM8 SM8 is automatically set to ON when there is a watchdog timer
error.

SMO The system automatically sets SM9 to ON and resets it to OFF.
SM9 is automatically set to ON when there is a system error.

SM10 The system automatically sets SM10 to ON and resets it to OFF.

SM10 is automatically set to ON when there is an I/O bus error.

SM22, SM23, SM24

Users set the flag to ON, and the system automatically resets it to
OFF.

The log is cleared when the flag is ON.

The system automatically sets the flag to ON and resets it to OFF.

SM25-SM26 The flag is refreshed every scan cycle.

N Users set the flag to ON. After the data is sent, the system
SM96~SM97 automatically resets the flag to OFF.
SM98~SM99 The system automatically sets the flag to ON and resets it to OFF.

The flag is automatically set to ON when the command is sent.

SM100~SM101

The system automatically sets the flag to ON, and users reset it to
OFF.

The flag is set to ON when the command is received.

SM102~SM103

The system automatically sets the flag to ON, and users reset it to
OFF.

The flag is automatically set to ON when the command received is
wrong.

SM104~SM105

The system automatically sets the flag to ON, and users reset it to
OFF.

The flag is set to ON when there is a receive timeout.

SM106~SM107

Users set the flag to ON and reset it to OFF.
ON: The 8-bit mode
OFF: The 16-bit mode

SM108 - SM109

Users set the flag to ON and reset it to OFF.

SM204~SM205

Users set the flag to ON, and the system automatically resets it to
OFF.

ON: Clearing the non-latched/latched areas

Users set SM206 to ON and reset it to OFF.

SM206 ON: Inhibiting all output

Users set SM209 to ON, and the system automatically resets it to
SM209 OFF.

ON: The communication protocol of COM1 changes.

Users set SM210 to ON and reset it to OFF.
SM210 ON: The RTU mode

Users set SM211 to ON, and the system automatically resets it to
SM211 OFF.

ON: The communication protocol of COM2 changes.

Users set SM212 to ON and reset it to OFF.
SM212 ON: The RTU mode
SM215 Users set SM215 to ON and reset it to OFF.

2-43

AH500 Programming Manual

Limited | Special auxiliary Refresh time
to relay
ON: The PLC runs.
SM220 Users set SM220 to ON and reset it to OFF.

ON: Calibrating the real-time clock within £30 seconds

SM400~SM401

The system automatically sets the flag to ON and resets it to OFF.
The flag is refreshed every scan cycle.

SM402~SM403

The system automatically sets the flag to ON and resets it to OFF.
The flag is refreshed whenever the instruction END is executed.

The system automatically sets the flag to ON and resets it to OFF.

SM404 SM404 is refreshed every 5 milliseconds.

SM405 The sys.tem automatically sets $M405 to ON and resets it to OFF.
SMA405 is refreshed every 50 milliseconds.

SM406 The sysFem automatically sets SM406 to ON and resets it to OFF.
SM406 is refreshed every 100 milliseconds.

SM407 The sys.tem automatically sets SM407 to ON and resets it to OFF.
SM407 is refreshed every 500 seconds.

SM408 The sys.tem automatically sets SM408 to ON and resets it to OFF.
SMA408 is refreshed every second.

SM409 The sys.tem automatically sets SM409 tg ON aqq resets it to OFF.
SMA409 is refreshed every n seconds, n is specified by SR409.

SM410 The sys.tem automatically sets SM410 to ON and rejs.ets it to OFF.
SM410 is refreshed every n seconds, and n is specified by SR410.

SM450 The system automaticallly. sets SM.450 to ON and resets it to OFF.
ON: The memory card is inserted into the PLC.

SM451 Users set SM451 to ON anq reset it to OFF.
ON: The memory card is write protected.

SM452 The system agtomatically sets SM.452 t.o ON and resets it to OFF.
ON: The data in the memory card is being accessed.

SM453 The system automatically sets SM453 to ON and resets it to OFF.

ON: An error occurs during the operation of the memory card.

SM600~SM602

The system automatically sets the flag to ON and resets it to OFF.
The flag is refreshed when the instruction is executed.

Users set SM604 to ON and reset it to OFF.

SM604 SM604 is refreshed when the instruction SORT whose mode is the
descending order is executed.

SM605 Users set SM605 to ON and reset it to OFF.
Users set SM606 to ON and reset it to OFF.

SM606 ON: The 8-bit mode

SM607 Users set SM607 to ON or OFF.

SM608 SM608 is refreshed when the instruction is executed.

SM609 Users set the flag to ON or OFF.

SM610~SM611

The flag is refreshed when the instruction is executed.

SM612~SM613

Users set the flag to ON or OFF.

SM614 SM614 is refreshed when the instruction is executed.
SM615~SM617 | Users set the flag to ON or OFF.

SM618 SM618 is refreshed when the instruction is executed.

SM619 SM619 is refreshed when El or DI is executed.

SM620 SM620 is refreshed when the instruction CMPT is executed.
SM621~SM686 | Users set the flag to ON or OFF.

SM687 SM687 is refreshed when the instruction RAMP is executed.

SM688 SM688 is refreshed when the instruction INCD is executed.

2-44

Chapter 2 Devices

Limited | Special auxiliary Refresh time
to relay
SM690~SM691 | Users set the flag to ON or OFF.
SM692 SM692 is refreshed when the instruction HKY is executed.
SM693 SM693 is refreshed when the instruction SEGL is executed.
SM694 SM694 is refreshed when the instruction DSW is executed.
SM695 Users set the flag to ON or OFF.
1. The flag is refreshed after the Ether link parameters/data
AH5x0 exchange parameters are downloaded.
SM699 2. The flag is refreshed after the system restoration is executed.
1. The flag is refreshed after the Modbus TCP data exchange table
AH5x1 is downloaded.
2. The flag is refreshed after the system restoration is executed.
1. The flag is refreshed after the data exchange parameters are
AH5x0 downloaded.
SM700-SM827 2. The flag is refreshed every scan cycle.
AH5x1 Users set the flag to ON or OFF.

SM828-SM955

1. The flag is refreshed after the data exchange parameters are
downloaded.
2. The flag is refreshed every scan cycle.

SM1000 Users set the flag to ON or OFF.
SM1090 SM1090 is ON when the TCP connection is busy.
SM1091 SM1091 is ON when the UDP connection is busy.
The flag is refreshed when APl 2200/API 2201/API 2202/API
SM1100 2203/AP1 2204/AP1 2205 is executed or the network cable is
reconnected.
SM1106 SM1106 is ON when the PHY initialization fails.
SM1107 is ON when the IP address, the netmask address, and the
SM1107 .
gateway address are set incorrectly.
SM1108 SM1108 is ON when there is a filter setting error.
SM1109 is ON when the function of the socket is enabled and the
SM1109 .
same port is used.
SM1112 SM1112 is ON when there is a setting error.
SM1113 SM1113 is ON when there is a server error.
SM1116 SM1116 is ON when the trigger of the PLC parameter is enabled.
SM1117 SM1117 is ON when the trigger of the PLC parameter is triggered.
SM1118 ?(lavrl]%lw is ON when the trigger is enabled and no mail has been
SM1119 is ON when the trigger is enabled and the last mail has
SM1119
been sent successfully.
SM1120 is ON when the trigger is enabled and the last mail has
SM1120 i
been sent in error.
SM1121 S(lavrl]%ul is ON when the trigger is enabled and the mail has been
SM1122 is ON when the trigger is enabled and there is an SMTP
SM1122 .
server response timeout.
SM1123 SM1123 is ON when the trigger is enabled and there is an SMTP
server response error.
SM1124 is ON when the trigger is enabled and the size of the
SM1124 oS
attachment exceeds the limit.
SM1125 SM1125 is ON when the trigger is enabled and the attachment is
not found.
SM1126 SM1126 is ON when the trigger of the PLC parameter is enabled.
SM1127 SM1127 is ON when the trigger of the PLC parameter is triggered.

2-45

AH500 Programming Manual

Limited | Special auxiliary Refresh time
to relay
SM1128 ?&%128 is ON when the trigger is enabled and no mail has been
SM1129 is ON when the trigger is enabled and the last mail has
SM1129
been sent successfully.
SM1130 is ON when the trigger is enabled and the last mail has
SM1130 :
been sent in error.
SM1131 i\/rI]%lSl is ON when the trigger is enabled and the mail has been
SM1132 is ON when the trigger is enabled and there is an SMTP
SM1132)
server response timeout.
SM1133 SM1133 is ON when the trigger is enabled and there is an SMTP
server response error.
SM1134 is ON when the trigger is enabled and the size of the
SM1134 oY
attachment exceeds the limit.
SM1135 is ON when the trigger is enabled and the attachment is
SM1135
not found.
SM1136 SM1136 is ON when the trigger of the PLC parameter is enabled.
SM1137 SM1137 is ON when the trigger of the PLC parameter is triggered.
SM1138 i\ﬁl}%lSS is ON when the trigger is enabled and no mail has been
SM1139 is ON when the trigger is enabled and the last mail has
SM1139
been sent successfully.
SM1140 is ON when the trigger is enabled and the last mail has
SM1140 :
been sent in error.
SM1141 i\ﬁl}%lﬂ is ON when the trigger is enabled and the mail has been
SM1142 is ON when the trigger is enabled and there is an SMTP
SM1142)
server response timeout.
SM1143 SM1143 is ON when the trigger is enabled and there is an SMTP
server response error.
SM1144 is ON when the trigger is enabled and the size of the
SM1144 o9
attachment exceeds the limit.
SM1145 SM1145 is ON when the trigger is enabled and the attachment is
not found.
SM1146 SM1146 is ON when the trigger of the PLC parameter is enabled.
SM1147 SM1147 is ON when the trigger of the PLC parameter is triggered.
SM1148 5311148 is ON when the trigger is enabled and no mail has been
SM1149 is ON when the trigger is enabled and the last mail has
SM1149
been sent successfully.
SM1150 is ON when the trigger is enabled and the last mail has
SM1150 :
been sent in error.
SM1151 i\ﬁl&lSl is ON when the trigger is enabled and the mail has been
SM1152 is ON when the trigger is enabled and there is an SMTP
SM1152)
server response timeout.
SM1153 SM1153 is ON when the trigger is enabled and there is an SMTP
Server response error.
SM1154 is ON when the trigger is enabled and the size of the
SM1154 9
attachment exceeds the limit.
SM1155 SM1155 is ON when the trigger is enabled and the attachment is

not found.

2-46

Chapter 2 Devices

Limited | Special auxiliary Refresh time
to relay
SM1156 SM1156 is ON when the trigger of the PLC parameter is enabled.
SM1157 SM1157 is ON when the trigger of the PLC parameter is triggered.
SM1158 ?2?1%158 is ON when the trigger is enabled and no mail has been
SM1159 is ON when the trigger is enabled and the last mail has
SM1159
been sent successfully.
SM1160 is ON when the trigger is enabled and the last mail has
SM1160 i
been sent in error.
SM1161 ?2?1%161 is ON when the trigger is enabled and the mail has been
SM1162 is ON when the trigger is enabled and there is an SMTP
SM1162 .
server response timeout.
SM1163 SM1163 is ON when the trigger is enabled and there is an SMTP
server response error.
SM1164 is ON when the trigger is enabled and the size of the
SM1164 oS
attachment exceeds the limit.
SM1165 SM1165 is ON when the trigger is enabled and the attachment is
not found.
SM1166 SM1166 is ON when the trigger of the PLC parameter is enabled.
SM1167 SM1167 is ON when the trigger of the PLC parameter is triggered.
SM1168 ?(lavrl]%168 is ON when the trigger is enabled and no mail has been
SM1169 is ON when the trigger is enabled and the last mail has
SM1169
been sent successfully.
SM1170 is ON when the trigger is enabled and the last mail has
SM1170)
been sent in error.
SM1171 S(lavrl]%ﬂl is ON when the trigger is enabled and the mail has been
SM1172 is ON when the trigger is enabled and there is an SMTP
SM1172 .
server response timeout.
SM1173 SM1173 is ON when the trigger is enabled and there is an SMTP
server response error.
SM1174 is ON when the trigger is enabled and the size of the
SM1174 oY
attachment exceeds the limit.
SM1175 SM1175 is ON when the trigger is enabled and the attachment is
not found.
SM1176 SM1176 is ON when the trigger of the PLC parameter is enabled.
SM1177 SM1177 is ON when the trigger of the PLC parameter is triggered.
SM1178 ?(lavrl]%178 is ON when the trigger is enabled and no mail has been
SM1179 is ON when the trigger is enabled and the last mail has
SM1179
been sent successfully.
SM1180 is ON when the trigger is enabled and the last mail has
SM1180 i
been sent in error.
SM1181 ?2?1%181 is ON when the trigger is enabled and the mail has been
SM1182 is ON when the trigger is enabled and there is an SMTP
SM1182 .
server response timeout.
SM1183 SM1183 is ON when the trigger is enabled and there is an SMTP
Server response error.
SM1184 SM1184 is ON when the trigger is enabled and the size of the

attachment exceeds the limit.

2-47

AH500 Programming Manual

Limited | Special auxiliary Refresh time
to relay
SM1185 SM1185 is ON when the trigger is enabled and the attachment is
not found.
SM1186 SM1186 is ON when the trigger of the PLC parameter is enabled.
SM1187 SM1187 is ON when the trigger of the PLC parameter is triggered.
SM1188 ?&%188 is ON when the trigger is enabled and no mail has been
SM1189 is ON when the trigger is enabled and the last mail has
SM1189
been sent successfully.
SM1190 is ON when the trigger is enabled and the last mail has
SM1190)
been sent in error.
SM1191 i\/rliwl is ON when the trigger is enabled and the mail has been
SM1192 is ON when the trigger is enabled and there is an SMTP
SM1192 .
server response timeout.
SM1193 SM1193 is ON when the trigger is enabled and there is an SMTP
server response error.
SM1194 is ON when the trigger is enabled and the size of the
SM1194 I
attachment exceeds the limit.
SM1195 SM1195 is ON when the trigger is enabled and the attachment is
not found.
SM1196 SM1196 is ON when there is a socket configuration error.
SM1270
! The flag is refreshed when the socket function is executed.
SM1373
SM1374
! Users set SM1374 to ON and reset it to OFF.
SM1390
SM1392 is ON when the PLC Link is enabled and the master
AH5x0 SM1392 connects to slave 1~32.
SM1392 is ON when the COM2-Modbus connection is enabled
AHSx1 SM1423 and the master connects to slave 1~32.
SM1424 is ON when the PLC Link is enabled and the master
AHS5x0 SM1424 accesses the data in slave 1~32.
SM1424 is ON when the COM1-Modbus connection is enabled
AHSx1 SM1455 and the master accesses data from slave 1~32.
SM1456 is ON when the PLC Link is enabled and an error occurs
AH5x0 SM1456 in the reading of the data from slave 1~32.
AHBEX1 SM1487 SM1456 is ON When_ the COMl_—Modbus connection is enabled
and an error occurs in the reading of data from slave 1~32.
SM1488 is ON when the PLC Link is enabled and an error occurs
AH5x0 SM1488 in the writing of the data into slave 1~32.
SM1488 is ON when the COM1-Modbus connection is enabled
AH5x1 SM1519 and an error occurs in the writing of data to slave 1~32.
SM1520 is ON when the PLC Link is enabled and the master
AH5x0 SM1520 finishes reading the data from slave 1~32.
SM1520 is ON when a Modbus connection is enabled for COM1
AHSx1 SM1551 and the master finishes reading data from slave 1~32.
SM1552 is ON when the PLC Link is enabled and the master
AH5x0 SM1552 finishes writing the data into slave 1~32.
SM1552 is ON when a Modbus connection is enabled for COM1
AHSx1 SM1583 and the master finishes writing data to slave 1~32.

2-48

Chapter 2 Devices

Limited | Special auxiliary Refresh time
to relay
SM1584~SM1587 | Users set the flag ON and reset it OFF.
SM1588 SM1588 is ON when the master detects the slaves.
SM1589 SM1589 is ON when an error occurs.
SM1590 SM1590 is ON when there is a device address error.
SM1591 SM1591 is ON when there is a timeout.
SM1592 SM1592 is ON when the number of polling cycles is incorrect.
SM1593~SM1595 | Users set the flag to ON and reset it to OFF.
AH5x0 SM1596 is ON when there is an operation error in the PLC Link
AH5x1 SM1596 SM1596 is ON when the COM1-Modbus connection is enabled
and an error occurs.
SM1597~SM11630 | Users set the flag to ON and reset it to OFF.
SM1720~SM1751 | Users set the flag to ON and reset it to OFF.
AH5x0 SM1769 is ON when there is an error in the Ether Link.
SM1769 .
AH5x1 The flag is refreshed every scan cycle.
AH5x0 Users set the flag ON and reset it OFF.
SM1770 .
AH5x1 The flag is refreshed every scan cycle.
SM1771 Users set the flag to ON and reset it to OFF.
AH5x0 | SM1772~SM1788 | Users set the flag ON and reset it OFF.
AH5x1 The flag is refreshed every scan cycle.
SM1789 The flag is refreshed every scan cycle.
AH5X0 The flag js O_N when an error occurs in the corresponding
SM1790~SM1805 | communication port.
AH5x1 The flag is refreshed every scan cycle.
AH5X0 The flag js O_N when.the Ether Link function of the corresponding
SM1806 communication port is enabled.
AH5x1 The flag is refreshed every scan cycle.
SM1807 The flag is refreshed every scan cycle.
AH5X0 The flag js ON when.the Ether Link function of the corresponding
SM1808~SM1823 | communication port is enabled.
AH5x1 The flag is refreshed every scan cycle.
SM1824~SM1911 | The flag is refreshed every scan cycle.
AH5x0 SM1912 The flag is refreshed every scan cycle.
AH5x1 Users set the flag ON and reset it OFF.

SM1913~SM1951

The flag is refreshed every scan cycle.

SM2000 Users set SM2000 to ON and reset it to OFF.
SM2001 The flag is refreshed when the instruction EMDRW is executed.
SM2002 The flag is refreshed when the instruction EMDRW is executed.

The flag is refreshed when the instruction EMDRW is executed
SM2003

and an error occurs.

The flag is refreshed when the instruction EMDRW is executed
SM2004 . .

and there is a response timeout.
SM2005 The flag is refreshed when the instruction EMDRW is executed.
SM2006 Users set SM2006 to ON and reset it to OFF.
SM2007 The flag is refreshed when the instruction EMDRW is executed.
SM2008 The flag is refreshed when the instruction EMDRW is executed.

The flag is refreshed when the instruction EMDRW is executed
SM2009

and an error occurs.

The flag is refreshed when the instruction EMDRW is executed
SM2010 . .

and there is a response timeout.
SM2011 The flag is refreshed when the instruction EMDRW is executed.

2-49

AH500 Programming Manual

Limited | Special auxiliary Refresh time

to relay

SM2012 Users set SM2012 to ON and reset it to OFF.
SM2013 The flag is refreshed when the instruction EMDRW is executed.
SM2014 The flag is refreshed when the instruction EMDRW is executed.

The flag is refreshed when the instruction EMDRW is executed
SM2015

and an error occurs.

The flag is refreshed when the instruction EMDRW is executed
SM2016 . _

and there is a response timeout.
SM2017 The flag is refreshed when the instruction EMDRW is executed.
SM2018 Users set SM2018 to ON and reset it to OFF.
SM2019 The flag is refreshed when the instruction EMDRW is executed.
SM2020 The flag is refreshed when the instruction EMDRW is executed.

The flag is refreshed when the instruction EMDRW is executed
SM2021

and an error occurs.

The flag is refreshed when the instruction EMDRW is executed
SM2022 . _

and there is a response timeout.
SM2023 The flag is refreshed when the instruction EMDRW is executed.
SM2024 Users set SM2024 to ON and reset it to OFF.
SM2025 The flag is refreshed when the instruction EMDRW is executed.
SM2026 The flag is refreshed when the instruction EMDRW is executed.

The flag is refreshed when the instruction EMDRW is executed
SM2027

and an error occurs.

The flag is refreshed when the instruction EMDRW is executed
SM2028 . _

and there is a response timeout.
SM2029 The flag is refreshed when the instruction EMDRW is executed.
SM2030 Users set SM2030 to ON and reset it to OFF.

SM2031~SM2032 | The flag is refreshed when the instruction EMDRW is executed.

SM2033 is refreshed when the instruction EMDRW is executed

SM2033

and an error occurs.

SM2034 is refreshed when the instruction EMDRW is executed
SM2034 : :

and there is a response timeout.
SM2035 The flag is refreshed when the instruction EMDRW is executed.
SM2036 Users set SM2036 to ON and reset it to OFF.
SM2037 The flag is refreshed when the instruction EMDRW is executed.
SM2038 The flag is refreshed when the instruction EMDRW is executed.

The flag is refreshed when the instruction EMDRW is executed
SM2039

and an error occurs.

The flag is refreshed when the instruction EMDRW is executed
SM2040 . _

and there is a response timeout.
SM2041 The flag is refreshed when the instruction EMDRW is executed.
SM2042 Users set SM2042 to ON and reset it to OFF.
SM2043 The flag is refreshed when the instruction EMDRW is executed.
SM2044 The flag is refreshed when the instruction EMDRW is executed.
SM2045 The flag is refreshed when the instruction EMDRW is executed and

an error occurs.
SM2046 The flag is refreshed when the instruction EMDRW is executed

and there is a response timeout.

SM2047 The flag is refreshed when the instruction EMDRW is executed.

Note: The models AH5x0 and AH5x1 shown in the column of “Limited to” refer to
AHCPU500/510/520/530 and AHCPU511/521/531 respectively.

2-50

Chapter 2 Devices

2.2.9 Stepping Relays

The function of the stepping relay:

The stepping relay can be easily used in the industrial automation to set the procedure. It is the most
basic device in the sequential function chart (SFC). Please refer to ISPSoft User Manual for more
information related to sequential function charts.

There are 2048 stepping relays, i.e. S0~S2047. Every stepping relay is like an output relay in that it
has an output coil, contact A, and contact B. It can be used several times in the program, but it can
not directly drive the external load. Besides, the stepping relay can be used as a general auxiliary
relay when it is not used in the sequential function chart.

2.2.10 Timers

1. 100 millisecond timer: The timer specified by the instruction TMR takes 100 milliseconds as the

timing unit.

2. 1 millisecond timer: The timer specified by the instruction TMRH takes 1 millisecond as the

timing unit.

3. The timers for the subroutine’s exclusive use are T1920~T2047.

4. The accumulative timers are STO~ST2047. If users want to use the device-monitoring function,
they can monitor TO~T2047.

5. If the same timer is used repeatedly in the program, including in different instructions TMR and
TMRH, the setting value is the one that the value of the timer matches first.

6. If the same timer is used repeatedly in the program, it is OFF when one of the conditional
contacts is OFF.

7. If the same timer is used repeatedly in the program as the timer for the subroutine’s exclusive
use and the accumulative timer in the program, it is OFF when one of the conditional contacts
is OFF.

8. When the timer is switched from ON to OFF and the conditional contact is ON, the timer is reset
and counts again.

9. When the instruction TMR is executed, the specified timer coil is ON and the timer begins to

count. As the value of the timer matches the setting value, the state of the contact is as follows.

Normally open (NO) contact ON
Normally closed (NC) contact OFF

A. The general-purpose timer
When the instruction TMR is executed, the general-purpose timer begins to count. As the value
of the timer matches the setting value, the output coil is ON.
® When x0.0is ON, the timer TO takes 100 milliseconds as the timing unit and counts up. As
the current value of the timer matches the setting value 100, the output coil of TO is ON.
® When x0.0is OFF or there is a power cut, the current value of the timer is reset to 0 and
the output coil is switched OFF.

NETWORK 1
X0.0 TR
| |
. En
1051
100 52
NETWORK 2
T0 Y0.0
| | ()

2-51

AH500 Programming Manual

10 sec
fe—
I
oo | L] -
F100
present I
Tn valle e I

Y0.0]

The accumulative timer

When the instruction TMR is executed, the accumulative timer begins to count. As the value of
the timer matches the setting value, the output coil is ON. As long as users add the letter S in
front of the letter T, the timer becomes the accumulative timer. When the conditional contact is
OFF, the value of the accumulative timer is not reset. When the conditional contact is ON, the
timer counts from the current value.

® When x0.0is ON, the timer T250 takes 100 milliseconds as the timing unit and counts up.
As the current value of the timer matches the setting value 100, the output coil of T250 is
ON.

® When x0.0is OFF, the timer T250 stops counting and the current value of the timer

remains unchanged. Not until x0.0 is switched ON will the timer counts again. When the

timer counts up from the current value to the setting value 100, the output coil of T250 is
ON.

NETWORK 1
X0.0 ThR
| |
{ [En
ST250 —51
100 —{32
NETWORK 2
T250 Y00
| | ()
Ti T2 T1+T2=10sec
f—] pot-e]
0.0 [1

|
present K100
T250 walue |
|
0.0

The timer used in the function block

T1920~T2047 are the timers which users can use in the functional block or the interrupt.
When the instruction TMR or END is executed, the timer used in the functional block begins to
count. As the value of the timer matches the setting value, the output coil is ON.

If the general-purpose timer is used in the functional block or the interrupt, and the functional is
not executed, the timer can not count correctly.

2-52

Chapter 2 Devices

2.2.11 Counters

The characteristics of the 16-bit counter:

Iltem 16-bit counter
Type General type
Number C0~C2047
Direction Counting up
Setting value 0~32,767

Specification of the setting value

The setting value can be either the constant or the value in the
data register.

Change of the current value

The counter stops counting when the value of the counter
matches the setting value.

Output contact

The contact is ON when the value of the counter matches the
setting value.

Reset

When the instruction RST is executed, the current value is
cleared to zero, and the contact is reset of OFF.

Action of the contact After the scan is complete, the contact acts.

The function of the counter:

Each time the input switches from OFF to ON, the value of the counter increases by one increment.
When the value of the counter matches the setting value, the output coil is ON. Users can use either
the decimal constant or the value in the data register as the setting value.

The 16-bit counter:

1. Setting range: 0~32,767 (The setting values 0 and 1 mean the same thing in that the output
contact is ON when the counter counts for the first time.)

2. For the general-purpose counter, the current value of the counter is cleared when there is a
power cut. If the counter is the latched one, the current value of the counter and the state of
the contact before the power cut will be retained. The latched counter counts from the current
value when the power supply is restored.

3. If users use the instruction MOV or ISPSoft to transmit a value bigger than the setting value to
the current value register CO, the contact of the counter CO will be ON and the current value
will become the same as the setting value next time x0.1 is switched from OFF to ON.

4. Users can use either the constant or the value in the register as the setting value of the
counter.

5. The setting value of the counter can be a positive or a negative. If the counter counts up from
32,767, the next current value becomes -32,768.

Example:

METWORK 1
XL (W]
| | (R)
MHETWORHK 2
X014 CNT
|| e
o —51
515z
MHETWORK 3
co W00
N O
1. When x0.0is ON, the instruction RST is executed, the current value of the counter CO is

cleared to zero, and the output contact is reset to OFF.

2-53

AH500 Programming Manual

If x0.1 is switched from OFF to ON, the counter will count up, i.e. the current value will
increase by one.
When the current value of the counter CO matches the setting value 5, the contact of CO is ON.

Even if x0.1 is still triggered, CO does not accept the trigger signal, and the current value

remains 5. oo m ’7
ikl

gl
!

|
Current value of CO |
|

| |
| |

4 Settingvalue
| | 3
|

2

Y0.0and CO

2.2.12 32-bit Counters

The characteristics of the 32-bit counter:

Item 32-bit counter
Type General type
Number HCO~HC63
Direction Counting up/down
setting value -2,147,483,648~+2,147,483,647

Specification of the setting value

The setting value can be either the constant or the value
occupying two data registers.

Change of the current value

The counter keeps counting after the value of the counter
matches the setting value.

Output contact

The contact is ON when the value of the addition counter
matches the setting value.

The contact is reset to OFF when the value of the
subtraction counter matches the setting value.

Reset

When the instruction RST is executed, the current value is
cleared to zero, and the contact is reset of OFF.

Action of the contact After the scan is complete, the contact acts.

The 32-bit general-purpose addition/subtraction counter:

1.
2.

Setting range: -2,147,483,648~2,147,483,647

The switch between the 32-bit general-purpose addition counters and the 32-bit
general-purpose subtraction counters depends on the states of the special auxiliary relays
SM621~SM684. For example, the counter HCO is the addition counter when SM621 is OFF,
whereas HCO is the subtraction counter when SM621 is ON.

Users can use either the constant or the value in the data registers as the setting value of the
counter, and the setting value can be a positive or a negative. If users use the value in the data
registers as the setting value of the counter, the setting value occupies two consecutive
registers.

For the general-purpose counter, the current value of the counter is cleared when there is a
power cut. If the counter is the latched one, the current value of the counter and the state of
the contact before the power cut will be retained. The latched counter counts from the current
value when the power supply is restored.

If the counter counts up from 2,147,483,647, the next current value becomes -2,147,483,648.
If the counter counts down from -2,147,483,648, the next current value becomes
2,147,483,647.

2-54

Chapter 2 Devices

Example:
NETWORK 1
X10.0 SMG21
— | i
NETWORHK 2
X11.0 HCO
| (RrRD
NETWORK 3
X12.0 ¥0.0
| €
DCMNT
En
HCo 51
55z
NETWORK 4
HCO ¥0.0
— | <)

1. x10.0 drives S621 to determine whether the counter HCO is the addition counter or the

subtraction counter.
2. When x11.0is switched from OFF to ON, the instruction RST is executed, the current value of
the counter HCO is cleared to zero, and the contact is switched OFF.

3. When x12.0 is switched from OFF to ON, the current value of the counter increases or

decreases by one.

4. When the current value of the counter HCO changes from -6 to -5, the contact of HCO is

switched from OFF to ON. When the current value of the counter HCO changes from -5 to -6,
the contact of HCO is switched from ON to OFF.
5. If users use the instruction MOV or ISPSoft to transmit a value bigger than the setting value to
the current value register HCO, the contact of the counter HCO will be ON and the current value

will become the same as the setting value next time x12.0 is switched from OFF to ON.

¥00_ Addiion | gyptraction | Addition

1.0 [! ! —

I I

The current
value of HZO
u]

0.0 and HCO,

2.2.13 Data Registers

The data register stores the 16-bit data. The highest bit represents either a positive sign or a
negative sign, and the values which can be stored in the data registers range from -32,768 to
+32,767. Two 16-bit registers can be combined into a 32-bit register, i.e. (D+1, D) in which the

register whose number is smaller represents the low 16 bits. The highest bit represents either a
positive sign or a negative sign, and the values which can be stored in the data registers range from

2-55

AH500 Programming Manual

-2,147,483,648 to +2,147,483,647. Besides, four 16-bit registers can be combined into a 64-bit
register, i.e. (D+3, D+2, D+1, D) in which the register whose number is smaller represents the lower
16 bits. The highest bit represents either a positive sign or a negative sign, and the values which can
be stored in the data registers range from -9,223,372,036,854,776 to +9,223,372,036,854,775,807.
The data registers also can be used to refresh the values in the control registers in the modules
other than digital I/O modules. Please refer to ISPSoft User Manual for more information regarding
refreshing the values in the control registers.

The registers can be classified into two types according to their properties:

1. General-purpose register: If the PLC begins to run, or is disconnected, the value in the register
will be cleared to zero. If users want to retain the data when the PLC begins to RUN, they can
refer to ISPSoft User Manual for more information. Please notice that the value will still be
cleared to zero if the PLC is disconnected.

2. Latched register: If the PLC is disconnected, the data in the latched register will not be cleared.
In other words, the value before the disconnection is still retained. If users want to clear the data
in the latched area, they can use RST or ZRST.

2.2.14 Special Data Registers

Every special data register has its definition and specific function. The system statuses and the error
messages are stored in the special data registers. Besides, the special data registers can be used
to monitor the system statuses. The special data registers and their functions are listed as follows.
As to the SR numbers marked “*”, users can refer to the additional remarks on special auxiliary
relays/special data registers. The “R” in the attribute column indicates that the special data register
can read the data, whereas the “R/W” in the attribute column indicates that it can read and write the
data. In addition, the mark “~" indicates that the status of the special data register does not make
any change. The mark “#” indicates that the system will be set according to the status of the PLC,
and users can read the setting value and refer to the related manual for more information.

O[O0 0O
2leg|e 2
- SISISIS OFF |[STOP| RUN = g
SR Function X588 8 ¢ 4 o g
olm|/®|m| ON |RUN STOP| & =
0wz wnz ®
N N
SRO Error-d_etectmg code of the PLC olololo 0 0 - R 0
operation error
SR1 The address of the operation error is olololo 0 0 — R 0
locked.
SR4 Error-detecting code of the grammar olololo 0 0 _ R 0
check error
SR5 Address of the instruction/operand olololo 0 0 - R 0

check error

SR6 | Address of the instruction/operand olololo 0 0 - R 0

check error

SR8 | Step address at which the watchdog olololo 0 - _ R 0
timer is ON
*SR40 | Number of error logs o|lo|oflol| - - - R 0
*SR41 | Error log pointer olo|lo|lo| -— - - R 0
*SRA42 Error log 1: The rack humber and the olololo _ B _ R 0
slot number
*SR43 | Error log 1: The module 1D olo|loflo| -— - - R 0
*SR44 | Error log 1: The error code olo|loflo| -— - - R 0
*SR45 | Error log 1: The year and the month olo|loflo]| - - - R 0
*SR46 | Error log 1: The day and the hour olo|loflo]| - - - R 0
*SR47 | Error log 1: The minute and the second| o (o [o | o | — - - R 0
*SR48 | Error log 2: The rack number andthe (o |o|o|o| — - - R 0

2-56

Chapter 2 Devices

Ol0(0|0
T|(U| T | T >
$15151|5 | OFF [STOP|RUN | = 9
SR Function LSS ,ﬁ ,5\ 4 4 4 o g,"
o m @/ m ON |RUN|STOP| & =
nlzonlz ®
N N
slot number
*SR49 | Error log 2: The module ID olo|lo|o| - - - R 0
*SR50 | Error log 2: The error code olo|lo|o| - - - R 0
*SR51 | Error log 2: The year and the month olo|lo|o| - - - R 0
*SR52 | Error log 2: The day and the hour olo|lo|o| - - - R 0
*SR53 | Error log 2: The minute and the second| o | o [o | o | — - - R 0
*SR54 Error log 3: The rack number and the olololol — _ _ R 0
slot number
*SR55 | Error log 3: The module ID olo|lo|o| - - - R 0
*SR56 | Error log 3: The error code olo|lo|o| - - - R 0
*SR57 | Error log 3: The year and the month olo|lo|o| - - - R 0
*SR58 | Error log 3: The day and the hour olo|lo|o| - - - R 0
*SR59 | Error log 3: The minute and the second| o | o [o | o | — - - R 0
*SR60 Error log 4: The rack number and the olololol — _ _ R 0
slot number
*SR61 | Error log 4: The module ID olo|lo|o| - - - R 0
*SR62 | Error log 4: The error code olo|lo|o| -— - - R 0
*SR63 | Error log 4: The year and the month olo|lo|o| - - - R 0
*SR64 | Error log 4: The day and the hour olo|lo|o| - - - R 0
*SR65 | Error log 4: The minute and the second| o |o |o | o | - - - R 0
*SR66 Error log 4: The rack number and the olololol — _ _ R 0
slot number
SR67 Error log 5: The rack number and the olololol — _ _ R 0
slot number
SR68 | Error log 5: The module ID olo|lo|o| - - - R 0
SR69 |Error log 5: The error code olo|lo|o| - - - R 0
SR70 | Error log 5: The year and the month olo|o|o| - - - R 0
SR71 | Error log 5: The day and the hour olo|o|o| - - - R 0
SR72 Error log 6: The rack number and the olololol _— _ _ R 0
slot number
*SR73 | Error log 6: The module ID olo|o|o| - - - R 0
*SR74 | Error log 6: The error code olo|lo|o| - - - R 0
*SR75 | Error log 6: The year and the month olo|o|o| - - - R 0
*SR76 | Error log 6: The day and the hour olo|o|o| - - - R 0
*SR77 | Error log 6: The minute and the second| o |o | o | o | - - - R 0
*SR78 SElgrf;lljorEberhe rack numberandthe | | | | | _ _ _ R 0
*SR79 | Error log 7: The module ID olo|o|o| - - - R 0
*SR80 | Error log 7: The error code olo|lo|o| - - - R 0
*SR81 | Error log 7: The year and the month olo|o|o| - - - R 0
*SR82 | Error log 7: The day and the hour olo|o|o| - - - R 0
*SR83 | Error log 7: The minute and the second| o |o |0 | o | - - - R 0
*SR84 Error log 8: The rack numberand the | | | | .| _ _ _ R 0
slot number
*SR85 | Error log 8: The module ID o|o - - - R 0
*SR86 | Error log 8: The error code - - - R 0

2-57

AH500 Programming Manual

SR

Function

¢Sd-0xSNdO

N3-0xSNdO
¢Sd-TxSNdD

N3-TxSNdD

OFF

ON

STOP

RUN

RUN

STOP

aINgLNY

linejad

*SR87

Error log 8: The year and the month

o

o

o

o

*SR88

Error log 8: The day and the hour

o

*SR89

Error log 8: The minute and the second

o

o

*SR90

Error log 9: The rack number and the
slot number

o

o

o

o

*SR91

Error log 9: The module ID

*SR92

Error log 9: The error code

*SR93

Error log 9: The year and the month

*SR94

Error log 9: The day and the hour

*SR95

Error log 9: The minute and the second

o|loflo|o |0

o|loflo|o |0

o|ofO0|0O|O

o|ofO0|0O|O

*SR96

Error log 10: The rack number and the
slot number

o

o

o

o

*SR97

Error log 10: The module ID

*SR98

Error log 10: The error code

*SR99

Error log 10: The year and the month

*SR100

Error log 10: The day and the hour

o|lo|o|o

o|lo|o|o

(ol e el 6]

(ol e el 6]

*SR101

Error log 10: The minute and the
second

o

o

o

o

A WOV AO WV VOV AOD NV O TAD

O OO0 0|0Of ©O OO/l 0O/0O] ©O O/ O|O

*SR102

Error log 11: The rack number and the
slot number

o

o

o

o

*SR103

Error log 11: The module ID

*SR104

Error log 11: The error code

*SR105

Error log 11: The year and the month

*SR106

Error log 11: The day and the hour

o|lo|o|o

o|lo|o|o

(ol e el 6]

(o e el 6]

*SR107

Error log 11: The minute and the
second

o

o

o

o

A | DOV D O

o |Oo|olo|o| ©

*SR108

Error log 12: The rack number and the
slot number

o

o

o

o

*SR109

Error log 12: The module ID

*SR110

Error log 12: The error code

*SR111

Error log 12: The year and the month

*SR112

Error log 12: The day and the hour

o|lo|o|oO

o|lo|o|oO

o|Oo0fO|O

(ol e el 6]

*SR113

Error log 12: The minute and the
second

o

o

o

o

A | WO VO D

o |O|olo|o| ©

*SR114

Error log 13: The rack number and the
slot number

o

o

o

o

*SR115

Error log 13: The module ID

*SR116

Error log 13: The error code

*SR117

Error log 13: The year and the month

*SR118

Error log 13: The day and the hour

o|lo|o|o

o|lo|o|o

oO|O0|O|O

oO|O0|O|O

*SR119

Error log 13: The minute and the
second

o

o

o

o

A | WOV D

O |Oo|olo|o| ©

*SR120

Error log 13: The rack number and the
slot number

Py

*SR121

Error log 14: The rack number and the
slot number

2-58

Chapter 2 Devices

SR

Function

¢Sd-0xSNdO

N3-0xSNdO
¢Sd-TxSNdD

N3-TxSNdD

OFF

ON

STOP

RUN

RUN

STOP

aINguUNY

linejad

*SR122

Error log 14:

The module ID

*SR123

Error log 14:

The error code

*SR124

Error log 14:

The year and the month

*SR125

Error log 14:

The day and the hour

o|O0|0O0 |0

o|lo|o|o

o|lo|o|o

o|O0|0O0 |0

*SR126

Error log 15:

slot number

The rack number and the

o

o

o

o

*SR127

Error log 15:

The module ID

*SR128

Error log 15:

The error code

*SR129

Error log 15:

The year and the month

*SR130

Error log 15:

The day and the hour

o|O0f|O |0

o|lo|o|o

o|lo|o|oO

(ol e el 6]

*SR131

Error log 15:

second

The minute and the

o

o

o

o

A |D|(O|O(O| B V| VDD

O [0 OO0l O |Oo0ololo

*SR132

Error log 16:

slot number

The rack number and the

o

o

o

o

*SR133

Error log 16:

The module ID

*SR134

Error log 16:

The error code

*SR135

Error log 16:

The year and the month

*SR136

Error log 16:

The day and the hour

(ol e el 6]

o|lo|o|o

o|lo|o|o

(ol e el 6]

*SR137

Error log 16:

second

The minute and the

o

o

o

o

A |O|(O(O[(D| T

o |[O|jlojlolo|l O

*SR138

Error log 17:

slot number

The rack number and the

o

o

(¢]

o

*SR139

Error log 17:

The module ID

*SR140

Error log 17:

The error code

*SR141

Error log 17:

The year and the month

SR142

Error log 17:

The day and the hour

(ol e el 6]

o|lo|o|oO

o|lo|o|o

o|O0f|O0|O

*SR143

Error log 17:

second

The minute and the

o

o

o

o

O |W|AO| OO O

o |[OjlOojlolo| O

*SR144

Error log 18:

slot number

The rack number and the

o

o

o

o

*SR145

Error log 18:

The module ID

*SR146

Error log 18:

The error code

*SR147

Error log 18:

The year and the month

*SR148

Error log 18:

The day and the hour

(ol e el 6]

o|lo|o|o

o|lo|o|o

(o e el 6]

*SR149

Error log 18:

second

The minute and the

o

o

o

o

O |W|AO| OO O

o |[Ojlojlolo|l O

*SR150

Error log 19:

slot number

The rack number and the

o

o

o

o

*SR151

Error log 19:

The module ID

*SR152

Error log 19:

The error code

*SR153

Error log 19:

The year and the month

*SR154

Error log 19:

The day and the hour

(ol e el 6]

o|lo|o|o

o|lo|o|o

(ol e el 6]

*SR155

Error log 19:

second

The minute and the

o

o

o

o

O |00 OO O

o |[O|jlOojo|lo| O

*SR156

Error log 20:

slot number

The rack number and the

Py,

o

2-59

AH500 Programming Manual

0000
s >
_ $15151|5 | OFF |STOP| RUN = gh
SR Function XX ,ﬁ ,§ 4 4 4 = S
ol/m|/®|/m| ON |RUN STOP| & =
wlzlwnlz w2
N N
*SR157 | Error log 20: The module ID oloflo|o| -— - - R 0
*SR158 | Error log 20: The error code oloflo|o| -— - - R 0
*SR159 | Error log 20: The year and the month |o | o |o|o| - - - R 0
*SR160 | Error log 20: The day and the hour oloflo|o| -— - - R 0
*SR161 Error log 20: The minute and the olololol — _ _ R 0
second
*SR201 | Communication address of COM1 o|o - - - | RIW 1
*SR202 | Communication address of COM2 X - - - | RIW 3
*SR209 | Communication protocol of COM1 o o| - - - | RIW |16#0024
*SR210 | COM1 communication timeout ololo|o|3000] _ - | RIW 3000
ms ms
. Number of times the command is
SR211 | osent through COM1 A I e e B - |RW 3
*SR212 | Communication protocol of COM2 o|lx|o| x| = - - | RIW |16#0024
*SR213 | COM2 communication timeout olx|ol|x|3900 _ - | RIW 3000
ms ms
. Number of times the command is
SR214 |\ osent through COM2 A R e e B - |RW 3
*SR215 | Interface code of COM1 o - - - | RIW 0
*SR216 | Interface code of COM2 X - - - | RIW 0
. Value of the year in the real-time clock
SR220 | rTC): 00~99 (A.D.) °lefejel - | - | - | R| O
. Value of the month in the real-time
SR221 | tlock (RTC): 01~12 1%1°1°] ~ B B R 1
. Value of the day in the real-time clock
SR222 (RTC): 1~31 olo|lo|o - — - R 1
Value of the hour in the real-time clock
* —_ —_ —_
SR223 (RTC): 00~23 olo|lolfo R 0
Value of the minute in the real-time
* —_ —_ —_
SR224 1 tlock (RTC): 00~59 olofo|° R0
Value of the second in the real-time
* —_ —_ —_
SR225 | ¢0ck (RTC): 00~59 olojefe R 0
Value of the week in the real-time clock
* —_ —_ —_
SR226 (RTC): 1~7 o|lo|o]|o R 1
*SR227 Num_ber of downloqd logs (The olololol — _ _ R 0
maximum number is 20.)
*SR228 | Download log pointer oloflo|o| - - - R 0
*SR229 | Download log 1: The action number olo|ofof| - - - R 0
*SR230 Download log 1: The year and the olololol _— _ _ R 0
month
*SR231 | Download log 1: The day and the hour | o | o | o | o | - - - R 0
*SR232 Download log 1: The minute and the olololol — _ _ R 0
second
*SR233 | Download log 2: The action number olo|ofof| - - - R 0
*SR234 Download log 2: The year and the olololol _— _ _ R 0
month
*SR235 | Download log 2: The day and the hour | o |o | o | o | - - - R 0

2-60

Chapter 2 Devices

SR

Function

¢Sd-0xSNdO

N3-0xSNdO
¢Sd-TxSNdD

N3-TxSNdD

OFF

ON

STOP

RUN

RUN

STOP

aINguUNY

linejad

*SR236

Download log 2:
second

The minute and the

o

(e]

*SR237

Download log 3:

The action number

*SR238

Download log 3:
month

The year and the

*SR239

Download log 3:

The day and the hour

*SR240

Download log 3:
second

The minute and the

*SR241

Download log 4:

The action number

*SR242

Download log 4:
month

The year and the

*SR243

Download log 4:

The day and the hour

*SR244

Download log 4:
second

The minute and the

*SR245

Download log 5:

The action number

*SR246

Download log 5:
month

The year and the

*SR247

Download log 5:

The day and the hour

*SR248

Download log 5:
second

The minute and the

*SR249

Download log 6:

The action number

*SR250

Download log 6:
month

The year and the

*SR251

Download log 6:

The day and the hour

*SR252

Download log 6:
second

The minute and the

*SR253

Download log 7:

The action number

*SR254

Download log 7:
month

The year and the

*SR255

Download log 7:

The day and the hour

*SR256

Download log 7:
second

The minute and the

*SR257

Download log 8:

The action number

*SR258

Download log 8:
month

The year and the

*SR259

Download log 8:

The day and the hour

*SR260

Download log 8:
second

The minute and the

*SR261

Download log 9:

The action number

*SR262

Download log 9:
month

The year and the

*SR263

Download log 9:

The day and the hour

*SR264

Download log 9:
second

The minute and the

*SR265

Download log 10: The action number

*SR266

Download log 10: The year and the

month

£ |xX ©®|\»H¥W W |™P O |XO OV |OV OV |V XV |NO O |XH NV |HOV V|V OV | XY XV |XH O |AM V(O WV | WV X

o | © |l © |of O |Oof O |0l O |0 O |0 © |0l Ol OO O |©O © |Of ©O |Of O |©Ol O | o

2-61

AH500 Programming Manual

0000

TU| U |T| T >

S15151|5| OFF [STOPIRUN | = 9

SR Function XIXIX|X| & | & 0| 3 g

5 m|@|m ON |RUN STOP| & =

hlzwnlz ©

N N
*SR267 rI?(;)L\l/\;nload log 10: The day and the olololol — _ _ R 0
*SR268 Eé)g/:/)rglgad log 10: The minute and the olololol — _ _
*SR269 | Download log 11: The action number |o|o|o|o| - - - 0
*SR270 rI?:z)vr\wl?hloald log 11: The year and the olololol — _ _ 0
*SR271 Egsl/\;nload log 11: The day and the olololol — _ _ R 0
*SR272 g)eo(;/:/)rglgad log 11: The minute and the olololol — _ _ 0
*SR273 | Download log 12: The action number |o|o|o|o| - - - 0
*SR274 rI?%vr\wl?hlorald log 12: The year and the olololol — _ _ 0
*SR275 Eg&/\;nload log 12: The day and the olololol — _ _ R 0
*SR276 g)é)g/:/)rglgad log 12: The minute and the olololol — _ _ 0
*SR277 | Download log 13: The action number |o|o|o|o| - - - 0
*SR278 rI?%vr\wl?hlorald log 13: The year and the olololol — _ _ 0
*SR279 Eg&/\;nload log 13: The day and the olololol — _ _ R 0
*SR280 g)é)g/:/)rglgad log 13: The minute and the olololol — _ _ 0
*SR281 | Download log 14: The action number |o|o|o|o| - - - 0
*SR282 rI?:z)vr\wl?hloald log 14: The year and the olololol — _ _ 0
*SR283 Egsl/\;nload log 14: The day and the olololol — _ _ R 0
*SR284 g)é)g/g)rgllgad log 14: The minute and the olololol — _ _ 0
*SR285 | Download log 15: The action number |o | o |o|o| - - - 0
*SR286 rI?](())vr\]/tnhload log 15: The year and the olololol — _ _ 0
*SR287 rI?cc))l\j\:nload log 15: The day and the olololol — _ _ R 0
*SR288 sD:c\:,Z)?]Ic(j)ad log 15: The minute and the olololol — _ _ 0
*SR289 | Download log 16: The action number |o | o |o|o| - - - 0
*SR290 rI?]c())vr\]/tnhload log 16: The year and the olololol — _ _ 0
*SR291 rI?cc))l\j\:nload log 16: The day and the olololol — _ _ R 0
*SR292 sD:c\:,Z)?]Ic(j)ad log 16: The minute and the olololol — _ _ 0
*SR293 | Download log 17: The action number - - - R 0
*SR294 | Download log 17: The year and the - - - R 0

2-62

Chapter 2 Devices

Ol0(0|0
T|(U| T | T >
$15151|5 | OFF [STOP|RUN | = 9
SR Function XIX|X|X| & | 8 8|z g
5!f|®m|m| ON |RUN STOP 5 =
nlzonlz ®
N N
month
*SR295 rI?(;)L\l/\;nload log 17: The day and the olololol — _ _ R 0
*SR296 SD;(;/:/)ﬂIgad log 17: The minute and the olololol _— _ _ 0
*SR297 | Download log 18: The action number |o|o|o|o| - - - 0
*SR298 rI?1cc)Jvr\1/tnhload log 18: The year and the olololol _— _ _ 0
*SR299 Eg&/\;nload log 18: The day and the olololol _— _ _ R 0
*SR300 g)é)g/:/)rglgad log 18: The minute and the olololol — _ _ 0
*SR301 | Download log 19: The action number |o|o|o|o| - - - 0
*SR302 rI?1(2Jvr\]/tr1hload log 19: The year and the olololol _— _ _ 0
*SR303 Eg&/\;nload log 19: The day and the olololol _— _ _ R 0
*SR304 g)é)g/:/)rglgad log 19: The minute and the olololol — _ _ 0
*SR305 | Download log 20: The action number |o|o|o|o| - — - 0
*SR306 rI?%vr\wl?hlorald log 20: The year and the olololol _— _ _ 0
*SR307 Eg&/\;nload log 20: The day and the olololol _— _ _ R 0
*SR308 g)é)g/:/)rglgad log 20: The minute and the olololol — _ _ R 0
Number of PLC status change logs
* —_ —_ —_

SR309 (The maximum number is 20.) °1°1°° 0
*SR310 | PLC status change log pointer olo|o|o| - — - 0
*SR311 Ebrisé?tus change log 1: The action olololol _— _ _ 0
*SR312 ngeCmséittLrl]S change log 1: The year and olololol _— _ _ R 0
*SR313 ;Lechzhartus change log 1: The day and olololol — _ _ R 0
*SR314 PLC status change log 1: The minute olololol — _ _ R 0

and the second
*SR315 rITLIj_r(n?bsé?tus change log 2: The action olololol — _ _ R 0
*SR316 ;Lecmséittlrjls change log 2: The year and olololol — _ _ R 0
*SR317 ;Lechituartus change log 2: The day and olololol — _ _ R 0
*SR318 PLC status change log 2: The minute olololol — _ _ R 0
and the second
*SR319 rITbr(n:t)sé?tus change log 3: The action olololol — _ _ 0
*SR320 | PLC status change log 3: Theyearand| o | o | o | o | - - - 0

2-63

AH500 Programming Manual

O[00 0O
T U |TU|T >
S15151|5| OFF [STOPIRUN | = 9
SR Function XX ,ﬁ ,§ 4 4 4 g-' g,"
o/m|/@m|/m| ON | RUN |STOP| = =
n =z nz ®
N N
the month
*SR321 ;I;Chzhartus change log 3: The day and olololol — _ _ R 0
*SR322 Zrl;gti?tsuescgzznge log 3: The minute olololol _— _ _ R 0
*SR323 rl?br(;;é?tus change log 4: The action olololol — _ _ R 0
*SR324 ;;Cms;ims change log 4: The year and olololol _— _ _ R 0
*SR325 ;Lechz'ﬁlrtus change log 4: The day and olololol — _ _ R 0
*SR326 zkgtﬁ'glguescggznge log 4: The minute olololol — _ _ R 0
*SR327 rl?br(;;é?tus change log 5: The action olololol — _ _ R 0
*SR328 ;;Cms;ims change log 5: The year and olololol _— _ _ R 0
*SR329 ;;Chz'[jtus change log 5: The day and olololol _— _ _ R 0
*SR330 Ekgtﬁ';atsuscgzznge log 5: The minute olololol _— _ _ R 0
*SR331 Ebrisé?tus change log 6: The action olololol _— _ _ R 0
*SR332 EwLeCmséittLrl]S change log 6: The year and olololol — _ _ R 0
*SR333 ;Lechituartus change log 6: The day and olololol — _ _ R 0
*SR334 PLC status change log 6: The minute olololol — _ _ R 0
and the second
*SR335 rITLIj_r(n?bsé?tus change log 7: The action olololol — _ _ R 0
*SR336 ;Lecmséittlrjls change log 7: The year and olololol — _ _ R 0
*SR337 ;Lechituartus change log 7: The day and olololol — _ _ R 0
*SR338 PLC status change log 7: The minute olololol — _ _ R 0
and the second
*SR339 rITLIj_r(n?bsé?tus change log 8: The action olololol — _ _ R 0
*SR340 ;Lecmséittlrjls change log 8: The year and olololol — _ _ R 0
*SR341 ;I;Chzhartus change log 8: The day and olololol — _ _ R 0
*SR342 Zrl;gti?tsuescgzznge log 8: The minute olololol _— _ _ R 0
*SR343 rl?br(;;é?tus change log 9: The action olololol — _ _ 0
*SR344 | PLC status change log 9: The yearand| o |o | o | o | — - - 0

2-64

Chapter 2 Devices

OO0 0O
T|(U| T | T >
$15151|5 | OFF [STOP|RUN | = 9
SR Function LSS ,ﬁ ,§ 4 4 4 é-' g,"
o|m|/xm|/m| ON | RUN |STOP| = =
nlzonlz ®
N N
the month
*SR345 PLC status change log 9: The day and olololol — _ _ R 0
the hour
*SR346 Zrl;gti?tsuescgzznge log 9: The minute olololol _— _ _ R 0
*SR347 rl?br(;;é?tus change log 10: The action olololol _— _ _ R 0
*SR348 zkgtﬁtea#soﬁtr;]ange log 10: The year olololol _— _ _ R 0
*SR349 zkgtﬁt:w;ufhange log 10: The day olololol _— _ _ R 0
*SR350 zkgtﬁtea;uscgzznge log 10: The minute olololol _— _ _ R 0
*SR351 rl?br(;;é?tus change log 11: The action olololol _— _ _ R 0
*SR352 Zﬁgtﬁ'gxzﬁ#‘aﬂge log 11: The year olololo _ _ _ R 0
*SR353 Ekgtﬁzawjufhange log 11: The day olololol _— _ _ R 0
*SR354 zkgtﬁ'gltsuscggznge log 11: The minute olololol — _ _ R 0
*SR355 Ebrisé?tus change log 12: The action olololol _— _ _ R 0
*SR356 gkgtﬁ'gxiﬁtr;]ange log 12: The year olololo _ _ _ R 0
*SR357 zrll_((j?ﬂs]?tﬁosucr:hange log 12: The day olololol — _ _ R 0
*SR358 PLC status change log 12: The minute olololol — _ _ R 0
and the second
*SR359 rITLIj_r(n?bsé?tus change log 13: The action olololol — _ _ R 0
*SR360 zrll_((j?ﬂs]?t#]irc]:trr]]ange log 13: The year olololol — _ _ R 0
*SR361 zrll_((j?ﬂs]?tﬁosucr:hange log 13: The day olololol — _ _ R 0
*SR362 PLC status change log 13: The minute olololol — _ _ R 0
and the second
*SR363 rITLIj_r(n?bsé?tus change log 14: The action olololol — _ _ R 0
*SR364 zrll_((j?ﬂs]?t#]irc]:trr]]ange log 14: The year olololol — _ _ R 0
*SR365 Zrl;c(i:ti?wosu(r:hange log 14: The day olololol — _ _ R 0
*SR366 Zrl;gti?tsuescgzznge log 14: The minute olololol — _ _ R 0
*SR367 rl?br(;;é?tus change log 15: The action olololol _— _ _ R 0
*SR368 | PLC status change log 15: The year olo|lo|o]| - - - R 0

2-65

AH500 Programming Manual

0000
T U |TU|T >
S15151|5| OFF [STOPIRUN | = 9
SR Function XX ,ﬁ ,§ 4 4 4 g-' g,"
o/m|/@m|/m| ON | RUN |STOP| = =
nlizlnlz ©
N N
and the month
*SR369 Ekgtﬁzawjufhange log 15: The day olololol — _ _ R 0
*SR370 gr%gﬂs]';atsu:cgzznge log 15: The minute | | | | 0| _ _ _ R 0
*SR371 Ebrisé?tus change log 16: The action olololol — _ _ R 0
*SR372 zrll_((j?ﬂs]?t#]irc]:trr]]ange log 16: The year olololol — _ _ R 0
*SR373 zrll_((j?ﬂs]?tﬁosucr:hange log 16: The day olololol — _ _ R 0
*SR374 PLC status change log 16: The minute olololol — _ _ R 0
and the second
*SR375 rITLIj_r(n?bsé?tus change log 17: The action olololol — _ _ R 0
*SR376 zrll_((j?ﬂs]?t#]irc]:trr]]ange log 17: The year olololol — _ _ R 0
*SR377 zrll_((j?trs]tsltﬁosucr:hange log 17: The day olololol — _ _ R 0
*SR378 PLC status change log 17: The minute olololol — _ _ R 0
and the second
*SR379 rITLIj_r(n?bsé?tus change log 18: The action olololol — _ _ R 0
*SR380 Zrl;c?tﬁ?trﬂiﬁtmange log 18: The year olololol — _ _ R 0
*SR381 Zrl;cci?tite(altt:Josucr:hange log 18: The day olololol — _ _ R 0
*SR382 Ekgtﬁ';atsuscgzznge log 18: The minute | | | | J | _ _ _ R 0
*SR383 Ebrisé?tus change log 19: The action | | | | | _ _ _ R 0
*SR384 Ekg;’;axz::;}ange log 19: The year olololol _— _ _ R 0
*SR385 Ekgtﬁzawjufhange log 19: The day olololol — _ _ R 0
*SR386 Ekgtﬁ';atsuscgzznge log 19: The minute | | | | 0| _ _ _ R 0
*SR387 Ebrisé?tus change log 20: The action | | | | S| _ _ _ R 0
*SR388 Ekg;’;axz::;}ange log 20: The year olololol _— _ _ R 0
*SR389 Ekgtﬁzawjufhange log 20: The day olololol — _ _ R 0
*SR390 gr%gﬂs]';atsu:cgzznge log 20: The minute | | | | J| _ _ _ R 0
Value of the year in the real-time clock
SR391 | 2TC): 00~99 (A.D.) °lefefel = | = | - 0
SR392 | Value of the month in the real-time oloflo|o| - - - 1

2-66

Chapter 2

Devices

SR

Function

¢Sd-0xSNdO

N3-0xSNdO
¢Sd-TxSNdD

N3-TxSNdD

OFF

ON

STOP

RUN

RUN

STOP

aINguUNY

linejad

clock (RTC): 01~12

SR393

Value of the day in the real-time clock
(RTC): 1~-31

SR394

Value of the hour in the real-time clock
(RTC): 00~23

SR395

Value of the minute in the real-time
clock (RTC): 00~59

SR396

Value of the second in the real-time
clock (RTC): 00~59

SR397

Value of the week in the real-time clock
(RTC): 1~7

SR407

When the PLC runs, the value in
SR407 increases by one every second.
SR407 counts from 0 to 32767, and
then from -32768 to 0.

R/W

SR408

When the PLC runs, the value in
SR408 increases by one every scan
cycle. SR408 counts from 0 to 32767,
and then from -32768 to 0.

RW

*SR409

The pulse is ON for n seconds and is
OFF for n seconds during the 2n
second clock pulse. The interval n is
stored in SR409, and the setting range
is 1~32767.

RW

30

*SR410

The pulse is ON for n milliseconds and
is OFF for n milliseconds during the 2n
millisecond clock pulse. The interval n
is stored in SR410.

R/W

30

SR411

SR412

The current scan time is stored in
SR411 and SR412, and the unit of
measurement is 100 microseconds.
The value of the millisecond is stored
in SR411. (The range is 0~65535.) The
value of the microsecond is stored in
SR421. (The range is 0~900.). For
example, 12 is stored in SR411 and
300 is stored in SR412 when the
current scan time is 12.3 milliseconds.

SR413

SR414

The maximum scan time is stored in
SR413 and SR414, and the unit of
measurement is 100 microseconds.
The value of the millisecond is stored
in SR413.

SR415

The maximum scan time is stored in
SR415 and SR416, and the unit of
measurement is 100 microseconds.
The value of the millisecond is stored

2-67

AH500 Programming Manual

SR

Function

¢Sd-0xSNdO

N3-0xSNdO
¢Sd-TxSNdD

N3-TxSNdD

OFF

ON

STOP

RUN

RUN

STOP

aINgLNY

linejad

SR416

in SR415.

*SR453

If an error occurs during the operation
of the memory card, the error code will
be recorded.

SR621

Interrupt character used in the
instruction RS (COM1)

R/W

SR622

Interrupt character used in the
instruction RS (COM2)

R/W

SR623

Bit O~bit 15: The conditions of the
interrupt programs 10~115 are set by
the instruction IMASK.

FFFF

FFFF

SR624

Bit O~bit 15: The conditions of the
interrupt programs 116~131 are set by
the instruction IMASK.

FFFF

FFFF

SR625

Bit O~bit 15: The conditions of the
interrupt programs 132~147 are set by
the instruction IMASK.

FFFF

FFFF

SR626

Bit O~bit 15: The conditions of the
interrupt programs 148~163 are set by
the instruction IMASK.

FFFF

FFFF

SR627

Bit O~bit 15: The conditions of the
interrupt programs 164~179 are set by
the instruction IMASK.

FFFF

FFFF

SR628

Bit O~bit 15: The conditions of the
interrupt programs 180~195 are set by
the instruction IMASK.

FFFF

FFFF

SR629

Bit 0~bit 15: The conditions of the
interrupt programs 196~1111 are set by
the instruction IMASK.

FFFF

FFFF

SR630

Bit O~bit 15: The conditions of the
interrupt programs 1112~1127 are set
by the instruction IMASK.

FFFF

FFFF

SR631

Bit O~bit 15: The conditions of the
interrupt programs 1128~1143 are set
by the instruction IMASK.

FFFF

FFFF

SR632

Bit O~bit 15: The conditions of the
interrupt programs 1144~1159 are set
by the instruction IMASK.

FFFF

FFFF

SR633

Bit O~bit 15: The conditions of the
interrupt programs 1160~1175 are set
by the instruction IMASK.

FFFF

FFFF

SR634

Bit O~bit 15: The conditions of the
interrupt programs 1176~1191 are set
by the instruction IMASK.

FFFF

FFFF

SR635

Bit O~bit 15: The conditions of the
interrupt programs 1192~1207 are set

FFFF

FFFF

2-68

Chapter 2 Devices
OO0 0O
c|c|c 2| oFF [sTop|RUN| Z O
: FIg|g|g 5| g
SR Function LSS fagifal 4 4 4 g S
o|m|/xm|/m| ON | RUN |STOP| = =
nlzwnz @
N N
by the instruction IMASK.
Bit O~bit 15: The conditions of the
SR636 |interrupt programs 1208~1213 areset | o | o | o | o |FFFF| - - R FFFF
by the instruction IMASK.
Bit O~bit 15: The conditions of the
SR637 |interrupt programs 1214~1229 are set olo|o|o|FFFF| - - R FFFF
by the instruction IMASK.
Bit O~bit 15: The conditions of the
SR638 |interrupt programs 1230~I1255 areset | o | o | o | o |FFFF| - - R FFFF
by the instruction IMASK.
Recording the mapping error occurring
in the module table for rack 1 or the
error occurring in the /O module of
*SR655 |rack 1
l l olo|o|o 0 - - R 0
SR662 |Recording the mapping error occurring
in the module table for rack 8 or the
error occurring in the /O module of
rack 8
Recording the mapping error code
occurring in the module table for rack 1
*SR663 | whose slot number is 0
! ! olo|o|o 0 — — R 0
SR674 | Recording the mapping error code
occurring in the module table for rack 1
whose slot number is 11
Recording the mapping error code
occurring in the module table for rack 2
*SR675 | whose slot number is 0
l l olo|o|o 0 - - R 0
SR682 | Recording the mapping error code
occurring in the module table for rack 2
whose slot number is 7
Recording the mapping error code
occurring in the module table for rack 3
*SR683 | whose slot number is 0
!) olo|o|o| O - - R 0
SR690 | Recording the mapping error code
occurring in the module table for rack 3
whose slot number is 7
Recording the mapping error code
occurring in the module table for rack 4
*SR691 | whose slot number is 0
l l olo|o|o 0 - - R 0
SR698 | Recording the mapping error code
occurring in the module table for rack 4
whose slot number is 7

2-69

AH500 Programming Manual

0000
T U |TU|T >
S15151|5| OFF [STOPIRUN | = 9
SR Function XIXIX|X| & | & 0| 3 g
olm T m| ON | RUN |STOP| S =
X | m 5
0wz Bz
N
Recording the mapping error code
occurring in the module table for rack 5
*SR699 | whose slot number is 0
1 l olo|o|o 0 - - R 0
SR706 |Recording the mapping error code
occurring in the module table for rack 5
whose slot number is 7
Recording the mapping error code
occurring in the module table for rack 6
*SR707 | whose slot number is 0
1 l olo|lo|o 0 - - R 0
SR714 | Recording the mapping error code
occurring in the module table for rack 6
whose slot number is 7
Recording the mapping error code
occurring in the module table for rack 7
*SR715 | whose slot number is 0
!) o|lofloflo| O - — R 0
SR722 | Recording the mapping error code
occurring in the module table for rack 7
whose slot number is 7
Recording the mapping error code
occurring in the module table for rack 8
*SR723 | whose slot number is 0
1 l olo|lo|o 0 - - R 0
SR730 [Recording the mapping error code
occurring in the module table for rack 8
whose slot number is 7
If the external 24 V voltage is
SR731 |abnormal, the value of the o|lo|oflo| O - - R 0
corresponding bit is 1.
*SR1000| High word in the Ethernet IP address o - - - | RIW | COAS8
*SR1001| Low word in the Ethernet IP address o - - - R/W | 0101
*SR1002 High word in the Ethernet netmask xlolxlol = _ _ | rw ! EEEE
address
*SR1003 Low word in the Ethernet netmask xlolxlol = _ _ | rw | EF0O
address
*SR1004 High word in the Ethernet gateway xlolxlol = _ _ | rw ! coas
address
*SR1005 Low word in the Ethernet gateway xlolxlol = _ _ |rw ! o101
address
*SR1006 'tl)'lme for w_h|ch the TCP connection has| olxlol — _ _ | rw | 0060
een persistent
SR1007 | Ethernet transmission speed 0 - - R 0
SR1008 | Ethernet transmission mode 0 - - R 0
SR1100 High word in the value of the input x|olxl|o 0 _ _ 0
packet counter
SR1101 Low word in the value of the input x|olxl|o 0 _ _ R 0
packet counter

2-70

Chapter 2 Devices
Ol0(0|0
=== >
_ G155 |5 | OFF [STOP| RUN 2 9
SR Function X259 ¢ ¢ & =
ol mlT m| ON |RUN [STOP| & =
x| m =
0wl z w2
N N
SR1102 High word in the value of the input x|olxlo 0 _ _ R 0
octet counter
SR1103 Low word in the value of the input octet x|olx!o 0 _ _ R
counter
SR1104 High word in the value of the output x olxlol 0 _ _ R 0
packet counter
SR1105 Low word in value of the output packet | olxlol 0 _ _ R 0
counter
SR1106 High word in the value of the output x olxlol 0 _ _ R 0
octet counter
SR1107 Low word in the value of the output x olxlol 0 _ _ 0
octet counter
*SR1116| Email counter 0 - - R 0
*SR1117| Email error counter 0 - - R 0
TCP Socket 1—The local
* —_ —_ —_
SR1118 communication port R Rl RIW 0
TCP Socket 1—The high word in the
* —_ —_ —_
SR1119 remote IP address R Rl RIW 0
TCP Socket 1—The low word in the
* —_ —_ —_
SR1120 remote IP address R Rl RIW 0
*SR1121 TCP Socket 1—The remote xlolxlol - _ _ RIW 0
communication port
*SR1122 TCP Socket 1—The length of the data | | olxlol - _ ~ | rw 0
transmitted
TCP Socket 1—The high word in the
* —_ —_ —_
SR1123 address of the data transmitted *1epx|e RIW 0
. TCP Socket 1—The low word in the
SR1124| - ddress of the data transmitted “1o1*°] ~ B - |RW 0
*SR1125 TCP Socket 1—The length of the data | | olxlol - _ ~ | rw 0
received
. TCP Socket 1—The high word in the
SR1126| . jdress of the data received “1o1*°] ~ B - |RW 0
. TCP Socket 1—The low word in the
SR1127| - ddress of the data received “1o1*°] ~ B - |RW 0
. TCP Socket 1—The time for which the
SR1128| . hnection has been persistent “1°1>1°| ~ B - | RW 1000
*SR1129 TCP Socket 1—The received data x olxlol 0 _ _ R 0
counter
*SR1130 TCP Socket 1—The transmitted data x olxlol 0 _ _ R 0
counter
. TCP Socket 2—The local
SRI131| - ommunication port “1o1*°] ~ B - |RW 0
. TCP Socket 2—The high word in the
SR1132] emote IP address “1o1*(°] ~ - - |RW 0
. TCP Socket 2—The low word in the
SRI133| emote IP address “1°1*°] ~ B - |RW 0
TCP Socket 2—The remote
* —_ —_ —_
SR1134 communication port R Rl RIW 0

2-71

AH500 Programming Manual

remote IP address

OO0 00
2 2lale >
_ G & GG OFF |STOP| RUN § gh
SR Function XX fagifal 4 4 4 = S
ol/m|/®|/m| ON |RUN STOP| & =
n =z nz ®
N N
*SR1135 TCP Sc_>cket 2—The length of the data | olxlol — _ _ | rw 0
transmitted
TCP Socket 2—The high word in the
SR1136 address of the data transmitted “1o]|°| ~ h - |RW
TCP Socket 2—The low word in the
* —_ — —_
SR1137 address of the data transmitted ol e el RIW 0
*SR1138 TCP Socket 2—The length of the data | | | ol - B _ | rw 0
received
*SR1139 TCP Socket 2—The high word in the wlolxlol - B _ | rw 0
address of the data received
TCP Socket 2—The low word in the
* —_ — —_
SR1140 address of the data received ol e el RIW 0
*SR1141 TCP So_cket 2—The time f(_)rwh|ch the | olxlol — _ _ |rw | 1000
connection has been persistent
*SR1142 '(I;(E)ui tSecr)cket 2—The received data xlolxlol o _ _ R 0
*SR1143 '(I;(E)ui tSecr)cket 2—The transmitted data xlolxlol o _ _ R 0
*SR1144 TCP Soc_ket_3—The local x|olxl|o _ _ _ RIW 0
communication port
*SR1145 TCP Socket 3—The high word in the xlolxlol - B _ | rw 0
remote IP address
*SR1146 TCP Socket 3—The low word in the xlolxlol = B _ | rw 0
remote IP address
*SR1147 TCP Soc_ket.3—The remote xlolxlol = B _ | rw 0
communication port
*SR1148 TCP S(_)cket 3—The length of the data | olxlol - B ~_ | rw 0
transmitted
TCP Socket 3—The high word in the
* p— — —
SR1149 address of the data transmitted ol I el RIW 0
TCP Socket 3—The low word in the
* p— — —
SR1150 address of the data transmitted ol I el RIW 0
*SR1151 TCP. Socket 3—The length of the data. | olxlol - B ~_ | rw 0
received
*SR1152 TCP Socket 3—The hlgh_word in the xlolxlol = B ~_ | rw 0
address of the data received
*SR1153 TCP Socket 3—The low _/vord in the xlolxlol = B ~_ | rw 0
address of the data received
*SR1154 TCP Sopket 3—The time f(_)r which the | olxlol - B _ |rw ! 1000
connection has been persistent
*SR1155 '(I:'g:uiti(r)cket 3—The received data xlolxlol o _ _ R 0
*SR1156 Iguiéfcket 3—The transmitted data xlolxlol o _ _ R 0
*SR1157 TCP Soc_ket_4—The local wlolxlol — 3 _ | rw 0
communication port
*SR1158 TCP Socket 4—The high word in the xlolxlol = _ _ | rw 0

2-72

Chapter 2 Devices
OO0 0O
clelE|e >
_ A OFF |STOP| RUN § ‘-?h
SR Function LSS fagifal 4 4 4 o S
o m @/ m ON |RUN|STOP| & =
nlzonlz ®
N N
*SR1159 TCP Socket 4—The low word in the xlolxlol = _ ~ | rw 0
remote IP address
*SR1160 TCP Soc_ket_4—The remote xlolxlol - _ ~ | rw
communication port
*SR1161 TCP S(_)cket 4—The length of the data | olxlol - _ ~ | rw 0
transmitted
TCP Socket 4—The high word in the
* —_ —_ —_
SR1162 address of the data transmitted *1e1*|° RIW 0
TCP Socket 4—The low word in the
* —_ —_ —_
SR1163 address of the data transmitted *1e1*|° RIW 0
*SR1164 TCP_Socket 4—The length of the data | olxlol - _ ~ | rw 0
received
*SR1165 TCP Socket 4—The hlgh_word in the xlolxlol = _ ~ | rw 0
address of the data received
TCP Socket 4—The low word in the
* —_ —_ —_
SR1166 address of the data received *1e1*|° RIW 0
*SR1167 TCP So_cket 4—The time f(_)rwh|ch the | olxlol - _ _ |rw | 1000
connection has been persistent
*SR1168 Iguiéfcket 4—The received data xlolxlol 0 _ _ R 0
*SR1169 l’cc)iuliltse(r)cket 4—The transmitted data xlolx!o 0 B _ R 0
*SR1170 TCP Soc_ket.S—The local wlolxlol - B _ | rw 0
communication port
*SR1171 TCP Socket 5—The high word in the wlolxlol - B _ | rw 0
remote IP address
*SR1172 TCP Socket 5—The low word in the wlolxlol - B ~ | rw 0
remote IP address
*SR1173 TCP Soc_ket.S—The remote wlolxlol - B ~ | rw 0
communication port
*SR1174 TCP S(_)cket 5—The length of the data | olxlol - B ~ | rw 0
transmitted
TCP Socket 5—The high word in the
* — — —
SR1175 address of the data transmitted “1erxle RIW 0
TCP Socket 5—The low word in the
* — — —
SR1176 address of the data transmitted “1erxle RIW 0
*SR1177 TCP_Socket 5—The length of the data | olxlol - B ~ | rw 0
received
*SR1178 TCP Socket 5—The hlgh_word in the wlolxlol = B _ | rw 0
address of the data received
*SR1179 TCP Socket 5—The low _/vord in the xlolxlol = _ ~ | rw 0
address of the data received
*SR1180 TCP So_cket 5—The time f(_)rwh|ch the | olxlol - _ _ |rw | 1000
connection has been persistent
*SR1181 Iguiéfcket 5—The received data xlolxlol 0 _ _ R 0
*SR1182 Iguiéfcket 5—The transmitted data xlolxlol 0 _ _ R 0

2-73

AH500 Programming Manual

connection has been persistent

OO0 00
2 2lale >
_ G & GG OFF |STOP| RUN § gh
SR Function XX fagifal 4 4 4 = S
ol/m|/®|/m| ON |RUN STOP| & =
n =z nz ®
N N
*SR1183 TCP Soc_ket_6—The local xlolxlol = _ _ | rw 0
communication port
*SR1184 TCP Socket 6—The high word in the xlolxlol = _ _ | rw
remote IP address
*SR1185 TCP Socket 6—The low word in the xlolxlol = _ _ | rw 0
remote IP address
*SR1186 TCP Soc_ket_6—The remote xlolxlol = _ _ | rw 0
communication port
*SR1187 TCP S(_)cket 6—The length of the data | olxlol — _ _ | rw 0
transmitted
TCP Socket 6—The high word in the
* —_ — —_
SR1188 address of the data transmitted ol e el RIW 0
TCP Socket 6—The low word in the
* —_ — —_
SR1189 address of the data transmitted ol e el RIW 0
*SR1190 TCP_Socket 6—The length of the data | olxlol — _ _ | rw 0
received
*SR1191 TCP Socket 6—The hlgh_word in the xlolxlol = _ _ | rw 0
address of the data received
TCP Socket 6—The low word in the
* —_ — —_
SR1192 address of the data received ol e el RIW 0
*SR1193 TCP Sopket 6—The time f(_)rwh|ch the xlolxlol - B ~ | rw | 1000
connection has been persistent
*SR1194 '(I:'guljnitr)cket 6—The received data xlolxlol 0 B _ R 0
*SR1195 '(I:'guljnitr)cket 6—The transmitted data xlolxlol 0 B _ R 0
*SR1196 TCP Socket 7—The local wlolxlol — B _ | rw 0
communication port
*SR1197 TCP Socket 7—The high word in the xlolxlol = B ~_ | rw 0
remote IP address
*SR1198 TCP Socket 7—The low word in the xlolxlol = B ~_ | rw 0
remote IP address
*SR1199 TCP Socket 7—The remote wlolxlol — 3 _ | rw 0
communication port
*SR1200 TCP S(_)cket 7—The length of the data | olxlol - B ~_ | rw 0
transmitted
TCP Socket 7—The high word in the
* p— — —
SR1201 address of the data transmitted ol I el RIW 0
TCP Socket 7—The low word in the
* p— — —
SR1202 address of the data transmitted il I el RIW 0
*SR1203 TCP Socket 7—The length of the data | olxlol — _ _ | rw 0
received
*SR1204 TCP Socket 7—The hlgh_word in the xlolxlol = _ _ | rw 0
address of the data received
TCP Socket 7—The low word in the
* —_ — —_
SR1205 address of the data received ol e el RIW 0
*SR1206 TCP Socket 7—The time for which the | olxlol — _ _ |rw | 1000

2-74

Chapter 2 Devices
Ol0(0|0
=== >
_ $1515 1|5 | OFF |[STOP| RUN 2 9
SR Function LSS ,ﬁ ,§ 4 4 4 o g,"
o m @/ m ON |RUN|STOP| & =
nlzlwnz w
N N
*SR1207 TCP Socket 7—The received data xlolxlol 0 _ _ R 0
counter
*SR1208 TCP Socket 7—The transmitted data xlolxlol 0 _ _ R
counter
*SR1209 TCP Soc_ket_8—The local xlolxlol = _ ~ | rw 0
communication port
*SR1210 TCP Socket 8—The high word in the xlolxlol = _ ~ | rw 0
remote IP address
*SR1211 TCP Socket 8—The low word in the xlolxlol - _ ~ | rw 0
remote IP address
*SR1212 TCP Soc_ket_8—The remote xlolxlol = _ ~ | rw 0
communication port
*SR1213 TCP S(_)cket 8—The length of the data | olxlol - _ ~ | rw 0
transmitted
TCP Socket 8—The high word in the
* —_ —_ —_
SR1214 address of the data transmitted *1epx|e RIW 0
TCP Socket 8—The low word in the
* —_ —_ —_
SR1215 address of the data transmitted o N Rl RIW 0
*SR1216 TCP_Socket 8—The length of the data | olxlol - _ ~ | rw 0
received
*SR1217 TCP Socket 8—The hlgh_word in the xlolxlol - B _ RIW 0
address of the data received
*SR1218 TCP Socket 8—The low _/vord in the wlolxlol - B _ | rw 0
address of the data received
*SR1219 TCP Sopket 8—The time f(_)r which the | olxlol - B _ | rw ! 1000
connection has been persistent
*SR1220 TCP Socket 8—The received data xlolxlol 0 B _ R 0
counter
*SR1221 TCP Socket 8—The transmitted data x olxlol 0 B _ R 0
counter
*SR1222 UDP Soc_ketl 1—The local wlolxlol - B ~ | rw 0
communication port
*SR1223 UDP Socket 1—The high word in the wlolxlol - B ~ | rw 0
remote IP address
*SR1224 UDP Socket 1—The low word in the wlolxlol - B ~ | rw 0
remote IP address
*SR1225 UDP Soc_ketl 1—The remote wlolxlol - B ~ | rw 0
communication port
*SR1226 UDP Spcket 1—The length of the data | | olxlol - B _ | rw 0
transmitted
UDP Socket 1—The high word in the
* —_ —_ —_
SR1227 address of the data transmitted o N Rl RIW 0
UDP Socket 1—The low word in the
* —_ —_ —_
SR1228 address of the data transmitted o N Rl RIW 0
*SR1229 UDP Socket 1—The length of the data | | | ol — B _ | rw 0
received
UDP Socket 1—The high word in the
* —_ —_ —_
SR1230 address of the data received *1epx|e RIW 0

2-75

AH500 Programming Manual

address of the data received

0000
s >
_ G & GG OFF |STOP| RUN § gh

SR Function XX fagifal 4 4 4 = S
ol/m|/®|/m| ON |RUN STOP| & =
n =z nz ®
N N

UDP Socket 1—The low word in the
* —_ —_ —_
SR1231 address of the data received *1e1x|e RIW 0
*SR1232 (L:JOELI;tif)cket 1—The received data xlolxlol o _ _ R
*SR1233 (L:JOELI;tif)cket 1—The transmitted data | olxlol o0 _ _ R 0
*SR1234 UDP Sogket_ 2—The local xlolxlol = _ _ | rw 0
communication port

*SR1235 UDP Socket 2—The high word in the xlolxlol = _ _ | rw 0
remote IP address

*SR1236 UDP Socket 2—The low word in the xlolxlol = _ _ | rw 0
remote IP address

*SR1237 uUbP Sogket_ 2—The remote x|olxl|o _ _ _ RIW 0
communication port

*SR1238 UDP Spcket 2—The length of the data | olxlol — _ _ | rw 0
transmitted
UDP Socket 2—The high word in the

* —_ —_ —_

SR1239 address of the data transmitted *1e1x|e RIW 0

UDP Socket 2—The low word in the

* —_ —_ —_

SR1240 address of the data transmitted o N Rl RIW 0

*SR1241 UDP_ Socket 2—The length of the data xlolxlol - B _ | rw 0
received

*SR1242 UDP Socket 2—The h|gh_ word in the xlolxlol = B _ | rw 0
address of the data received

*SR1243 UDP Socket 2—The low yvord in the xlolxlol = B _ | rw 0
address of the data received

*SR1244 l(.:JOIDuEtS?Cket 2—The received data xlolxlol 0 B _ R 0

*SR1245 l(.:JOIDuEtS?Cket 2—The transmitted data | olxlol 0 B _ R 0

*SR1246 UDP Soc_:ketl 3—The local xlolxlol = B ~_ | rw 0
communication port

*SR1247 UDP Socket 3—The high word in the xlolxlol = B ~_ | rw 0
remote IP address

*SR1248 UDP Socket 3—The low word in the xlolxlol = B ~_ | rw 0
remote IP address

*SR1249 UDP Soc_:ketl 3—The remote xlolxlol = B ~_ | rw 0
communication port

*SR1250 UDP S_ocket 3—The length of the data | olxlol - B _ | rw 0
transmitted
UDP Socket 3—The high word in the

* —_ —_ —_

SR1251 address of the data transmitted “1e1x|e RIW 0

UDP Socket 3—The low word in the

* —_ —_ —_

SR1252 address of the data transmitted o N Rl RIW 0
*SR1253 ubP Socket 3—The length of the data | olxlol — _ _ | rw 0

received
*SR1254 UDP Socket 3—The high word in the xlolxlol = _ _ | rw 0

2-76

Chapter 2 Devices
Ol0(0|0
=== >
_ A OFF |STOP| RUN § ‘-?h
SR Function LSS fagifal 4 4 4 o S
o m @/ m ON |RUN|STOP| & =
nlzlwnz w
N N
*SR1255 UDP Socket 3—The low yvord in the xlolxlol = _ ~ | rw 0
address of the data received
*SR1256 UDP Socket 3—The received data xlolxlol 0 _ _ R
counter
*SR1257 UDP Socket 3—The transmitted data | olxlol o _ _ R 0
counter
*SR1258 UDP Sogket_4—The local xlolxlol = _ ~ | rw 0
communication port
*SR1259 UDP Socket 4—The high word in the xlolxlol - _ ~ | rw 0
remote IP address
*SR1260 UDP Socket 4—The low word in the xlolxlol = _ ~ | rw 0
remote IP address
*SR1261 uUbP Sogket_4—The remote x|olxlo _ _ _ RIW 0
communication port
*SR1262 UDP Spcket4—The length of the data | olxlol - _ ~ | rw 0
transmitted
UDP Socket 4—The high word in the
* —_ —_ —_
SR1263 address of the data transmitted o N Rl RIW 0
UDP Socket 4—The low word in the
* —_ —_ —_
SR1264 address of the data transmitted o N Rl RIW 0
*SR1265 UDP_ Socket 4—The length of the data xlolxlol - B _ RIW 0
received
*SR1266 UDP Socket 4—The h|gh_word in the wlolxlol - B _ | rw 0
address of the data received
*SR1267 UDP Socket 4—The low yvord in the wlolxlol - B _ | rw 0
address of the data received
*SR1268 UDP Socket 4—The received data x olxlol 0 B _ R 0
counter
*SR1269 UDP Socket 4—The transmitted data | olxlol 0 B _ R 0
counter
*SR1270 UDP Soc_:ket.S—The local wlolxlol - B ~ | rw 0
communication port
*SR1271 UDP Socket 5—The high word in the wlolxlol - B ~ | rw 0
remote IP address
*SR1272 UDP Socket 5—The low word in the wlolxlol - B ~ | rw 0
remote IP address
*SR1273 UDP Soc_:ket.S—The remote wlolxlol - B ~ | rw 0
communication port
*SR1274 UDP S_ocket 5—The length of the data | olxlol - B _ | rw 0
transmitted
UDP Socket 5—The high word in the
* —_ —_ —_
SR1275 address of the data transmitted o N Rl RIW 0
UDP Socket 5—The low word in the
* —_ —_ —_
SR1276 address of the data transmitted o N Rl RIW 0
*SR1277 ubP Socket 5—The length of the data | olxlol - _ ~ | rw 0
received
*SR1278 UDP Socket 5—The h|gh_word in the xlolxlol = _ ~ | rw 0
address of the data received

2-77

AH500 Programming Manual

address of the data received

0000
=== >
_ G & GG OFF |STOP| RUN § gh
SR Function XX fagifal 4 4 4 = S
ol/m|/®|/m| ON |RUN STOP| & =
n =z nz ®
N N
*SR1279 UDP Socket 5—The low yvord in the xlolxlol = _ _ | rw 0
address of the data received
*SR1280 (l:JODuI;ti:)cket 5—The received data xlolxlol o _ _ R
*SR1281 (l:JODuI;ti:)cket 5—The transmitted data | olxlol o0 _ _ R 0
*SR1282 uUbP Sogket_ 6—The local xlolxlol = _ _ RIW 0
communication port
*SR1283 UDP Socket 6—The high word in the xlolxlol = _ _ | rw 0
remote IP address
*SR1284 UDP Socket 6—The low word in the xlolxlol = _ _ | rw 0
remote IP address
*SR1285 UDP Sogket_ 6—The remote xlolxlol = _ _ | rw 0
communication port
*SR1286 UDP Spcket 6—The length of the data | olxlol — _ _ | rw 0
transmitted
UDP Socket 6—The high word in the
* —_ —_ —_
SR1287 address of the data transmitted *1e1x|e RIW 0
UDP Socket 6—The low word in the
* —_ —_ —_
SR1288 address of the data transmitted o N Rl RIW 0
*SR1289 UDP_ Socket 6—The length of the data xlolxlol - B _ | rw 0
received
*SR1290 UDP Socket 6—The h|gh_ word in the xlolxlol = B _ | rw 0
address of the data received
*SR1291 UDP Socket 6—The low yvord in the xlolxlol = B _ | rw 0
address of the data received
*SR1292 l(.:JOIDuEtS?Cket 6—The received data xlolxlol 0 B _ R 0
*SR1293 l(.:JOIDuEtS?Cket 6—The transmitted data | olxlol 0 B _ R 0
*SR1294 UDP Soc_:ketl 7—The local xlolxlol = B ~_ | rw 0
communication port
*SR1295 UDP Socket 7—The high word in the xlolxlol = B ~_ | rw 0
remote IP address
*SR1296 UDP Socket 7—The low word in the xlolxlol = B ~_ | rw 0
remote IP address
*SR1297 UDP Soc_:ketl 7—The remote xlolxlol = B ~_ | rw 0
communication port
*SR1298 UDP S_ocket 7—The length of the data | olxlol - B _ | rw 0
transmitted
UDP Socket 7—The high word in the
* —_ —_ —_
SR1299 address of the data transmitted “1e1x|e RIW 0
UDP Socket 7—The low word in the
* —_ —_ —_
SR1300 address of the data transmitted o N Rl RIW 0
*SR1301 ubP Socket 7—The length of the data | olxlol — _ _ | rw 0
received
*SR1302 UDP Socket 7—The high word in the xlolxlol = _ _ | rw 0

2-78

Chapter 2 Devices

OO0 0O
T|(U| T | T >
$15151|5 | OFF [STOP|RUN | = 9

SR Function XIX|X|X| & | 8 8|z g
5!f|®m|m| ON |RUN STOP 5 =
nlzonlz ®
N N

UDP Socket 7—The low word in the
* — —_ —_
SR1303 address of the data received *1epx|e RIW 0
*SR1304 (l:JO[i::tgrOCKEt 7—The received data x olxlol 0 _ _ R
*SR1305 (l:JODuI;ti?)cket 7—The transmitted data | | | ol 0 _ _ R 0
UDP Socket 8—The local

* — —_ —_

SR1306 communication port “1orxe RIW 0
UDP Socket 8—The high word in the

* — —_ —_

SR1307 remote IP address o N Rl RIW 0
UDP Socket 8—The low word in the

* — —_ —_

SR1308 remote IP address o N Rl RIW 0
UDP Socket 8—The remote

* — —_ —_

SR1309 communication port “1orxe RIW 0

*SR1310 #Enzriﬁfekgt 8—The length of the data | olxlol - _ ~ | rw 0
UDP Socket 8—The high word in the
* — —_ —_
SR1311 address of the data transmitted o N Rl RIW 0
UDP Socket 8—The low word in the
* — —_ —_

SR1312 address of the data transmitted o N Rl RIW 0
*SR1313 tJeIz;VSe%cket 8—The length of the data x| olx!o _ _ _ RIW 0
. UDP Socket 8—The high word in the

SR1314| - ddress of the data received “1o1*°] ~ B - |RW 0
. UDP Socket 8—The low word in the

SRI315| - ddress of the data received “1o1*°] ~ B - |RW 0
*SR1316 go%ztgfc;ket 8—The received data x olxlol 0 _ _ R 0
*SR1317 go%ztgfc;ket 8—The transmitted data | olxlol 0 _ _ R 0
*SR1318| Socket input counter X x| o 0 - - R 0
*SR1319| Socket output counter oflx|o 0 - - R 0
*SR1320| Socket error counter x|o|x|o 0 - - R 0
*SR1329 |Mmain backplane ID olo|o|o| = - - | RW 0
*SR1330 |Main slot ID olo|o|ol| = - - | RW 0
*SR1331 |RTU number ololo|ol| = - - |RW 0
*SR1332| Extension backplane ID olo|lo|o]| -= - - R/W 0
*SR1333| Extension slot number olo|of|o - - - R/W 0
*SR1334| Port number olo|o|o| - - - R/W 0
*SR1335 PLC Link cycle olo|x|x| - - - R 0

Modbus connection cycle of COM1 x|x|o|o| = - - R 0
Number of slaves linked in the PLC
Link elex(x| -~ | - |R| O

SR1336 Number of slaves connected to COM1 wlxlolol - _ _ R 0

by means of Modbus

2-79

AH500 Programming Manual

slave 1~32 in the PLC Link

0000
T U |TU|T >
$15151|5 | OFF |STOP| RUN = 9
SR Function XX XX 8 4 4 = é’h
5 m|@|m ON |RUN STOP| & e
hlzwnlz ©
N N
Time for which the data has been
*SR1337 exchanged in the PLC Link N Bl e B - | RW 0
Number of times COM1 exchanges wlxlolol — _ _ | rw
data with a slave by Modbus
*SR1338 Restricted time of the PLC Link which ololxlx| = _ _ | rw 0
is defined by users
:;E%rVSL(k)f sending the command in the ololxlx| = _ _ | rw 1
*SR1339 .
Interval of COM1’s sending a wlxlolol — _ _ | rw 1
command by means of Modbus
Device type in slave 1~32 from which
the data is read in the PLC Link.
X . olo| x| x - - - R/W 0
*SR1340 (O: register; 1: output coil; others: not
| support)
SR1371 Device type in slave 1~32 from which
COML1 reads data by Modbus (O: wlxlolol — B ~_ | rw 0
register; 1: output coil; others: not
supported)
Device type in slave 1~32 into which
the data is written in the PLC Link ololxlxl — 3 _ | rw 0
*SR1372 (O: register; 1: output coil; others: not
l support)
SR1403 Device type in slave 1~32 to which
COML1 writes data by Modbus (0: wlxlolol — _ _ | rw 0
register; 1: output coil; others: not
supported)
Device address into which the data is
*SR1404 | read from slave 1~32 inthe PLC Link | ° | © | * | *| ~ - - | RW 0
! Starting device address to which
SR1467 | COM1 reads data from slave 1~32by | x | x | o | o | - - - | RW 0
Modbus
Device address from which the data is ololxlx| - _ _ RIW 0
*SR1468 | written into slave 1~32 in the PLC Link
1 Starting device address from which
SR1531 | COM1 writes data to slave 1~32 by x|x|o|o| = - - | RW 0
Modbus
Device address in slave 1~32 from ololxlx| = _ _ RIW 0
*SR1532| which the data is read in the PLC Link
| Starting communication address in
SR1595 | slave 1~32 from which COML1 reads x|x|o|o| = - - R/W 0
data by Modbus
Device address in slave 1~32 into
*SR1596 \Il_v'hilfh the data is written in the PLC o|lo|x|x| = - - | RW 0
in
SRllGSg Starting communicationevice address
in slave 1~32 to which COM1 writes x|x|o|o| = - - | RIW 0
data by Modbus
*SR1660 Number of data which is read from ololsxlxl — B _ | rw 0

2-80

Chapter 2 Devices

Ol0(0|0
T|(U| T | T >
$15151|5 | OFF [STOP|RUN | = 9
SR Function XIX|X|X| & | 8 8|z g
5!f|®m|m| ON |RUN STOP 5 =
nlzonlz ®
N N
l Length of the data which COM1 reads
SR1691 | from slave 1~32 by Modbus “1X1°1°] - a - |RW 0
* Number of data which is written into
SR1692 slave 1~32 in the PLC Link N Bl e B - |RW 0
Length of the data which COM1 writes _ _ _
SR1723 to slave 1~32 by Modbus *1*1°° RIW 0
*SR1724| Type of slave 1~32 in the PLC Link
! olo| x| x - - - R/W 0
SR1755
Address of slave 1~32 in the PLC Link
. o|lo|x|x - - - R/W 1
SR1756 30
SR1l787 Address of slave 1~32 for the Modbus 1
connection of COM1 x|x|o|o| -= - - R/W 1
32

IP address of block 1 in the Ether Link
*SR1792| (SR1792 and SR1793)

! l x| o - -] -|R 0
SR1823 | IP address of block 16 in the Ether Link
(SR1822 and SR1823)

IP address of block 17 in the Ether Link
*SR1824 | (SR1824 and SR1825)

l ! oot x| x| - - - R 0
SR1855 | IP address of block 32 in the Ether Link
(SR1854 and SR1855)

IP address of block 33 in the Ether Link
*SR1856| (SR1856 and SR1857)

l ! 0?0 x| x| - - - R 0
SR1919 | IP address of block 64 in the Ether Link
(SR1918 and SR1919)

IP address of block 65 in the Ether Link
*SR1920| (SR1920 and SR1921)

! l %% x| x| = - - R 0
SR2047 | IP address of block 128 in the Ether
Link (SR2046 and SR2047)

Note: As to the SR numbers marked “*”, users can refer to the additional remarks on special
auxiliary relays/special data registers.

*1 : Only available for AHCPU530-EN, AHCPU520-EN, AHCPU510-EN, AHCPU530-RS2,
AHCPU520-RS2, and AHCPU510-RS2
*2 : Only available for AHCPU530-EN, AHCPU520-EN, AHCPU530-RS2, and AHCPU520-RS2

*3 . Only available for AHCPU530-EN and AHCPU530-RS2
*4 . Only available for AHCPU531-EN and AHCPU521-EN
*5 . Only available for AHCPU531-EN

2-81

AH500 Programming Manual

2.2.15 Refresh Time of Special Data Registers

LITC')ted Special data register Refresh time
SR0O~SR2 The register is refreshed when the program is executed in error.
SR4 SR4 is refreshed when there is a grammar check error
The register is refreshed when the program is downloaded to the
SR5~SR6 PLC, or when the PLC is suppied with power and starts to run for
the first time.
SR8 SR8 is refreshed when there is a watchdog timer error.
SR40~SR161 The register is refreshed when an error occurs.

SR201~SR216

Users set the value and clear it.

SR220~SR226

The register is refreshed every scan cycle.

SR227~SR308

The register is refreshed when the program is downloaded to the
PLC.

SR309~SR390

The register is refreshed when the status of the PLC changes.

SR391~SR397

The register is refreshed every scan cycle.

SR407

SR407 is refreshed every second.

SR408

SR408 is refreshed whenever the instruction END is executed.

SR409~SR410

Users set the value and cleatr it.

SR411~SR416

The register is refreshed whenever the instruction END is
executed.

SR453

SR453 is refreshed when an error occurs.

SR621~SR622

Users set the value and clear it.

SR623~SR638

The register is refreshed when the instruction IMASK is executed.

SR655~SR730

The register is refreshed when an error occurs in the I/O module.

SR731

Once a low 24V voltage is detected, the status of the PLC changes
and the register will also be refreshed.

SR1000~SR1006

Users set the value and clear it.

SR1007

Ethernet transmission speed

SR1008

Ethernet transmission mode

SR1100~SR1117

The register is refreshed every scan cycle.

SR1118~SR1128

The register is refreshed when the parameter is downloaded to the
PLC.

SR1129~SR1130

The register is refreshed when the parameter is downloaded to the
PLC, or when the PLC is supplied with power.

SR1131~SR1141

The register is refreshed when the parameter is downloaded to the
PLC.

SR1142~SR1143

The register is refreshed when the parameter is downloaded to the
PLC, or when the PLC is supplied with power.

SR1144~SR1154

The register is refreshed when the parameter is downloaded to the
PLC.

SR1155~SR1156

The register is refreshed when the parameter is downloaded to the
PLC, or when the PLC is supplied with power.

SR1157~SR1167

The register is refreshed when the parameter is downloaded to the
PLC.

SR1168~SR1169

The register is refreshed when the parameter is downloaded to the
PLC, or when the PLC is supplied with power.

SR1170~SR1180

The register is refreshed when the parameter is downloaded to the
PLC.

SR1181~SR1182

The register is refreshed when the parameter is downloaded to the
PLC, or when the PLC is supplied with power.

SR1183~SR1193

The register is refreshed when the parameter is downloaded to the

2-82

Chapter 2 Devices

L'T(')ted Special data register Refresh time
PLC.
N The register is refreshed when the parameter is downloaded to the
SR1194~SR1195 PLC, or when the PLC is supplied with power.
SR1196~SR1206 ;Eecregster is refreshed when the parameter is downloaded to the
N The register is refreshed when the parameter is downloaded to the
SR1207~SR1208 PLC, or when the PLC is supplied with power.
SR1209~SR1219 'Fl;tljecregster is refreshed when the parameter is downloaded to the
_ The register is refreshed when the parameter is downloaded to the
SR1220~-SR1221 PLC, or when the PLC is supplied with power.
SR1222~SR1231 ;EErengter is refreshed when the parameter is downloaded to the
_ The register is refreshed when the parameter is downloaded to the
SR1232~SR1233 PLC, or when the PLC is supplied with power.
SR1234~SR1243 'Fr)rll(ca:regwter is refreshed when the parameter is downloaded to the
_ The register is refreshed when the parameter is downloaded to the
SR1244~SR1245 PLC, or when the PLC is supplied with power.
SR1246~SR1255 'Fr)rll(éregster is refreshed when the parameter is downloaded to the
_ The register is refreshed when the parameter is downloaded to the
SR1256~SR1257 PLC, or when the PLC is supplied with power.
SR1258~SR1267 'Fr)rll(ca:regwter is refreshed when the parameter is downloaded to the
N The register is refreshed when the parameter is downloaded to the
SR1268~SR1269 PLC, or when the PLC is supplied with power.
SR1270~SR1279 ;E(Ca:regster is refreshed when the parameter is downloaded to the
_ The register is refreshed when the parameter is downloaded to the
SR1280~-SR1281 PLC, or when the PLC is supplied with power.
SR1282~SR1291 ;Eecregster is refreshed when the parameter is downloaded to the
N The register is refreshed when the parameter is downloaded to the
SR1292~SR1293 PLC, or when the PLC is supplied with power.
SR1294~SR1303 ;Eecregster is refreshed when the parameter is downloaded to the
N The register is refreshed when the parameter is downloaded to the
SR1304~SR1305 PLC, or when the PLC is supplied with power.
SR1306~SR1315 ;Eecregster is refreshed when the parameter is downloaded to the
_ The register is refreshed when the parameter is downloaded to the
SR1316~SR1320 PLC, or when the PLC is supplied with power.
SR1329~SR1334 | Users set the value and clear it.
The register is refreshed every scan cycle when the PLC Link is
AH5%0
SR1335~SR1336 |enabled.
AH5x1 Modbus connection cycle of COM1

SR1337~SR1787

Users set the value and clear it.

SR1792~SR2047

The register is refreshed every scan cycle.

Note: The models AH5x0 and AH5x1 shown in the column of “Limited to” refer to
AHCPU500/510/520/530 and AHCPU511/521/531 respectively.

2-83

AH500 Programming Manual

2.2.16 Additional Remarks on Special Auxiliary Relays and

4.

Special Data Registers

The scan timeout timer
® SM8/SR8

When a scan timeout occurs during the execution of the program, the error LED indicator on
the PLC is ON all the time, and SM8 is ON.

The content of SR8 is the step address at which the watchdog timer is ON.
Clearing the warning light
® SM22
If SM22 is ON, the error log and the warning light will be cleared.
The real-time clock
® SM220, SR220~SR226, and SR391~SR397
SM220: Calibrating the real-time clock within +30 seconds
When SM220 is switched from OFF to ON, the real-time clock is calibrated.
If the value of the second in the real-time clock is within the range between 0 and
29, the value of the minute is fixed, and the value of the second is cleared to zero.
If the value of the second in the real-time clock is within the range between 30 and
59, the value of the minute increases by one, and the value of the second is cleared
to zero.
The corresponding functions and values of SR220~SR226 and SR391~SR397 are as
follows.

Device
Binary-coded Decimal | Function Value
decimal system| system

SR220 SR391 Year 00~99 (A.D.)
SR221 SR392 Month 1~12
SR222 SR393 Day 1~31
SR223 SR394 Hour 0~23
SR224 SR395 Minute 0~59
SR225 SR396 Second 0~59
SR226 SR397 Week 1~7

SR391~SR397 correspond to SR220~ SR226. The difference between SR220~ SR226 and
SR391~SR397 lies in the fact that the former adopts the binary-coded decimal while the
latter adopts the decimal system. For example, December is represented as 12 in SR392
while it is represented as 12 in the binary-coded decimal.
Please refer to section 6.17 for more information related to the real-time clock.
The functions related to communication
® SM96~SM107, SM209~SM212, SR201~SR202, and SR209~SR216
SR215 and SR216 are used to record the interface code of the communication port on the
PLC. The functions represented by the interface codes are as follows.
Code 0 1 2
Function RS232 RS485 RS422
When the interface of the communication port on the PLC is RS485, RS232, or RS422,
SR209 records the communication format of COM1 on the PLC, and SR212 records the
communication format of COM2 on the PLC. The setting values of the communication

protocols are shown in the following table. Please refer to section 6.19 for more information
related to the communication instructions.

b0 Data length 7 (value=0) | 8 (value=1)
00 > | None
g; Parity bits 01 : | Odd parity bits
10 : | Even parity bits
b3 Stop bit 1 bit (value=0) | 2 bits (value=1)

2-84

Chapter 2 Devices

b4 0001 | (16#1) |: | 4800

b5 0010 | (16#2) |: | 9600
b6 0011 | (16#3) |: | 19200
b7 0100 | (16#4) |: | 38400

0101 | (16#5) |: | 57600

0110 | (16#6) |: | 115200

0111 | (16#7) |: | 260400

RS-232 does not
support the baud rate.

1000 | (16#8) |: | 520800

RS-232 does not
support the baud rate.

1001 | (16#9) : | 1041600

RS-232 does not
support the baud rate.

b8~b15 | Undefined (reserved)

5. Clearing the contents of the device
® SM204/SM205
Device number Device which is cleared
The non-latched areas in the input relays, the output relays, the
stepping relays, the auxiliary relays, and the link registers are
cleared.
SM204 The non-latched areas in the timers, the counters, and the
All non-latched areas are |32-bit counters are cleared.
cleared. The non-latched areas in the data registers and the index
registers are cleared.
It takes 530 milliseconds to clear the device. The watchdog
timer does not act during this period of time.
The latched areas in the timers, counters, and 32-bit counters
SM205 are cleared. N
The latched auxiliary relays are cleared.
All latched areas are .
cleared. The latched data registers are cleared.
It takes 30 milliseconds to clear the device. The watchdog timer
does not act during this period of time.
Please refer to section 2.1.4 for more information related to the latched areas in the device
range.
6. The errorlog in the PLC
® SR40~SR161

SR40: The maximum number of error logs which are stored in SR40 is 20. Every error log
occupies 6 registers.

SR41: The error log pointer points to the latest error log. When an error occurs, the value of
the error log pointer increases by one. The range of pointer values is 0~19. For
example, the error log pointer points to the fourth error log when the value in SR41 is
3.

The time when the errors occur and the positions where the errors occur are recorded in

SR42~SR161. The corresponding functions of these data registers are as follows.

number| Rack Slot Module | Error Time when the error occurs

ID code Year | Month Day Hour | Minute |Second

1 $R42 SR42 SR43 | SR44 SR45 SR45 SR46 SR46 SR47 SR47
High byte | Low byte High byte | Low byte | High byte | Low byte | High byte | Low byte

2 SR48 SR48 SR49 | SR50 SR51 SR51 SR52 SR52 SR53 SR53
High byte | Low byte High byte | Low byte | High byte | Low byte | High byte | Low byte

3 SR54 SR54 SR55 | SR56 SR57 SR57 SR58 SR58 SR59 SR59
High byte | Low byte High byte | Low byte | High byte | Low byte | High byte | Low byte

4 SRGO SR60 SR61 | SR62 $R63 SR63 SR64 SR64 SR65 SR65
High byte | Low byte High byte | Low byte | High byte | Low byte | High byte | Low byte

5 SR66 SR66 SR67 | SR68 SR69 SR69 SR?O SR70 SR71 SR71
High byte | Low byte High byte | Low byte | High byte | Low byte | High byte | Low byte

2-85

AH500 Programming Manual

Module| Error Time when the error occurs
Number | Rack Slot i
ID code | Year | Month Day Hour | Minute |Second
6 SR72 SR72 SR73 | SR74 SR75 SR75 SR76 SR76 SR77 SR77
High byte | Low byte High byte | Low byte | High byte | Low byte | High byte | Low byte
7 SR78 SR78 SR79 | SR80 SR81 SR81 SR82 SR82 SR83 SR83
High byte | Low byte High byte | Low byte | High byte | Low byte | High byte | Low byte
8 SR84 SR84 SR85 | SR86 SR87 SR87 SR88 SR88 SR89 SR89
High byte | Low byte High byte | Low byte | High byte | Low byte | High byte | Low byte
9 SR90 SR90 SR91 | SR9? SR93 SR93 SR94 SR94 SR95 SR95
High byte | Low byte High byte | Low byte | High byte | Low byte | High byte | Low byte
10 SR96 SR96 SR97 | SR9s SR99 SR99 SR100 | SR100 | SR101 | SR101
High byte | Low byte High byte | Low byte | High byte | Low byte | High byte | Low byte
SR102 | SR102 SR105 | SR105 | SR106 | SR106 | SR107 | SR107
11 High byte | Low byte SR103 | SR104 High byte | Low byte | High byte | Low byte | High byte | Low byte
SR108 | SR108 SR111 | SR111 | SR112 | SR112 | SR113 | SR113
12 High byte | Low byte SR109 | SR110 High byte | Low byte | High byte | Low byte | High byte | Low byte
SR114 | SR114 SR117 | SR117 | SR118 | SR118 | SR119 | SR119
13 High byte | Low byte SR115 | SR116 High byte | Low byte | High byte | Low byte | High byte | Low byte
SR120 | SR120 SR123 | SR123 | SR124 | SR124 | SR125 | SR125
14 High byte | Low byte SR121 | SR122 High byte | Low byte | High byte | Low byte | High byte | Low byte
SR126 | SR126 SR129 | SR129 | SR130 | SR130 | SR131 | SR131
15 High byte | Low byte SR127 | SR128 High byte | Low byte | High byte | Low byte | High byte | Low byte
SR132 | SR132 SR135 | SR135 | SR136 | SR136 | SR137 | SR137
16 High byte | Low byte SR133 | SR134 High byte | Low byte | High byte | Low byte | High byte | Low byte
SR138 | SR138 SR141 | SR141 | SR142 | SR142 | SR143 | SR143
17 High byte | Low byte SR139 | SR140 High byte | Low byte | High byte | Low byte | High byte | Low byte
SR144 | SR144 SR147 | SR147 | SR148 | SR148 | SR149 | SR149
18 High byte | Low byte SR145 | SR146 High byte | Low byte | High byte | Low byte | High byte | Low byte
SR150 | SR150 SR153 | SR153 | SR154 | SR154 | SR155 | SR155
19 High byte | Low byte SR151 | SR152 High byte | Low byte | High byte | Low byte | High byte | Low byte
SR156 | SR156 SR159 | SR159 | SR160 | SR160 | SR161 | SR161
20 High byte | Low byte SR157 | SR158 High byte | Low byte | High byte | Low byte | High byte | Low byte

7. The download log in the PLC
® SR227~SR308

SR227: The maximum number of download logs which are stored in SR227 is 20. Every
download log occupies 4 registers. The download actions which are recorded are
numbered, as shown in the following table.

Download action Number
Downloading the program 1
Downloading the setting of the PLC 2
Downloading the module table 3

SR228: The download log pointer points to the latest download log. When a download
action is executed, the value of the download log pointer increases by one. The
range of pointer values is 0~19. For example, the download log pointer points to the
fourth download log when the value in SR228 is 3.

The time when the downloading actions occur and the action numbers are recorded in

SR229~SR30. The corresponding functions of these data registers are as follows.

N— Action *Time when the download action occurs

number Year Month Day Hour Minute Second

1 SR229 SR230 SR230 SR231 SR231 SR232 SR232
High byte Low byte High byte Low byte High byte Low byte

2 SR233 SR234 SR234 SR235 SR235 SR236 SR236
High byte Low byte High byte Low byte High byte Low byte

3 SR237 SR238 SR238 SR239 SR239 SR240 SR240
High byte Low byte High byte Low byte High byte Low byte

4 SR241 SR242 SR242 SR243 SR243 SR244 SR244
High byte Low byte High byte Low byte High byte Low byte

5 SR245 SR246 SR246 SR247 SR247 SR248 SR248
High byte Low byte High byte Low byte High byte Low byte

2-86

Chapter 2 Devices
N Action *Time when the download action occurs

number Year Month Day Hour Minute Second

6 SR249 SR250 SR250 SR251 SR251 SR252 SR252
High byte Low byte High byte Low byte High byte Low byte

7 SR253 SR254 SR254 SR255 SR255 SR256 SR256
High byte Low byte High byte Low byte High byte Low byte

8 SR257 SR258 SR258 SR259 SR259 SR260 SR260
High byte Low byte High byte Low byte High byte Low byte

9 SR261 SR262 SR262 SR263 SR263 SR264 SR264
High byte Low byte High byte Low byte High byte Low byte

10 SR265 SR266 SR266 SR267 SR267 SR268 SR268
High byte Low byte High byte Low byte High byte Low byte

11 SR269 SR270 SR270 SR271 SR271 SR272 SR272
High byte Low byte High byte Low byte High byte Low byte

12 SR273 SR274 SR274 SR275 SR275 SR276 SR276
High byte Low byte High byte Low byte High byte Low byte

13 SR277 SR278 SR278 SR279 SR279 SR280 SR280
High byte Low byte High byte Low byte High byte Low byte

14 SR281 SR282 SR282 SR283 SR283 SR284 SR284
High byte Low byte High byte Low byte High byte Low byte

15 SR285 SR286 SR286 SR287 SR287 SR288 SR288
High byte Low byte High byte Low byte High byte Low byte

16 SR289 SR290 SR290 SR291 SR291 SR292 SR292
High byte Low byte High byte Low byte High byte Low byte

17 SR293 SR294 SR294 SR295 SR295 SR296 SR296
High byte Low byte High byte Low byte High byte Low byte

18 SR297 SR298 SR298 SR299 SR299 SR300 SR300
High byte Low byte High byte Low byte High byte Low byte

19 SR301 SR302 SR302 SR303 SR303 SR304 SR304
High byte Low byte High byte Low byte High byte Low byte

20 SR305 SR306 SR306 SR307 SR307 SR308 SR308
High byte Low byte High byte Low byte High byte Low byte

*Time when the download action occurs: The data is stored as the values in the
binary-coded decimal. The range of values is as follows.

Function Value
Year 00~99 (A.D.)
Month 01~12
Day 01~31
Hour 00~23
Minute 00~59
Second 00~59

The PLC status change log

® SR309~SR390
SR309: The maximum number of PLC status change logs which are stored in SR309 is 20.
Every PLC status change log occupies 4 registers. The PLC status change actions
which are recorded are numbered, as shown in the following table.

2-87

AH500 Programming Manual

PLC status change Number

The PLC is supplied with power. 1
The PLC is disconnected. 2
The PLC starts to run. 3
The PLC stops running. 4
Default setting of the PLC 5

(1. RST button; 2. Communication command)

Pressing the CLR button on the PLC 6
(Clearing the data in the latched device)

SR310: The PLC status change log pointer points to the latest PLC status change log.
When the PLC status is changed once, the value of the PLC status change log
pointer increases by one. The range of pointer values is 0~19. For example, the
PLC status change log pointer points to the fourth PLC status change log when the
value in SR310 is 3.

The time when the PLC status change actions occur is recorded in SR311~SR390. The

corresponding functions of these data registers are as follows.

N Action *Time when the PLC status change action occurs
number Year Month Day Hour Minute Second
1 SR311 SR312 SR312 SR313 SR313 SR314 SR314
High byte Low byte High byte Low byte High byte Low byte
2 SR315 SR316 SR316 SR317 SR317 SR318 SR318
High byte Low byte High byte Low byte High byte Low byte
3 SR319 SR320 SR320 SR321 SR321 SR322 SR322
High byte Low byte High byte Low byte High byte Low byte
4 SR323 SR324 SR324 SR325 SR325 SR326 SR326
High byte Low byte High byte Low byte High byte Low byte
5 SR327 SR328 SR328 SR329 SR329 SR330 SR330
High byte Low byte High byte Low byte High byte Low byte
6 SR331 SR332 SR332 SR333 SR333 SR334 SR334
High byte Low byte High byte Low byte High byte Low byte
7 SR335 SR336 SR336 SR337 SR337 SR338 SR338
High byte Low byte High byte Low byte High byte Low byte
8 SR339 SR340 SR340 SR341 SR341 SR342 SR342
High byte Low byte High byte Low byte High byte Low byte
9 SR343 SR344 SR344 SR345 SR345 SR346 SR346
High byte Low byte High byte Low byte High byte Low byte
10 SR347 SR348 SR348 SR349 SR349 SR350 SR350
High byte Low byte High byte Low byte High byte Low byte
11 SR351 SR352 SR352 SR353 SR353 SR354 SR354
High byte Low byte High byte Low byte High byte Low byte
12 SR355 SR356 SR356 SR357 SR357 SR358 SR358
High byte Low byte High byte Low byte High byte Low byte
13 SR359 SR360 SR360 SR361 SR361 SR362 SR362
High byte Low byte High byte Low byte High byte Low byte
14 SR363 SR364 SR364 SR365 SR365 SR366 SR366
High byte Low byte High byte Low byte High byte Low byte
15 SR367 SR368 SR368 SR369 SR369 SR370 SR370
High byte Low byte High byte Low byte High byte Low byte
16 SR371 SR372 SR372 SR373 SR373 SR374 SR374
High byte Low byte High byte Low byte High byte Low byte
17 SR375 SR376 SR376 SR377 SR377 SR378 SR378
High byte Low byte High byte Low byte High byte Low byte
18 SR379 SR380 SR380 SR381 SR381 SR382 SR382
High byte Low byte High byte Low byte High byte Low byte

2-88

Chapter 2 Devices

N Action *Time when the PLC status change action occurs
number Year Month Day Hour Minute Second
19 SR383 SR384 SR384 SR385 SR385 SR386 SR386
High byte Low byte High byte Low byte High byte Low byte
20 SR387 SR388 SR388 SR389 SR389 SR390 SR390
High byte Low byte High byte Low byte High byte Low byte

*Time when the PLC status change action occurs: The data is stored as the values in the
binary-coded decimal. The range of values is as follows.

Function Value
Year 00~99 (A.D.)
Month 01~12
Day 01~31
Hour 00~23
Minute 00~59
Second 00~59

9. The PLC operation flag

® SM400~SM403
SM400: The normally-open contact

SM401: The normally-closed contact

SM402: SM402 is ON during the first scan time, and then is switched OFF. The pulse width
equals one scan time. Users can use this contact to do the initial setting.

SM403: SM403 is OFF during the first scan time, and then is switched ON. That is, the
negative pulse is generated the moment the PLC runs.

L]

The PLCruns. |

SM400

SM401

SM402 Il I

SM403 J J
—»||[«—— Scantime

10. The initial clock pulse
® SM404~SM410, and SR409~SR410

The PLC provides seven types of clock pulses. When the PLC is supplied with power, the
seven types of clock pulses act automatically. Users can set the interval of the clock pulse in
SM409 and SM410.

Device Function
10 millisecond clock pulse during which the pulse is ON for 5 milliseconds and is
SM404 .
OFF for 5 milliseconds
SM405 100 millisecond clock pulse during which the pulse is ON for 50 milliseconds
and is OFF for 50 milliseconds
SM406 | 200 millisecond clock pulse during which the pulse is ON for 100 milliseconds

2-89

AH500 Programming Manual

Device Function
and is OFF for 100 milliseconds
SM407 Qne second clock .pulse during which the pulse is ON for 500 milliseconds and
is OFF for 500 milliseconds
SM408 Two second clock pulse during which the pulse is ON for one second and is
OFF for one second
2n second clock pulse during which the pulse is ON for n seconds and is OFF
SM409 |for n seconds
The interval n is specified by SR409.
2n millisecond clock pulse during which the pulse is ON for n milliseconds and is
SM410 | OFF for n milliseconds
The interval n is specified by SR410.

The clock pulses are illustrated as follows.

10 ms

le—>|
SM404 (10 ms) | | | | 100 Hz
>

5ms
100 ms
fe—>
SM405 (100 ms) | 10Hz
i
50 ms
200 ms
[e——»]
SM406 (200 ms) _ | | 5 Hz
fe—l
100 ms
> 1sec o
[1
SM407 (1 sec) | | | 1Hz
500 ms
2 sec
< >| 0.5Hz
SM408 (2 sec) | |
I 3
1sec
2n sec
< > 1/2n Hz

SM409 (2n sec) J

N

nsec

2nms

fe—
SM410 (2n ms) J |_I |_|

—

nms

2-90

Chapter 2 Devices

11. The flags related to the memory card
® SM450~SM453, and SR453

The memory card is used to backup the data in the PLC. The corresponding functions of
these special auxiliary relays and the corresponding function of SR453 are as follows.

Device Function

Whether the memory card exists

SM450 | ON: The memory card exists.

OFF: The memory card does not exist.

Write protection switch on the memory card

SM451 | ON: The memory card is write protected.

OFF: The memory card is not write protected.

The data in the memory card is being accessed.
SM452 | ON: The data in the memory card is being accessed.
OFF: The data in the memory card is not accessed.
An error occurs during the operation of the memory card.
ON: An error occurs.

If an error occurs during the operation of the memory card, the error code
will be recorded.

SM453

SR453

12. The flags related to the /O module

® SR655~SR730 record the mapping error occurring in the module table or the error occurring
in the /O module.

SR655~SR730 record the mapping error occurring in the module table.

If the mapping error occurs in the module table, the corresponding bit in the special data
register belonging to this module will be ON. Users can read the value in the special data
register to get the information about the position where the error occurs. For example, when
bit 5 in SR655 is ON, users can get the information that the error occurs at slot 5 in

backplane 1.
Main .
Descrinion Pckplane Extension backplane
P Backplane | Backplane |Backplane | Backplane | Backplane | Backplane | Backplane | Backplane
1 2 3 4 5 6 7 8

Device | SR655 | SR656 | SR657 | SR658 | SR659 | SR660 | SR661 | SR662

Slot 0 Bit0 Bit0 Bit0 Bit0 Bit0 BitO Bit0 Bit0

Slot 1 Bitl Bitl Bitl Bitl Bitl Bitl Bitl Bitl

Slot 2 Bit2 Bit2 Bit2 Bit2 Bit2 Bit2 Bit2 Bit2

Slot 3 Bit3 Bit3 Bit3 Bit3 Bit3 Bit3 Bit3 Bit3
Slot 4 Bit4 Bit4 Bit4 Bit4 Bit4 Bit4 Bit4 Bit4
Slot 5 Bit5 Bit5 Bit5 Bit5 Bit5 Bit5 Bit5 Bit5
Slot 6 Bit6 Bit6 Bit6 Bit6 Bit6 Bit6 Bit6 Bit6
Slot 7 Bit7 Bit7 Bit7 Bit7 Bit7 Bit7 Bit7 Bit7
Slot 8 Bit8 - - - - - - -

Slot 9 Bit9 - - - - - - -

Slot 10 Bit10 - - - - - - -

Slot 11 Bit11 - - - - - - -

2-91

AH500 Programming Manual

SR663~SR730 record the mapping error code occurring in the module table.

If the mapping error occurs in the module table, the special data register belonging to this
module will record the error code. Users can read the error code in the special data register
to get the information about the error.

Description bagf("’;gne Extension backplane

lor Backplane Backflane Back;lane Back?EJIane Backj)lane BackE[’JIane Backg)lane Back;JIane Backglane
Slot 0 SR663 | SR675 | SR683 | SR691 | SR699 | SR707 | SR715 | SR723
Slot 1 SR664 | SR676 | SR684 | SR692 | SR700 | SR708 | SR716 | SR724
Slot 2 SR665 | SR677 | SR685 | SR693 | SR701 | SR709 | SR717 | SR725
Slot 3 SR666 | SR678 | SR686 | SR694 | SR702 | SR710 | SR718 | SR726
Slot 4 SR667 | SR679 | SR687 | SR695 | SR703 | SR711 | SR719 | SR727
Slot 5 SR668 | SR680 | SR688 | SR696 | SR704 | SR712 | SR720 | SR728
Slot 6 SR669 | SR681 | SR689 | SR697 | SR705 | SR713 | SR721 | SR729
Slot 7 SR670 | SR682 | SR690 | SR698 | SR706 | SR714 | SR722 | SR730
Slot 8 SR671 - - - - - - -
Slot 9 SR672 - - - - - - -
Slot 10 | SR673 - - - - - - -
Slot 11 | SR674 - - - - - - -

13. The flags related to the Ethernet
® SM1090, SM1091, and SM1106~SM1109

=i Description Function
number
SM1090 | The TCP connection is busy. ON: TCP connection timeout
SM1091 | The UDP connection is busy. ON: UDP connection timeout
OFF: The Ethernet auto-negotiation
SM1106 | Ethernet connection error succeeds.
ON: The Ethernet auto-negotiation fails.
. . OFF: The basic setting is correct.
SML1107 | Basic setting error ON: The basic setting is incorrect.
. . OFF: The filter setting is correct.
SM1108 | Filter setting error ON: The filter setting is incorrect.
Basic management of the
SM1109 | TCP/UDP socket—The local port | The flag is ON when the same port is used.
is already used.

Please refer to section 12.2 in AH500 Operation Manual for more information about the LED
indicators and the error codes.

14. The setting of the email sending
® SM1112~SM1113, and SM1116~SM1195
Before sending the email, users have to set the related parameters in the email. If the

setting fails, SM1112 will be set to ON. Besides, SM1113 will be set to ON if the sending of
the email fails.

The triggers (triggerl~trigger8) and the flags (SM1116~SM1195) are described below.

2-92

Chapter 2 Devices

item | Trigger | Trigger | Trigger | Trigger | Trigger @ Trigger | Trigger | Trigger
2 3 6 8

Function 1 4 5 7
Email SM1116 | SM1126 | SM1136 | SM1146 | SM1156 | SM1166 | SM1176 | SM1186
tri . L .
sr:,a?;: When the basic setting is incorrect, the flag is set to ON.

Email | SM1117 | SM1127 | SM1137 | SM1147 | SM1157 | SM1167 | SM1177 | SM1187
trigger | When the filter setting is incorrect, the flag is set to ON.

Email | SM1118 | SM1128 | SM1138 | SM1148 | SM1158 | SM1168 | SM1178 | SM1188

tri . : . .
Str;gtjgsero When the trigger is enabled and no mail has been sent, the flag is ON.

Email | SM1119 | SM1129 | SM1139 | SM1149 | SM1159 | SM1169 | SM1179 | SM1189
trigger | When the trigger is enabled and the last mail has been sent successfully, the flag is
status1 | ON.

Email | SM1120 | SM1130 | SM1140 | SM1150 | SM1160 | SM1170 | SM1180 | SM1190

trigger
strllgtigs 2 | When the trigger is enabled and the last mail has been sent in error, the flag is ON.

Email | SM1121 | SM1131 | SM1141 | SM1151 | SM1161 | SM1171 | SM1181 | SM1191

tri
Str;i%gser?) When the trigger is enabled and the mail has been sent, the flag is ON.

SMTP | SM1122 | SM1132 | SM1142 | SM1152 | SM1162 | SM1172 | SM1182 | SM1192

ress%rgﬁge When the trigger is enabled and there is an SMTP server response timeout, the flag

timeout | IS ON.

SMTP | SM1123 | SM1133 | SM1143 | SM1153 | SM1163 | SM1173 | SM1183 | SM1193

ressi)r(\)/ﬁ;e When the trigger is enabled and there is an SMTP server response error, the flag is

error ON.

SM1124 | SM1134 | SM1144 | SM1154 | SM1164 | SM1174 | SM1184 | SM1194
When the trigger is enabled and the size of the attachment exceeds the limit, the flag
is ON.
Nonexistent, SM1125 | SM1135 | SM1145 | SM1155 | SM1165 | SM1175 | SM1185 | SM1195
attachment | When the trigger is enabled and the attachment is not found, the flag is ON.
Please refer to section 12.2 in AH500 Operation Manual for more information about the LED
indicators and the error codes.
15. Setting the TCP/UDP socket
® SR1118-SR1320
The TCP/UDP sockets are set in SR1118-SR1320, and eight TCP/UDP sockets at most can
be set. Users can set the sockets which uses the TCP protocol to execute the data
exchange in SR1118~SR1221.

Socket

umber 1 2 3 4 5 6 7 8

Attachment
size error

Item
Local

communication| SR1118 | SR1131 | SR1144 | SR1157 | SR1170 | SR1183 | SR1196 | SR1209

port
Remote IP
address SR1119 | SR1132 | SR1145 | SR1158 | SR1171 | SR1184 | SR1197 | SR1210
(high word)
Remote IP
address SR1120 | SR1133 | SR1146 | SR1159 | SR1172 | SR1185 | SR1198 | SR1211
(low word)
Remote

communication) SR1121 | SR1134 | SR1147 | SR1160 | SR1173 | SR1186 | SR1199 | SR1212
port

Transmitted
data length
Transmitted
data address | SR1123 | SR1136 | SR1149 | SR1162 | SR1175 | SR1188 | SR1201 | SR1214
(high word)
jransmited | SR1124 | SR1137 | SR1150 | SR1163 | SR1176 | SR1189 | SR1202 | SR1215

data address

SR1122 | SR1135 | SR1148 | SR1161 | SR1174 | SR1187 | SR1200 | SR1213

2-93

AH500 Programming Manual

Socket

umber 1 2 3 4 5 6 7 8

Item
(low word)
Received data
length
Received data
address SR1126 | SR1139 | SR1152 | SR1165 | SR1178 | SR1191 | SR1204 | SR1217
(high word)
Received data

address SR1127 | SR1140 | SR1153 | SR1166 | SR1179 | SR1192 | SR1205 | SR1218
(low word)
Persistent

connection | SR1128 | SR1141 | SR1154 | SR1167 | SR1180 | SR1193 | SR1206 | SR1219
time
Transmitted

data counter

Received dala| SR1130 | SR1143 | SR1156 | SR1169 | SR1182 | SR1195 | SR1208 = SR1221

counter
Users can set the sockets which uses the UDP protocol to execute the data exchange in
SR1222~SR1317.

Socket

umber 1 2 3 4 5 6 7 8

SR1125 | SR1138 | SR1151 | SR1164 | SR1177 | SR1190 | SR1203 | SR1216

SR1129 | SR1142 | SR1155 | SR1168 | SR1181 | SR1194 | SR1207 | SR1220

Item

Local
communication| SR1222 | SR1234 | SR1246 | SR1258 | SR1270 | SR1282 | SR1294 | SR1306
port
Remote IP
address SR1223 | SR1235 | SR1247 | SR1259 | SR1271 | SR1283 | SR1295 | SR1317
(high word)
Remote IP
address SR1224 | SR1236 | SR1248 | SR1260 | SR1272 | SR1284 | SR1296 | SR1318
(low word)
Remote

communication| SR1225 | SR1237 | SR1249 | SR1261 | SR1273 | SR1285 | SR1297 | SR1309
port
Transmitted
data length
Transmitted
dataaddress | SR1227 | SR1239 | SR1251 | SR1263 | SR1275 | SR1287 | SR1299 | SR1311
(high word)
Transmitted
data address | SR1228 | SR1240 | SR1252 | SR1264 | SR1276 | SR1288 | SR1300 | SR1312
(low word)

SR1226 | SR1238 | SR1250 | SR1262 | SR1274 | SR1286 | SR1298 | SR1310

Received data
length
Received data
address SR1230 | SR1242 | SR1254 | SR1266 | SR1278 | SR1290 | SR1302 | SR1314
(high word)
Received data

address SR1231 | SR1243 | SR1255 | SR1267 | SR1279 | SR1291 | SR1303 | SR1315
(low word)

Lansmited | SR1232 | SR1244 | SR1256 | SR1268 | SR1280 | SR1292 SR1304 SR1316

data counter

Received data | 5R1233 | SR1245 | SR1257 | SR1269 | SR1281 | SR1293 | SR1305 | SR1317

counter

Please refer to section 6.22 for more information related to the Ethernet control instructions.
16. The functions related to the PLC Link
® SM1392~SM1598, and SR1335~SR1787

The PLC Link supports COM1 on the PLC. At most 32 slaves can be connected. When the
master connects to the AH500 series programmable logic controllers, at most 450 words or
7200 bits can be read from the AH500 series programmable logic controllers and written
into them. When the master connects to other models which support the standard Modbus,
at most 100 words or 1600 bits can be read from these models and written into them.

SR1229 | SR1241 | SR1253 | SR1265 | SR1277 | SR1289 | SR1301 | SR1313

2-94

Chapter 2 Devices

Link is complete. (ON->OFF)

(SM1552)

Link is complete. (ON->OFF)

(SM1553)

Master
Slave 1 Slave 2 Slave 32
Read Write Read Write Read Write

Address in Address in Address in Address in Address in Address in
the master: the master: the master: the master: the master: the master:
The device The device The device The device The device The device
address into address from | address into address from address into address from
which the which the which the which the which the which the
data is read data is written | data is read data is written datais read data is written
(SR1404 and | (SR1468 and | (SR1406 and | (SR1470 and (SR1466 and | (SR1530 and
SR1405) SR1469) SR1407) SR1471) SR1467) SR1531)
Address in Address in Address in Address in Address in Address in
the slave: the slave: the slave: the slave: the slave: the slave:

5 | The device The device The device The device The device The device

© | address from | address into address from | address into address from | address into

?D- which the which the which the which the which the which the

Q | datais read data is written | data is read data is written datais read data is written

% (SR1532 and | (SR1596 and | (SR1534 and | (SR1598 and (SR1594 and | (SR1658 and

o | SR1533) SR1597) SR1535) SR1599) SR1595) SR1659)
Number of Number of Number of Number of Number of Number of
data which is | data whichis | data whichis | data which is data which is | data which is
read from the | written into read from the | written into read from the | written into
slave the slave slave the slave slave the slave
(SR1660) (SR1692) (SR1661) (SR1693) (SR1691) (SR1723)
Device type Device type Device type Device type Device type Device type
(SR1340) (SR1372) (SR1341) (SR1373) (SR1371) (SR1340)
Type of slave 1 (SR1724) Type of slave 2 (SR1725) Type of slave 32 (SR1755)
Address of slave 1 (SR1756) Address of slave 2 (SR1757) Address of slave 32 (SR1787)
PLC Link flag (SM1392) PLC Link flag (SM1393) PLC Link flag (SM1423)

=z | Data exchange flag (SM1424) | Data exchange flag (SM1425) Data exchange flag (SM1455)

S Read error Write error Read error Write error Read error Write error

o | flag flag flag flag flag flag

o | (SM1456) (SM1488) (SM1457) (SM1489) (SM1487) (SM1519)

g The data reading is complete. | The data reading is complete. The data reading is complete.

g (ON->OFF) (SM1520) (ON->OFF) (SM1521) (ON->OFF) (SM1551)

g The data writing in the PLC The data writing in the PLC The data writing in the PLC

(SM1583)

Link is complete. (ON->OFF)

Please refer to section 11.1 in AH500 Operation Manual for more information related to the

PLC Link.

17. The functions related to the Ether Link

Starting the Ether Link | Ether Link error flag Status of the Ether Link

Port OFF: Stop OFF: Incorrect OFF: Stop

ON: Start ON: Correct ON: Run
CPU SM1770 SM1788 SM1806
Port 0 SM1772 SM1790 SM1808
Port 1 SM1773 SM1791 SM1809
Port 2 SM1774 SM1792 SM1810
Port 3 SM1775 SM1793 SM1811
Port 4 SM1776 SM1794 SM1812
Port 5 SM1777 SM1795 SM1813
Port 6 SM1778 SM1796 SM1814
Port 7 SM1779 SM1797 SM1815
Port 8 SM1780 SM1798 SM1816
Port 9 SM1781 SM1799 SM1817

2-95

AH500 Programming Manual

Starting the Ether Link | Ether Link error flag Status of the Ether Link
Port OFF: Stop OFF: Incorrect OFF: Stop
ON: Start ON: Correct ON: Run
Port 10 SM1782 SM1800 SM1818
Port 11 SM1783 SM1801 SM1819
Port 12 SM1784 SM1802 SM1820
Port 13 SM1785 SM1803 SM1821
Port 14 SM1786 SM1804 SM1822
Port 15 SM1787 SM1805 SM1823
Please refer to section 11.2 in AH500 Operation Manual for more information related to the
Ether Link.

18. Setting the IP address
® SR1792~SR2047

Device Function Description
IP address of High eight bits in the IP address of block 1
SR1792 Example: If the remote IP address is 192.168.1.100, the

block 1 value in the register is 16#COA8.

IP address of Low eight bits in the IP address of block 1

SR1793 block 1 Example: If the remote IP address is 192.168.1.100, the
value in the register is 16#0164.

IP address of High eight bits in the IP address of block 128

SR2046 block 128 Example: If the remote IP address is 192.168.1.100, the
value in the register is 16#C0AS.

IP address of Low eight bits in the IP address of block 128
SR2047 block 128 Example: If the remote IP address is 192.168.1.100, the
value in the register is 16#0164.

Please refer to section 11.2 in AH500 Operation Manual for more information related to the
Ether Link.

2.2.17 Link Registers

The link register is mainly used in the PLC Link or the Ether Link. When the data exchange occurs
between the AH500 series programmable logic controllers, the link register can be used as the
buffer. Please refer to chapter 12 in AH500 Operation Manual for more information.

The link registers LO~L65535 add up to 65536 words. Besides, the link register can be used as the
general auxiliary register.

2.2.18 Index Registers

The index register is the 16-bit data register. It is like the general register in that the data can be
read from it and written into it. However, it is mainly used as the index register. The range of index
registers is EO~E13. Please refer to section 4.3 for more information related to the index register.

2-96

Chapter 3 Instruction Tables

Table of Contents

3.1 1 1S (T 10 P 3-2
3.1.1 BaSIC INSIIUCLIONS ...t 3-2
3.1.2 Applied INSITUCHIONScceveiciee e e e 3-2

3.2 INSLrUCLION TaBIESo 3-3
3.2.1 BaSIC INSIIUCLIONScceiieeiiiee e e e e s 3-3
3.2.2 APPlEed INSIIUCIONSuviiiiie e 3-4
3.2.3 Applied Instructions (Sorted Alphabetically)ccccooveeeiiiiiiiiiinnnnn. 3-5
3.24 DEeVICE TabBIES ... 3-6

3.3 Lists Of BaSIC INSTIUCHIONSuiiieiiiiiiiiiiieee e 3-7

3.4 Lists of Applied INStrUCIONS.......ccccciiiieeeeiiie e 3-9
341 ApPPled INSIIUCIONSuuiiiiie e 3-9
3.4.2 Applied Instructions (Sorted Alphabetically)ccccoeveeeriviiiiiinnnnnn. 3-35

3-1

AH500 Programming Manual

3.1 Instructions

Instructions used in the AH500 series PLC include basic instructions and applied instructions.

3.1.1 Basic Instructions

Classification Description

Loading the contact, connecting the contact in series, connecting

Contact instructions the contact in parallel, and etc.

Connection instructions Storing and reading the operation result

Output instructions Bit device output; pulse output

Master control

. Setting and resetting the master control
Instructions

Rising-edge/Falling-edge
detection contact
instructions

Triggering the instructions that load the contact, connect the
contacts in series, and connect the contacts in parallel

Rising-edge/Falling-edge Bit device output

output instructions

Other instructions

Other instructions

3.1.2 Applied Instructions

API Classification Description
0000~0065 | Comparison instructions Comparisons such as =, <>, >, >=, <, <=, and etc.
0100~0118 | Arithmetic instructions Using binary numbers or binary-coded decimal
numbers to add, subtract, multiply, or divide.
Data conversion Converting the binary-coded decimal number into
0200~0219 | . . the binary number, and converting the binary
instructions . : .
number into the binary-coded decimal number
0300~0310 | Data transfer instructions | Transfer the specified data
0400~0402 | Jump instructions The program jumps.
0500~0502 _Prograr_n execution Enabling or disabling the interrupt
instructions
0600 I/O refreshing instructions | Refreshing the I/O.
0700~0708 | Convenience instructions | 'mstructions which are applied to the counters, the
teaching timers, the special timers, and etc.
0800-0817 | Logic instructions Log|_ca_l operations such as logical addition, logical
multiplication, and etc.
0900~0904 | Rotation instructions Rotating/Shifting the specified data
1000~1004 | Basic instructions Timer instructions and counter instructions
1100~1115 | Shift instructions Shifting the specified data
1200~1223 _Data processing 16-hit _data processing such as decoding and
instructions encoding.
1300~1302 | Siructure creation Nested loops
instructions
1400~1401 | Module instructions Reading the data from the special module and
writing the data into the special module
1500~1524 _Floatmg-pomt number Floating-point number operations
instructions
1600~1606 _Real-tlme clock Rea(_jmg/\Nntlng, adding/subtracting and comparing
instructions the time
1700~1704 | Peripheral instructions I/O points connected to the peripheral
1800~1812 | Communication Controlling the peripheral though communication
instructions
1900~1905 | Other instructions Instructions which are different from those
mentioned above

3-2

Chapter 3 Instruction Tables

API Classification Description
Conversion between binary/binary-coded decimal
String processin numbers and ASCII codes; conversion between
2100~2121 | > 9P g binary numbers and strings; conversion between
instructions . . e
floating-point numbers and strings; string
processing
2200~2207 | Ethernet instructions Controlling the Ethernet data exchange
2300~2302 | Memory card instructions Reading .the data from the memory card and writing
the data into the memory card
2400~2401 | Task control instructions Controlling the task in the program
2500~2502 Sequenual fuqcﬂon charts Controlling the SFC instructions
(SFC) instructions

3.2 Instruction Tables

3.2.1 Basic Instructions

i

@

The descriptions:

|

Q@

@: The instruction name
@: The symbol used in the ladder diagram in ISPSoft

®: The function

© @

@: The operands supported by the instruction

3-3

AH500 Programming Manual

3.2.2 Applied Instructions

API Instruction code Fulse: Symbol Function
16-hit 32_bit |Instruction
= = Comparing the contact types
oooo| D= OLD= - |2 ¢ |3 oM 31 =52
: : OFF: S1#52
= Dor Comparing the contact types
0001| LD<= DLD<= - L, 1 Ol 51#52
- = OFF: 51 =52
. = Comparing the contact types
0002 LD= DLD> - ! 1L OM: 51 > 52
| = = OFF: 51252
AP Instruction code Fulsei Symbol Function
37 _bit 6d-bit | Instruction
— — Cormparing the floating-point nurmber
0018| FLD= | DFLD= ¢ contact 1ypes
B a B o o OM: 51=52
OFF: 51#52

y

@

The descriptions:
®: The applied instruction number
@: The instruction name

®: If the 16-bit instruction can be used as the 32-bit instruction, a D is added in front of the 16-bit

instruction to form the 32-bit instruction.

@: v indicates that the instruction can be used as the pulse instruction, whereas — indicates that it
can not.
If users want to use the pulse instruction, they only need to add a P in back of the instruction.

®: The symbol used in the ladder diagram in ISPSoft

®: The function

@: If the 32-bit floating-point number instruction can be used as the 64-bit floating-point number
instruction, a D is added in front of the 32-bit floating-point number instruction to form the 64-bit

floating-point number instruction.

3-4

Chapter

3 Instruction Tables

3.2.3 Applied Instructions (Sorted Alphabetically)

Classificati o Instruction code Pulse S
a (L5 AL]
16-bit 32-bit 64-bit | instruction Hieten
Converting the Gray
0209 | GBIM DiEEIM - v code into the binary
numb er
0407 | GOEND _ _ _ Jumping to the end of the
G pFD gram _
1902 | P _ _ _ General_pulse width
modulation
Converting the binary
0208 | GRY DERY - v number inta the Gray
code
Converting the
04 | HABIN OHABIN _ > hexadecimal ASCI code
inta the hexadecimal
H binary nurnber
1701 | HKY DREY - - Hexadecimal key input
1604 |HOLUR DHOUR - - Running-time meter

)

l

® @

The descriptions:
®: The initial of the instruction name

i

©)

l

@

®@: The applied instruction number

® ~®: The instruction names

i

@

If the 16-bit instruction can be used as the 32-bit instruction, a D is added in front of the 16-bit
instruction to form the 32-bit instruction.
If the 32-bit floating-point number instruction can be used as the 64-bit floating-point number

instruction, a D is added in front of the 32-bit floating-point number instruction to form the 64-bit
floating-point number instruction.

®: v indicates that the instruction can be used as the pulse instruction, whereas — indicates that it

can not.

If users want to use the pulse instruction, they only need to add a P in back of the instruction name.
@: The function

3-5

AH500 Programming Manual

3.2.4 Device Tables
@ @ ® @

I T T

API Instruction code Operand Function
0100] + F S5 D Binary number addition
Device| X | ¥ | M | 5 T|C|HC| D L [SM|SR| E | PR K [16#]"$" | DF
@% 5, o @ oo e e | 0o|le|e@|e®
Sz e @ o @ L I) L L O L L [
1] e @ o ® e (@ L L O L
Fulse instruction | 16-hit instruction {7 steps)|32-hit instruction (7 steps)
AH AH AH
Symbol:
+ +F 54 Augend Wiord/Double Word
En En
1 olls: o Sz Addend Wiord/Double Ward @
52 52 D Sum Word/Double Word
o+ D+P
En En
51 Y51 n]
52 52

The descriptions:
®: The applied instruction number

@: The instruction name

If the 16-bit instruction can be used as the 32-bit instruction, a D is added in front of the 16-bit
instruction to form the 32-bit instruction.

If the 32-bit floating-point number instruction can be used as the 64-bit floating-point number
instruction, a D is added in front of the 32-bit floating-point number instruction to form the 64-bit
floating-point number instruction.

If the instruction can be used as the pulse instruction, a P is added in back of the instruction.

®: The operand
@: The function

®: The devices which are supported by the operand

The decimal forms are notated by K, but they are entered directly in ISPSoft. For example, the
decimal number 30 is entered directly in ISPSoft.

The hexadecimal forms are notated by 16#. For example, the decimal number 30 is represented by
16#1E in the hexadecimal system.

The floating-point numbers are notated by F/DF, but they are represented by decimal points in
ISPSoft. For example, the floating-point number F500 is represented by 500.0 in ISPSoft.

The strings are notated by “$”, but they are represented by “ " in ISPSoft. For example, the string
1234 is represented by “1234” in ISPSoft.

o: The hollow circle

The device can not be modified by an index register.

e: The solid circle

The device can not be modified by an index register.

®: The ladder diagram

3-6

Chapter 3 Instruction Tables

@: The unit of the operand

®: The format of the instruction
It indicates whether the instruction can be used as the pulse instruction, the 16-bit instruction, the
32-bit instruction, or the 64-bit instruction, and the number of steps.

3.3 Lists of Basic Instructions

® Contact instructions
[ol Symbol Function Operand
code
LD
Loading contact
AND A/Connecting contact Ain | DX, X, Y, M, S, T, C, HC,
series/Connecting contact | D, L, SM, and PR
Ain parallel
OR
LDI
Loading contact
ANI B/Connecting contact Bin | DX, X, Y, M, S, T, C, HC,
series/Connecting contact | D, L, SM, and PR
B in parallel
ORI
® Connection instructions
Instruction .
code Symbol Function Operand
ANB _Conngactlng the loop blocks _
in series
ORB _Connectlng the loop blocks _
in parallel
MPS _ Storing the data in the _
stack
MRD _ Reading the data from the _
stack
MPP _ Popping the data from the _

stack

3-7

AH500 Programming Manual

® Output instructions
Instruction Symbol Function ExeCl.Jt.'on Operand
code condition
777
ouT () Driving the coil BYLXSI\Y/I ZlndSP; C, HC,
%2 DY, X,Y,M, S, T, C, HC
SET —(s) Keeping the device on D L éM’ arild I’DR' ' '
® Master control instructions
Instruction .
code Symbol Function Operand
M
MC En Setting the master control N
M
MCR,
MCR Resetting the master control N
M
® Rising-edge/Falling-edge detection contact instructions
Instruction Symbol Function ExeCL_1t_|on Operand
code condition
LDP 277
PED }—‘ I— Starting the rising-edge
detection/Connecting
ANDP 222 the rising-edge DX, X, Y, M, S, T, C, HC
|r1\| detection in T g T '
APED series/Connecting the D, L, SM, and PR
rising-edge detection in
ORP ﬁ?' parallel
OPED
LDF 777
| | | Starting the
NED v falling-edge
. detection/Connecting
ANDF the falling-edge DX, X,Y,M, S, T, C, HC,
ANED N/l detection in _‘L_ D, W, L, SM, and PR
series/Connecting the
ORF 772 falling-edge detection
\—| |—/ in parallel
ONED b P
® Rising-edge/Falling-edge output instructions
Instruction Symbol Function ExeCL_1t_|on Operand
code condition
PLS
PLS En Rising-edge output _T_ DY, X, ¥,M,S, T, C, HC,

D, L, SM, and PR

3-8

Chapter 3 Instruction Tables

Instruction Symbol Function SCENET Operand
code condition
FLF
. DY, X,Y,M, S, T,C, HC
E - 1 1 1 1 1 1 L L
PLF n) Falling-edge output D.L SM. and PR
® Other instructions
Instruction ;
code Symbol Function Operand
INY , . .
INV Inverting the logical operation result -
NOP - No operation -
Stopping executing the PLC B
PSTOP -1 PSTOP program
NP —4f— | The circuit is rising edge-triggered. -
PN —47— The circuit is falling edge-triggered. -
77
FB_NP _U—l The circuit is rising edge-triggered. S
77
FB_PN |—|_| The circuit is falling edge-triggered. S
3.4 Lists of Applied Instructions
3.4.1 Applied Instructions
® Comparison instructions
Instruction code Pulse .
AP 16-bit 32-bit |Instruction Symbol Function
z = Comparing the values
0000 LD= DLD= - N L ON:S;=S,
- - OFF: 51#52
s T Comparing the values
0001| LD<> DLD<> - ., “ . ON: S;#S,
52 52 OFF: Sl = Sz
- — Comparing the values
0002| LD> DLD> - ., ¢ ., ON: S;>S;
i i OFF: S45S,
— — Comparing the values
0003| LD>= | DLD>= - N L ON: S:2S,
i i OFF: S;:<S,
- — Comparing the values
0004| LD< DLD< - N 1L ON: S;<S,
i i OFF: S;=S,

3-9

AH500 Programming Manual

AP|

Instruction code

16-bit

32-bit

Pulse
Instruction

Function

0005

LD<=

DLD<=

51
52

S1
52

Comparing the values
ON: S;LéSg
OFF:S;> S,

0006

AND=

DAND=

51
52

51
52

Comparing the values
ON: Sl = Sg
OFF: S;L#Sg

0007

AND<>

DAND<>

51
52

<=

S1
52

D=

Comparing the values
ON: S;L#Sg

OFF: Sl = Sg

0008

AND>

DAND>

51
52

S1
52

D=

Comparing the values
ON: Sl > Sg
OFF: S;<S,

0009

AND>=

DAND>=

51
52

51
52

D=

Comparing the values
ON: 51252
OFF: S;:<S,

0010

AND<

DAND<

51
52

51
52

D=

Comparing the values
ON: Sl < Sg
OFF: S;=S,

0011

AND<=

DAND<=

51
52

51
52

D=

Comparing the values
ON: S;5S,

OFF: S:> S,

0012

OR=

DOR=

51
52

51
52

Comparing the values
ON: Sl = SZ
OFF: S;#S,

0013

OR<>

DOR<>

51
52

L

51
52

D=

Comparing the values
ON: S;#S,

OFF: Sl = SZ

0014

OR>

DOR>

51
52

51
52

D=

Comparing the values
ON: S;>S,
OFF: S;5S,

0015

OR>=

DOR>=

51
52

S1
52

Comparing the values
ON: S;:2S,

OFF: S:1<S,

0016

OR<

DOR<

51
52

S1
52

D=

Comparing the values
ON: S;:<S,
OFF: S;2S,

0017

OR<=

DOR<=

51

52

S1
52

D=

Comparing the values
ON: S;5S,

OFF:S;> S,

3-10

Chapter 3 Instruction Tables

AP|

Instruction code

32-bit

64-bit

Pulse
Instruction

Symbol

Function

0018

FLD=

DFLD=

51
52

LF=

51
52

Comparing the floating-point
numbers

ON: Sl = 82

OFF: S1#S;

0019

FLD<>

DFLD<>

51
52

DF <=

Fax

51
52

Comparing the floating-point
numbers
ON: S;1#£S,

OFF: Sl = 82

0020

FLD>

DFLD>

51
52

F=

DF=

51
52

Comparing the floating-point
numbers

ON: S;>S,
OFF: S;5S,

0021

FLD>=

DFLD>=

51
52

==

DF ==

51
52

Comparing the floating-point
numbers

ON: S:2S,
OFF: S;:<S,

0022

FLD<

DFLD<

51
52

F=

DF=<

51
52

Comparing the floating-point
numbers

ON: S;<S,
OFF: S;=S,

0023

FLD<=

DFLD<=

51
52

==

DF <=

51
52

Comparing the floating-point
numbers

ON: S;:5S,
OFF: S > S,

0024

FAND=

DFAND=

51

52

LF=

51
52

Comparing the floating-point
numbers

ON: Sl = 82
OFF: S,;#S,

0025

FAND<>

DFAND<>

51
52

DF <=

Fax

51
52

Comparing the floating-point
numbers
ON: S;#S,

OFF: Sl = 82

0026

FAND>

DFAND>

51
52

F=

DF=

51
52

Comparing the floating-point
numbers

ON: S;>S,
OFF: S;=5S,

0027

FAND>=

DFAND>=

51

52

Fo=

DF =

51
52

Comparing the floating-point
numbers
ON: Slg Sz

OFF: Sl < Sz

0028

FAND<

DFAND<

51

52

Fs

DF=<

51
52

Comparing the floating-point
numbers

ON: Sl < Sz
OFF: SlgSZ

3-11

AH500 Programming Manual

AP|

Instruction code

32-bit

64-bit

Pulse
Instruction

Symbol

Function

0029

FAND<=

DFAND<=

S
52

==

51
52

DF <=

Comparing the floating-point
numbers
ON: Sl§52

OFF: S:> S,

0030

FOR=

DFOR=

S1
52

51
52

LF=

Comparing the floating-point
numbers

ON: Sl = SZ
OFF: S,#S,

0031

FOR<>

DFOR<>

S1
52

DF==

51
52

Fax

Comparing the floating-point
numbers
ON: S;#S,

OFF: Sl = SZ

0032

FOR>

DFOR>

51
52

F=

51
52

DF=

Comparing the floating-point
numbers

ON: S;>S,
OFF: S,=S,

0033

FOR>=

DFOR>=

51
52

=

51
52

DF ==

Comparing the floating-point
numbers
ON: S;=S,

OFF: Sl < Sg

0034

FOR<

DFOR<

51
52

Fs

51
52

DF=<

Comparing the floating-point
numbers

ON: Sl < Sg
OFF: S,=5S,

0035

FOR<=

DFOR<=

51

52

=

51
52

DF <=

Comparing the floating-point
numbers
ON: Sl§52

OFF: Sl > Sg

0036

LD$=

51
52

Comparing the strings
ON: Sl = Sg
ON: S;L#Sg

0037

LD$<>

fa=

51
52

Comparing the strings
ON: S;L#Sg

OFF: Sl = Sg

0038

LD$>

4=

51
52

Comparing the strings
ON: Sl > Sg
OFF: Sl§52

0039

LD$>=

51
52

Comparing the strings
ON: Sl;SQ

OFF: Sl < Sg

0040

LD$<

$<

51
52

Comparing the strings
ON: Sl < Sg
OFF: Sl;SQ

0041

LD$<=

§em

51
52

Comparing the strings
ON: Sl§52

OFF: Sl > Sg

3-12

Chapter 3 Instruction Tables

AP|

Instruction code

32-bit

64-bit

Pulse
Instruction

Function

0042

AND$=

S1
52

Comparing the strings
ON: Sl = Sz
OFF S;#S,

0043

AND$<>

S1
52

o=

Comparing the strings
ON: 51#52

OFF: Sl = 82

0044

AND$>

S1
52

$=

Comparing the strings
ON: Sl > Sz
OFF: 51§SZ

0045

AND$>=

S1
52

Fom

Comparing the strings
ON: Slg Sz

OFF: S;:<S,

0046

AND$<

S1
52

$<

Comparing the strings
ON: S, < S,
OFF: SlgSZ

0047

AND$<=

S1
52

Comparing the strings
ON: S;=5S,

OFF: S > S,

0048

OR$=

S1
52

Comparing the strings
ON: Sl = 82
OFF: S;#S;

0049

OR$<>

S1
52

o=

Comparing the strings
ON: S;#S,

OFF: Sl = 82

0050

ORS$>

S1
52

$=

Comparing the strings
ON: S;>S,
OFF: S,=5S,

0051

ORS$>=

S1
52

Fom

Comparing the strings
ON: S,25S,

OFF: S;:<S,

0052

ORS$<

S1
52

$<

Comparing the strings
ON: S, < S,
OFF: S,25S,

0053

OR$<=

S1
52

Comparing the strings
ON: S;=5S,

OFF: S > S,

0054

CMP

DCMP

En
51
52

Mp

En
51
52

CMPP

En
51
52

DCMP

En
51
52

DCMPP

Comparing the values

3-13

AH500 Programming Manual

Instruction code Pulse .
AP 32-bit 64-bit Instruction Symbol Function
ZCP ZCPP
En En
51 o 51
= 52
0055, ZCP DZCP v - — - ——— Zone comparison
En En
S1 o 51
= 52
= =
FCMPPR C) h ﬂ) .
3 v En omparing the floating-point
0056 FCMP : numbers
FZCPP
En
0057 - FzCP v 51 Floating-point zone comparison
52
=
MCMPP
(=]
0058, MCMP - v o1 Matrix comparison
52
CMPT=P
" Comparing the tables
= — v
0059/ CMPT N ON: =
CMPT <> CMPT <P
0060 CMPT<> B v - 1E Comparing the tables
=2 52 ON: #
CMPT= CMPT =P
0061l cMPT> B v M 1 E Comparing the tables
52 52 ON: >
CMPT 2= CMPT==p
" " Comparing the tables
0062| CMPT>= — v 51 o| k1
52 52 ON: g
CMPT < CMPT <P
0063| CMPT< B v M 1E Comparing the tables
52 52 ON: <
CMPT <= CMPT <=p
- i Comparing the tables
0064 CMPT<= - v 5t o| st
5z 52 ON: é
CHEADR
0065 CHKADR _ _ En Checking the address of the contact

type of pointer register

3-14

Chapter 3 Instruction Tables

® Arithmetic instructions
Instruction code Pulse .
AP 16-bit 32-bit |instruction Symbol Function
+ +P
(=] En
51] 51 . .
0100 + D+ v 52 52 Addition of binary numbers
D+ D+P S;+S,=D
En En
51] 51
52 52
-
En
51 . .
0101 i D- v 52 Subtraction of binary numbers
D- D S1-S,=D
(=] En
51] 51
52 52
*p
En
51
52 Multiplication of binary numbers
* * v
0102 D - — S,*S,=D
(=] En
51] 51
52 52
P
En
51
52 Division of binary numbers
v
0103 / D/ = — S,/S,=D
En En
51] 51
52 52
Instruction code Pulse q
API 32-bit 64-bit |instruction Symlee! Function
F+P
En
51
=2 Addition of floating-point numbers
0104 F+ DF+ v DF+ DF+P S;+S,=D
En En
51 D 51
52 52
F-P
En
. Subtraction of floating-point
0105 F- DF- v — — numbers
En En Sl'SzzD
51] 51
52 52
F+p
En
51 T . . .
- Multiplication of floating-point
0106 F* DF* v — — numbers
En En S]_*SZ:D
51] 51
52 52

3-15

AH500 Programming Manual

Instruction code Pulse]
AP 32-bit 64-bit |instruction =Yirioe Function
FiP
En
51
52 Division of floating-point numbers
0107 F/ DF/ v = — S,/S,=D
En En
51 8] 51
52 52
B+P
En
. Addition of binary-coded decimal
0108 B+ DB+ v — — numbers
En En Sl+82:D
51 D 51
52 52
E-P
En
. Subtraction of binary-coded
0109 B- DB- v — — decimal numbers
En En Sl'SZ:D
51 D 51
52 52
B*F
En
B Multiplication of binary-coded
0110 B* DB* v — — decimal numbers
En En Sl*SZ:D
51 8] 51
52 52
B/ EBfF
En En
. L Division of binary-coded decimal
0111 B/ DB/ v numbers
DB/ DEfP
En En Sl/SQZD
51 o 51
52 52
EE+P
En aygs . .
0112 BK+ _ v » Addition of binary numbers in
52 blocks
BK-P
En - . .
0113 BK- _ v » Subtraction of binary numbers in
52 blocks
[
0114 S+ - v M Linking the strings
52
INCP
En
C
0115 INC DINC v — — Adding one to the binary number
En En
o D
DECP
En
X . .
0116 DEC DDEC v _ — Subtracting one from the binary
number
En En
o D

3-16

Chapter 3 Instruction Tables

Instruction code Pulse .

AP 16-bit 32-bit |instruction Symbol Function
Multiplication of binary numbers for
16-bit

v

0117) MUL16 | MUL32 Multiplication of binary numbers for
32-bit
Division of binary numbers for
16-bit

v P .
0118 DIV1é Diva2 Division of binary numbers for
32-bit
® Data conversion instructions
Instruction code Pulse .
AP 16-bit 32-bit |instruction Symbol Function
BCD ECDP
En En
0200 BCD DBCD v g o} Conyertmg the blnary number into
DBCD DBCOP the binary-coded decimal humber
En En
= 8] 5
BIN BINP
-’ 1F Converting the binary-coded
0201 BIN DBIN v decimal number into the binary
DEIN DEINP
n En number
5 D 5
FLT FLTP
En En
0202 ELT DELT v 5 o} Conyertlng the.blnary. integer into
DFLT DFLTP the binary floating-point number
En En
= 8] 5
FLTD FLTDP
En (=]
g o} Converting the binary integer into
v
0203 FLTD DFLTD DFLTD BRLTOR the 64-bit floating-point number
En En
= 8] 5
INT INTP
En En
0204 INT DINT v 5 of Converu_ng the 32_—b|t fI(_)atmg—pomt
DIT DINTP number into the binary integer
En En
5 D 5
Instruction code Pulse]
APl 32bit | 64-bit linstruction Symbol Function
DFIMTP
En
0205 DEINT DEINT v 5 Convert|_ng the 64_-b|t fI(_)atlng-pomt
DDFINT DDFINTF number into the binary integer
En En
= 8] 5

3-17

AH500 Programming Manual

Instruction code

Pulse

API . . Symbol Function
16-bit 32-pit |INstruction
0206| MMOV 3 v L™ Converting the 16-bit value into
s of ks the 32-bit value
0207 RMOV B Y L ™™ | | Converting the 32-bit value into
H ol Is the 16-bit value
GRY GRYP
En En
g ol £ Converting the binary number into
4
0208, GRY DGRY — — the Gray code
En En
= 8] 5
GBIN GEINP
En En
: o} Converting the Gray code into the
4
0209, GBIN DGBIN — — binary number
En En
= 8] 5
MEGP
En
0210| NEG DNEG v Two’s complement
DMEG DMEGP
En (=]
D
0211 3 ENEG v T Reversing the sign of the 32-bit
floating-point number
FECD FBCD Converting the binary
0212 - FBCD v En n floating-point number into the
g o E decimal floating-point number
= FEIF Converting the decimal
0213 - FBIN v En n floating-point number into the
> o E binary floating-point number
e Converting the binary numbers in
0214 | BKBCD - v N blocks into the binary-coded
h decimal numbers in blocks
e Converting the binary numbers in
0215| BKBIN - v " blocks into the binary-coded
h decimal numbers in blocks
SCAL SCALP
En (=]
0216 | SCAL - v 5l o Pt Scale value operation
52 52
X} 53
SCLP SCLPP
En En
51 8] 51
=2 52 Parameter type of scale value
0217 | SCLP DSCLP v — — operation
En En
51 D 51
52 52
LINE LIMEP
En En
S] S
n p Converting a column of data into a
0218 | LINE DLINE v — — line of data
En En
S] S

3-18

Chapter 3 Instruction Tables

API Instruction code - Pulsg Symbol Function
16-bit 32-pit INstruction
COLM COLMP
Er En
S [w} S
0219 COLM | DCOLM v P P Converting a line of data into a
Dol DCOLMP column of data
Er En
S [w} S
® Data transfer instructions
Instruction code Pulse ;
AP 16-bit 32-bit |instruction Spiloe)] Function
Mov MOVP
En En
0300| MOV DMOV v - - © Transferring the data
oMoV DMOVP
En En
& [n] S
Instruction code Pulse .
AP 32-bit 64-bit |instruction S, Function
0301 B DEMOV v A e Transferring the 64-bit
5 ol k floating-point number
Instruction code Pulse .
AP 16-bit 32-bit |instruction S, Function
$MOVP
0302 $MOV - v n Transferring the string
=
ML CMLP
En En
0303) CML | DCML v g - L Inverting the data
DCML DCMLP
En En
= o =
BMOYP
0304 BMOV - v i Transferring all data
MMOY MMOYP
En En
S ol 5
P P Transferring the data to several
0305| NMOV |DNMOV v —— — devices
En En
= o =
KCH KCHP
En En
51 51
0306/ XCH | DXCH v = = Exchanging the data
D¥CH DHCHP
En En
51 51
52 52
BxCH BXCHP
En En
0307| BXCH - v a o1 Exchanging all data

3-19

AH500 Programming Manual

Instruction code Pulse .
AP 16-bit 32-bit |instruction Symbol Function
SWAP SWAPP
En En
5 5 Exchange the high byte with the
0308, SWAP |DSWAP v — — low byte
En En
= =
SO SMOYP
En Er
0309| SMOV - v " 'L Transferring the digits
2 2
MONE MOYEPR
En Er
0310 MOVB - v fm ’ :ﬂ Transferring several bits
2 2
® Jump instructions
AP Instruction code Pulse Svmbol Function
16-bit 32-bit |instruction y
an} CIF
0400, CJ - v En En Conditional jump
= =
P
0401 JMP - - al Unconditional jump
=
0402| GOEND - - Jumping to END
® Program execution instructions
Instruction code Pulse q
AP 16-bit 32-bit |instruction Symbol Function
0500 DI - - o Disabling the interrupt
0501 El - - Enabling the interrupt
0502| IMASK - - Controlling the interrupt
® /O refreshing instructions
Instruction code Pulse ;
AP 16-bit | 32-bit |instruction Spiloe)] Function
0600 | REF — v o o Refreshing the I/O
® Convenience instructions
Instruction code Pulse .
AP 16-bit 32-bit |instruction Symbol Function
0700 ALT _ v A LT Alternating between ON and
b OFF
TTMR.
0701| TTMR - - Teaching timer
(al o

3-20

Chapter 3 Instruction Tables

Instruction code Pulse .
AP 16-bit 32-bit |instruction Symbol Function
STMR
0702| STMR - - X 5 Special timer
RAMP
0703| RAMP — — 2 D Ramp signal
52
Wl
RAMP
0704| MTR - - o1 o Matrix input
52
il
ABSD DABSD
En
0705, ABSD | DABSD — 51 ol | o Absolute drum sequencer
52 52
i (el
INCD
0706| INCD — - ! o Incremental drum sequencer
52
il
PID oPID
En
0707| PID DPID - ol of ft D PID algorithm
52 52
53 53
DFIDE
JEn
JFID_ELM VL
£
7
FID_MODE
JFID_MAN
JMOUT_AUTO
JCWCLE
JEc_FEp
1K1 .
0708 — DPIDE - ko ra PID algorithm
qIt
JFID_EQ
JFID_DE
fFID_DIR
JERE._DEW
VWA
VI
Jr10UT
JB1AS
_|I_MV
® | ogic instructions
Instruction code Pulse -
AP 16-bit 32-bit |instruction Symbol Function
WAND WANDP
En (=]
51 D 51]
0800 WAND | DAND v = = Logical AND operation
DANDP DAND
En (=]
51 D 51]
52 52

3-21

AH500 Programming Manual

Instruction code Pulse .
AP 16-bit 32-bit |instruction Syl Function
MAMD MANDP
En En
0801 | MAND — v st of |5t Matrix AND operation
Sz =
M M
WOR WORP
En En
51 o 51
0802 WOR DOR v = = Logical OR operation
DR, DORP
En En
51 W) 51
52 52
MOR MCORP
En En
0803| MOR — v 2 of ft Matrix OR operation
Sz Sz
M M
WROR, WEORP
En En
51 o 51
0804 | WXOR DXOR v = = Logical exclusive OR operation
DHEOR DHORP
En En
51 o 51
52 52
MEOR MXORP
En En
0805| MXOR — v 51 ol st Matrix exclusive OR operation
52 52
) M
WEEIR, ‘WENRP
En En
51 o 51
0806 | WXNR DXNR v = — = — Logical exclusive NOR operation
En En
51 s} 51
52 52
MEMR MEMRP
(= En
0807 | MXNR — v 51 of Matrix exclusive NOR operation
52 =
il il
" " ON: S;&S,7%0
0809 LD& | DLD& — : D182
ol ol OFF: S,&S,=0
52 =
! " ON: S4[S,# 0
0810 LD DLD - b - 22
I | =t ! OFF: S]_|SQ=O
52 52
' " loNss, %0
N: S;™
0811| LDA DLD? — ¢ 12
= = OFF: SlASZ=O
52 52
) " o oN:s&s,#0
0812 | AND& DAND& - ¢ - 916692
ol ol OFF: S,&S,=0
Sz 52
! " ON: S4[S,# 0
0813 | AND DAND - ® - P12

3-22

Chapter 3 Instruction Tables

Instruction code Pulse .
AP 16-bit 32-bit |instruction S, Function
A 128
ON: S;”S,#0
0814 AND” | DANDA? - N ‘'], ¢ e
B i OFF: S;7S,=0
) - ON: $,85,% 0
0815 OR& | DOR& - " 1L : - D1&e=2 T
- - OFF: S1&S,=0
! " ON: S4[S,# 0
0 :
0816 OR| DOR]| - N ' OFF_é Ié 0
52 52 1=z
A [E3
. N ¢
0817 OR* | DORA - P 8':#2 f’é _8
52 52 s oL o2m
® Rotation instructions
Instruction code Pulse n
AP 16-bit 32-bit |instruction =Hirloe, Function
ROR RCORP
En En
C C
0900 ROR | DROR v —— — Rotating to the right
En En
o C
RCR RCRP
En En
C C
P p Rotating to the right with the carry
0901| RCR DRCR v — — flag
En En
o C
ROL ROLP
En En
C C
0902| ROL DROL v - — - — Rotating to the left
En En
u C
RCL RCLP
En En
C C
p p Rotating to the left with the carry
0903| RCL DRCL v — — flag
En En
o C
MER. MBRP
0904 MBR - v i A E ;| | Rotating the matrix bits
) Basic instructions
Instruction code Pulse .
AP 16-bit 32-bit |instruction S, Function
Device Resetting the contact or clearing
1000 RST —(R) the register

3-23

AH500 Programming Manual

Instruction code Pulse .
AP 16-bit 32-bit |instruction Symbol Function
1001| TMR — - 16-bit timer
1002 | TMRH - - 16-bit timer
CNT
1003 CNT — — i 16-bit counter
C
1004 - DCNT — 32-hit counter
® Shift instructions
AP Instruction code Pulse Svmbol Function
16-bit 32-bit |instruction y
SFTR SFTRP
e - - .
1100/ SETR _ v : | o| | Shifting the states of the devices to
n1 n1 the I‘Ight
n2 n2
SFTL SFTLP
En En s :
1101 SETL . v - ol s Shifting the states of the devices to
" nl the left
2 n2
WEFR WSFRP
En En . .
1102 WSER . v . ol ls Shifting the data in the word
i n devices to the right
n2 n2
WSFL WSFLP
En En ips .
1103 WSFL . v - ol |5 Shifting the data in the word
i i devices to the left
nz n2
BFYWR SFWRP Shf . h d d . L.
1104 SEWR _ v En En ifting the data and writing it into
5 Bl the word device
P """ | | shifting the data and reading it
_ v En En ifting the data and reading i
1105) SFRD 8 o from the word device
SFPO SFPOP ;
1106 SEPO _ v . . Reading the latest data from the
5 ol ls data list
SFDEL SFDELP
1107 | SFDEL - v E” 0 En Deleting the data from the data list
n n
SFING SFINSP
1108| SFINS - v En o En Inserting the data into the data list
n n
MBS MESP
1109 MBS - 4 En 5 En Shifting the matrix bits

3-24

Chapter 3 Instruction Tables

Instruction code Pulse .
AP 16-bit 32-bit |instruction Symbol Function
SFR SFRP fe e
Shifting the values of the bits in the
— v
1110) SFR En b En 16-bit registers by n bits to the right
SFL SFLP e M
Shifting the values of the bits in the
—_ v . . .
1111} SFL ﬁn b 5" 16-bit registers by n bits to the left
BSFR BSFRP [.
Shifting the states of the n bit
— v n n
1112] BSFR i R i devices by one bit to the right
BSFL BSFLP [.
Shifting the states of the n bit
—_ v En n
1113 BSFL I b i devices by one bit to the left
MSFR MNEFRP
1114| NSFR - v En En Shifting n registers to the right
N ol In
MSFL MEFLP
1115| NSFL - v En En Shifting n registers to the left
n 0]]
® Data processing instructions
Instruction code Pulse .
AP 16-bit 32-bit |instruction Symbol Function
SER DSER
En En
51 D |S1
52 52
1200, SER | DSER v - . Searching the data
SERP DSERP
En En
51 o] B 3
52 52
] (il
SUM SUMP
En En
s of |5 Number of bits whose states are
1201| SUM DSUM v — — ON
En En
i o] 5
DECO DECOP
1202 DECO —~ v i I Decoder
EMCO EMCOP
1203 ENCO — v i I Encoder
SEGD SEGDP
1204| SEGD — v En En Seven-segment decoding
= o] | &
1205 SORT | DSORT - . T Sorting the data
m2 m2
ZRET IRETP
1206| ZRST — v " - Resetting the zone

L1
Lz

3-25

AH500 Programming Manual

Instruction code Pulse .
AP 16-bit 32-bit |instruction Symbol Function
=iy BONP
(=] Er
S oH= o}
1207| BON DBON v - L Checking the state of the bit
DBEOM DBEONP
Er En
= oll= o
MEAN MEAHP
En En
S ol |E o}
1208| MEAN | DMEAN v — =l | Mean
(=] En
S o] | o}
alas] CCOP
En En
1209, CCD - 4 X olls o | Sum check
ABS ABSP
Er Er
1210 ABS | DABS v - 2 Absolute value
Dags DABSF
En En
o o}
MINY ISP
1211, MINV - v i A .| | Inverting the matrix bits
MERD MERDP
1212 MBRD - v i ol | || Reading the matrix bit
MEWR MEVYRE
1213| MBWR | — v 1 | E || Writing the matrix bit
MEC MBCP h b h h |
En En Counting the bits with the value 0 or
1214| MBC — v s o| | o| |1
DS ISP
En En . . .
1215| DIS - 4 |S 5 |S »| | Disuniting the 16-bit data
LIkl LIMIP
1216, UNI - v - 1E .|| Uniting the 16-bit data
WSLIM WSLMP
En En
S ol s o
1217 WSUM | DWSUM v i i Getting the sum
O ChSLInP
En En
S o] 5 o
1218] BSET _ P [L ™| Setting the bit in the word device to
ON
N ot |n o]

3-26

Chapter 3 Instruction Tables

Instruction code Pulse .

AP 16-bit 32-bit |instruction S, Function

BRET BRSTF

1219| BRST - v En En Resetting the bit in the word device

n D} in]
BKRST EKRSTP
1220| BKRST - v n En Resetting the specified zone
ul o n
LIMIT LIMITP
En En
51 o] 151
52 52 o o
1221 LIMIT DLIMIT v 53 53 Confining the value within the
DLIMIT DLMITF bounds
En En
51 o) =1
52 52
53 53
BAMND BAMDP
En En
51 o} |51
52 52
1222| BAND | DBAND v = = Deadband control
DBAND DBANDP
En En
51 (] =21
52 52
53 53
ZOME ZOMEP
En En
51 o {1
52 52
1223| ZONE | DZONE v = = Controlling the zone
DZOME DZOMEFR
En En
=l ol =1
= 52
53 53
® Structure creation instructions
Instruction code Pulse n
APl 16-bit | 32-bit instruction Symbol Function
FOR
1300| FOR - - Start of the nested loop
]
1301 | NEXT — — HE End of the nested loop
BREAK BREAKF
1302 | BREAK — v - A Terminating the FOR-NEXT loop
P
® Module instructions
Instruction code Pulse]
APl 16-bit | 32-bit instruction Symbol Function
FROM FROMP
En En
] D]
2 m2
m3 M3 .

1400 EROM | DFROM v n i __ Regdmgl the data fr_om the control
oro - register in the special module
m1 p| {m1
mz m2
M3 m3

3-27

AH500 Programming Manual

Instruction code Pulse -
AP 16-bit 32-bit |instruction Syl AL
o TOP
En =
m1 il
m2 m2
m3 3
S = . .
1401 T0 DTO v X X Wnyng the data into the control
o7o oo register in the special module
m2 m2
S &
® Floating-point number instructions
Instruction code Pulse -
APl 16bit | 32-bit |instruction Sl Function
FSIM FSINF
1500 - FSIN v al En Sine of the floating-point number
S (=] S 51 o]
FCOS FCOSE - . _ .
1501 — FCOS v . c Cosine of the floating-point
! ol 5 ol | nUMber
FTAN FTANE . .
1502 — ETAN v " . Tangent of the floating-point
s IE o] | number
FaSIM FASINF . . .
1503 — FASIN v . . Arcsine of the floating-point
- ol ks sl | number
FACOS FACOSE . . .
1504 — FACOS v . . Arccosine of the floating-point
- ol |5 ol | number
FATAM FATAMFE . .
1505 — FATAN v " . Arctangent of the floating-point
s ol |s ol | nUMber
F3IMH FSINHF . .
1506 _ ESINH v e . Hyperbolic sine of the
B ol Is s| | floating-point number
FCOSH FCOSHP . .
1507 — FCOSH v " . Hyperbolic cosine of the
5 o] s o| | floating-point number
FTANH FTANHE .
1508 _ ETANH v e . Hyp_erbohc_ tangent of the
: ol s| | floating-point number
FRAD FRADF -
1509 — FRAD v - . Converting the degree to the
A ol k s| | radian
FDEG FDEGF . .
1510 _ FDEG v - . Converting the radian to the
5 ol s ol | degree
SQR SORF
En En
1511 | SQR DSQR v v s - Square root of the binary number
DSCR DSQRP
En En
S o} S o}
FSQR FSGRE N A
1512 _ FSQR v - » Square root of the floating-point
5 ol |s D number
FE=P FEXPF . .
1513 _ FEXP v . " An exponent of the floating-point
5 ol k o number

3-28

Chapter 3 Instruction Tables

Instruction code Pulse .
APl 16bit | 32-bit instruction SHfileel FUeiol
FLOG FLOGE ith f the fl) .
1514 _ FLOG v :) ;) Logarithm of the floating-point
number
52 52 s
FLM FLMF - .
1515 — FLN v - " ;\Ilatu.ral logarithm of the binary
B ol s o| | floating-point number
FROW FPOWE ¢ the floati]
1516 _ FPOW v : . : i A power of the floating-point
number
52 52
RAND RAMDF
En En
1517 | RAND - v " ol I »| | Random number
52 52
BICR. BSOQRF . _
1518 BSQR | DBSOR v . . Square root of the binary-coded
5 ol |5 o] | decimal number
BSIN BSINE ; : _ f
1519 — BSIN v " . Sine of the binary-coded decimal
s o| |5 o| | number
BCOS BCOSF H H
1520 — BCOS v - . Cosine of the binary-coded
5 ol ks o| | decimal number
BTAN BTANP ; -
1521 _ BTAN v e . Tangent of the binary-coded
< ol ks 5| | decimal number
BASIN BASINE H H
1522 — BASIN v - . Arcsine of the binary-coded
5 ol |5 | | decimal number
BACOS BACOSE H H
1523 _ BACOS v e e Arccosine of the binary-coded
5 olls o| | decimal number
BATAM BATAME .
1524 — BATAN v - . Arctangent of the binary-coded
5 ol ol | decimal number
® Real-time clock instructions
Instruction code Pulse]
APl 16t | 32-bit instruction Symbol Function
TRD TRODF
1600, TRD — v en En Reading the time
o D
TR, TWRE
1601 | TWR — v En En Writing the time
S 5
T+ T+F
En En . .
1602 | T+ — v » ol It »| | Adding the time
52 52
T T-F
En En . .
1603 T- - v " ol | »| | Subtracting the time
52 52
HOUR DHOUR
1604 | HOUR | DHOUR — ;' o B .| |Running-time meter
[5)3 D2

3-29

AH500 Programming Manual

Instruction code Pulse .
AP 16-bit 32-bit |instruction Symbol Function
TCMP TCMPP
En En
51] . .
1605, TCMP — v - I b Comparing the time
53 53
S =
Tace TZCPP
En En
1606 | TZCP — v 1 of ki ol | Time zone comparison
52 52
= =
® Peripheral instructions
Instruction code Pulse]
APl 16bit | 32-bit instruction Symbol Function
TRY DTKY
En En
1700 TKY DTKY - 5 ol Is =l | Ten-key keypad
)] D2
HEY DHEY
En En
1701| HKY DHKY - 51 o1 |s1 o[| Sixteen-key keypad
57 o2l |sz]
03 D3
Do
En
1702| DSW - - ol b1 DIP switch
52 Dz
ARV
1703| ARWS - - D1t Arrow keys
D2
SEGL
En . .
1704 SEGL _ _ ., 5 Seven-segment display with
e latches
® Communication instructions
Instruction code Pulse n
APL " 16.bit | 32-bit instruction Symbol Function
RS
- . ,
1800 RS _ _ - . Transmitting the user-defined
n communication command
FWD
(=} .
1801 FWD _ _ o The AC motor drive runs
2 clockwise.
REV
En .
1802 REV _ _ .. The AC motor drive runs
- counterclockwise.
STOR
1803 STOP - - En The AC motor drive stops.
S
RDST .
1804/ RDST _ _ o Reading the statuses of the AC
n o motor drives

3-30

Chapter 3 Instruction Tables

Instruction code Pulse -
AP 16-bit 32-bit |instruction Symbol Function
e Resetting the abnormal AC
1805 RSTEF _ _ - esetting the abnorma
= motor drives
LR.C
En . . .
1806 LRC — v a 5 Longitudinal parity check
r
CRC
1807 CRC — v En o Cyclic Redundancy Check
(n}
MODRMW
Er
51 . -
1808 MODRW . _ - Reading/Writing the MODBUS
- data
5
RPASS
En .
1811 RPASS . _ . Passing the packet to the
a1 remote device through routing
n
1812 COMRS . _ Transmitting communications
and receiving instructions
® Other instructions
Instruction code | Pulse :
APl 16-bit | 32-bit instruction Symbol Function
1900 = WDT - v oo Lo Watchdog timer
DELAY DELAYP H H
1901 | DELAY _ v . o Delaying the execution of the
s 5 program
GPW .
1902 | GPWM _ _ En General pulse width
o1 52 modulation
52
TIMCHE
1903 |TIMCHK| — - :T o Checking time
52
EPUSH EPUSHP ;
1904 | EPUSH _ v . . Storing the contents of the
b index registers
EFOP EFOPP ; ; ;
1905 | EPOP _ v e - Reading the data into the index
o registers

3-31

AH500 Programming Manual

® String processing instructions

Instruction code Pulse .
APl " 16-bit | 32-bit | instruction Symbol Function
BINDA BINDAP
En En
5 ol |s ol | Converting the singed
2100 | BINDA | DBINDA v decimal number into the
DEINDA DBINDAP ASCII code
En En
s ol |s D
BINHA BINHAP
En En Converting the binary
5 O] & C] | hexadecimal number into
v
2101 | BINHA | DBINHA DBIMHA DBINHAR the hexadecimal ASCII
En En code
5 ol |5 o
BCODA BCODAP
En En Converting the
5 bl |2 D] | binary-coded decimal
v
2102 | BCDDA | DBCDDA DBCDDA DECODAR number into the ASCII
En En code
5 D| J= D
DABIN DABIMF
En En Converting the signed
2103 | DABIN | DDABIN v S op = D] | decimal ASCII code into
DDABIM DOABINP the signed decimal
En En binary number
g ol s o}
HABIM HABINP A
En En Converting the
2104 | HABIN | DHABIN v 5 bj {8 b} | hexadecimal ASCII code
DHABIN DHABINF into the hexadecimal
En En binary number
5 ot s 8]
DABRCD DABGDP i
En En Converting the ASCII
2105 | DABCD DDABCD ¥ : 2B o codeintothe
DDABCD DDABCDP binary-coded decimal
En En number
5 [n] O 11 B]
2106 | SLEN _ v o L Calculating the length of
5 ol s ol |the string
$5TR $5TRP
En En
51 Dl 151]
2107 | $STR | $DSTR v g2 52 Converting the binary
D$STR D$STRP number into the string
En En
51 Dl {51 8]
52 52
AL FwALP
En En
5 D1 S 1
2108 $VAL | $DVAL v D2 ozl | Converting the string into
DEvAL DSVALP the binary number
En En
5 D1 5 D1
Dz Dz

3-32

Chapter 3 Instruction Tables

Instruction code Pulse .
APl “16-bit | 32-bit | instruction Symbol Function
. §FETR e $FSTRP Converting the
2109 | $FSTR - 4 o ol | floating-point number
52 82 into the string
2110 | SEVAL _ v Lo o A Converting the string into
g ol Is the floating-point number
e [, tren The retrieve of the
2111 | $RIGHT - v . o L characters in the string
n n begins from the right.
T L T The retrieve of the
2112 | SLEFT - v . ol |s characters in the string
n n begins from the left.
SMIDR $MIDRP f th
En En Retrieving a part of the
2113 $MIDR | — v o 1B atring gap
52 52
SMIDVY SMIDVP)
2114 $MIDW _ v : . ET th(reipr)]Elcmg a part of the
52 52
$5ER $SERP
En En
2115 | $SER - v 81 o {8t Searching the string
52 52
M M
$RPLC $RPLCP
En En .
_ v 51 o] Jst Replacing the characters
2116 | SRPLC 52 82 in the string
53 53
84 54
$DEL FDELF
2117 | $DEL _ v E:‘ 5 E: Deleting the characters
- - in the string
53 53
$CLR §CLRP
2118 | $CLR — v En En Clearing the string
5 S
FIMG FIMNSP
En En
2119 | $INS - v 81 o} Jet Inserting the string
52 52
53 53
Converting the
. FMoD e FMODR floating-point number
2120 | $SFMOD - 4 » ol s into the binary-coded
52 52 decimal floating-point
number
Converting the
e e FREXPP Binary-coded decimal
2121 |$FREXP - v a1 ol et floating-point number
52 82 into the floating-point

number

3-33

AH500 Programming Manual

® Ethernet instructions
Instruction code Pulse .
APl 16-bit | 32-bit | instruction Symbol Function
S0OPEM SCOPEMP
En En
2200 | SOPEN — v 51 81 Opening the socket
52 52
53 53
SSEND SSEMDP S d h d h h
_ v En En ending the data throug
2201 | SSEND a1 o the socket
52 52
SRCVD SRCVDP R L. th d t
_ v En En eceiving the data
2202 | SRCVD 81 51 through the socket
52 52
SCLOSE SCLOSER
2203 | SCLOSE | — v o o Closing the socket
52 52
MSEMND MSEMDP
En En
2204 | MSEND — v 51 b st Sending the email
52 52
53 53
EMDRYY EMDRWP
En En
51 = . .
Reading/Writing the
— v
2205 | EMDRW i 2 MODBUS TCP data
5 1
n n
Converting the IP address
2906 _ DINTOA v Lo e L TR of the integer type into the
S ol s IP address of the string
type
Converting the IP address
DIMTOA DIMNTOAR H H
of the string type into the
— v .
2207 DIATON En b En IP address of the integer
type
® Memory card instructions
Instruction code Pulse :
AP 16-bit 32-bit | instruction Sz AU
MWRIT MWRITF
En En
c o]
_ v 5 5 Writing the data from the
2300 | MWRIT 212 212 PLC into the memory card
53 53
54 54
MREAD MREADF
En En
C] N v .
Reading the data from the
— v
2301 | MREAD :1 ; memory card into the PLC
52 52
53 53

3-34

Chapter 3 Instruction Tables

Instruction code Pulse .
AP 16-bit 32-bit | instruction Syioel HUREIE
MTWRIT MTWRITP
En En
C C . . .
2302 | MTWRIT _ v . . Writing the string into the
- a1 memory card
52 52
53 53
® Task control instructions
Instruction code Pulse n
APl 16-bit | 32-bit instruction Symbol Function
TEON TEOMP
2400| TKON — v En En Enabling the cyclic task
S S
TKOFF TKOFFP
2401 | TKOFF — v En En Disabling the cyclic task
S 2
® Sequential function charts (SFC) instructions
Instruction code Pulse n
APl 16-bit | 32-bit instruction Symbol Function
2500 |SFCRUN — — Enabling the SFC
2501 | SFCPSE — — Making SFC to pause
2502 | SFCSTP — — Stopping the SFC

3.4.2 Applied Instructions (Sorted Alphabetically)

Instruction code Pulse .
Classificati
assification APL 16 bit | 32-bit 64-bit | instruction Function
0101 |- D- _ v Subtraction of binary
numbers
0114 |$+ — - v Linking the strings
2118 |$CLR - - v Clearing the string
2117 | $DEL _ _ v Deleting the characters in
the string
Converting the
Symbol 2109 |$FSTR - - v floating-point number into
the string
_ _ Converting the string into
2110 | $FVAL the floating-point number
2119 |$INS — — Inserting the string
The retrieve of the
2112 |$LEFT — — v characters in the string
begins from the left.

3-35

AH500 Programming Manual

Instruction code

Pulse

Classificati i
assification AP 16-bit 32-bit 64-bit instruction Function
2106 | $LEN . _ v Calculating the length of
the string
2113 | $MIDR . _ v Retrieving a part of the
string
2114 | $MIDW _ _ v Re_placmg a part of the
string
0302 |$MOV - - v Transferring the string
The retrieve of the
2111 |$RIGHT - - v characters in the string
begins from the right.
2116 |$RPLC _ _ v Replacing the characters
in the string
2115 |$SER - - v Searching the string
Converting the binary
- v
2107 $STR DISTR number into the string
Converting the string into
- v
2108 |$VAL DIVAL the binary number
0102 | * D _ v Multiplication of binary
numbers
0103 |/ D/ _ v Division of binary
numbers
0100 |+ D+ _ v Addition of binary
numbers
1210 |ABS DABS - v Absolute value
0705 ABSD |DABSD - — |Absolute drum
sequencer
Alternating between ON
— — v
0700 |ALT and OEE
Comparing the strings
0046 |AND$< — - — ON: S;<S;
OFF: 51252
Comparing the strings
0047 |AND$<= — — — ON: S;=S,
OFF: Sl > Sg
Comparing the strings
A 0043 | AND$<> - - _ ON: S,#S,
A OFF:S;:=5,
Comparing the strings
0042 |AND$= — — — ON: S =S,
OFF S;#S;
Comparing the strings
0044 |ANDS$> — - — ON:S;> S,
OFF: 51§52
Comparing the strings
0045 |AND$>= — — — ON: S;2S,
OFF: Sl < Sg
ON: 51&52 70
0812 |AND& DAND& - -
OFF: S;&S,=0

3-36

Chapter 3 Instruction Tables

Classification

AP|

Instruction code

16-bit

32-bit

64-bit

Pulse
instruction

Function

0814

AND”?

DAND”?

ON: SlASZ 70
OFF: S,AS,=0

0813

AND|

DAND)|

ON: S4|S,#0
OFF: S4|S2=0

0010

AND<

DAND<

Comparing the values
ON: Sl < Sz
OFF: S;=S,

0011

AND<=

DAND<=

Comparing the values
ON: S;<S,

OFF: S > S,

0007

AND<>

DAND<>

Comparing the values
ON: S;#S,

OFF: S]_ = 82

0006

AND=

DAND=

Comparing the values
ON: S]_ = 82
OFF: S1#S,

0008

AND>

DAND>

Comparing the values
ON: S;>S,
OFF: S;5S,2

0009

AND>=

DAND>=

Comparing the values
ON: S;=S,

OFF: S;:<S,

1703

ARWS

Arrow key input

0109

Subtraction of
binary-coded decimal
numbers

Sl'SZZD

0110

B*

DB*

Multiplication of
binary-coded decimal
numbers

Sl*SZZD

0111

B/

DB/

Division of binary-coded
decimal numbers

S]_/SZZD

0108

B+

DB+

Addition of binary-coded
decimal numbers

Sl+52=D

1523

BACOS

Arccosine of the
binary-coded decimal
number

1222

BAND

DBAND

Deadband control

1522

BASIN

Arcsine of the
binary-coded decimal
number

1524

BATAN

Arctangent of the
binary-coded decimal
number

3-37

AH500 Programming Manual

Classification

AP|

Instruction code

16-bit

32-bit

64-bit

Pulse
instruction

Function

0200

BCD

DBCD

v

Converting the binary
number into the
binary-coded decimal
number

2102

BCDDA

DBCDDA

Converting the
binary-coded decimal
number into the ASCII
code

1520

BCOS

Cosine of the
binary-coded decimal
number

0201

BIN

DBIN

Converting the
binary-coded decimal
number into the binary
number

2100

BINDA

DBINDA

Converting the singed
decimal number into the
ASCII code

2101

BINHA

DBINHA

Converting the binary
hexadecimal number into
the hexadecimal ASCII
code

0113

Subtraction of binary
numbers in blocks

0112

BK+

Addition of binary
numbers in blocks

0214

BKBCD

Converting the binary
numbers in blocks into
the binary-coded decimal
numbers in blocks

0215

BKBIN

Converting the binary
numbers in blocks into
the binary-coded decimal
numbers in blocks

1220

BKRST

Resetting the specified
zone

0304

BMOV

Transferring all data

1207

BON

Checking the state of the
bit

1302

BREAK

Terminating the
FOR-NEXT loop

1219

BRST

Resetting the bit in the
word device

1218

BSET

Setting the bit in the word
device to ON

1113

BSFL

Shifting the states of the
n bit devices by one bit to
the left

1112

BSFR

Shifting the states of the
n bit devices by one bit to
the right

1519

BSIN

Sine of the binary-coded
decimal number

3-38

Chapter 3 Instruction Tables

Instruction code

Pulse

Classificati i
assification AP 16-bit 32-bit 64-bit instruction Function
Square root of the
1518 ' BSQR DBSQR - v binary-coded decimal
number
Tangent of the
1521 |BTAN — — v binary-coded decimal
number
0307 |BXCH — — v Exchanging all data
1209 |CCD - - v Sum check
Checking the address of
0065 |CHKADR - - - the contact type of
pointer register
0400 |CJ — — v Conditional jump
Transmitting
1812 |COMRS — — — communicatons and
receiving instrucitons
0303 |CML DCML — v Inverting the data
0054 |CMP DCMP — v Comparing the values
0063 | CMPT< _ _ Comparing the tables
ON: <
0064 | CMPT<= _ _ v Comp<ar|ng the tables
C ON: =
Comparing the tables
— — v
0060 |CMPT<> ON: #
0059 |CMPT= _ _ v Comparing the tables
ON: =
0061 | CMPT> _ _ v Comparing the tables
ON: >
Comparing the tables
= —_ - v
0062 |CMPT> ON: =
1003 |CNT — — - 16-bit counter
0219 | COLM DCOLM _ v Converting a line of data
into a column of data
_ _ _ Cyclic Redundancy
1807 |CRC Check
Converting the ASCII
2105 |DABCD | DDABCD - v code into the
binary-coded decimal
number
Converting the signed
2103 |DABIN DDABIN - v |decimal ASCI code into
the signed decimal binary
number
D 1004 |DCNT — — - 32-bit counter
0116 |DEC DDEC _ v Subtracting one from the
binary number
1202 |DECO — — v Decoder
1901 | DELAY _ _ v Delaying the execution of
the program
0301 |— _ DEMOV v Transferring the 64-bit
floating-point number
0500 |DI - - - Disabling the interrupt

3-39

AH500 Programming Manual

Instruction code

Pulse

Classificati _ : .
assification AP 16-bit 32-bit 64-bit instruction Function
Converting the IP
. _ v address of the string type
2207 | DIATON into the IP address of the
integer type
Converting the IP
address of the integer
— — v
2206 | DINTOA type into the IP address
of the string type
1215 |DIS — — v Disuniting the 16-hit data
Division of binary
0118 |DIV16 Diva2 - Y numbers for 16-bit/32-bit
0708 |— DPIDE - - PID algorithm
1702 |DSW - - - Digital switch input
0501 |EI - - - Enabling the interrupt
Reading/Writing the
— — v
2205 | EMDRW MODBUS TCP data
E 1203 |ENCO — — v Encoder
1905 |EPOP . _ v Reading the data into the
index registers
1904 | EPUSH . _ v Storing the contents of
the index registers
Subtraction of
0105 - F- DF- v floating-point numbers
Sl-SZZD
Multiplication of
0106 — F* DF* 4 floating-point numbers
Sl*SZZD
Division of floating-point
0107 - F/ DF/ v numbers
81/82:D
Addition of floating-point
0104 - F+ DF+ v numbers
S]_"'SZZD
1504 . FACOS |— v Arccosine of the
floating-point number
E Comparing the
floating-point numbers
0028 - FAND< DFAND< — ON: S, <S,
OFF: 51252
Comparing the
floating-point numbers
0029 - FAND<= |DFAND<= — ON: §,<S,
OFF: Sl > Sg
Comparing the
floating-point numbers
0025 — FAND<> DFAND<> — ON: S,;#S,
OFF: Sl = SZ
0024 — |FAND= | DFAND= _ | Comparing the
floating-point numbers

3-40

Chapter 3 Instruction Tables

Classification

AP|

Instruction code

16-bit

32-bit 64-bit

Pulse
instruction

Function

ON: Sl = Sz
OFF: 51#52

0026

FAND> DFAND>

Comparing the
floating-point numbers
ON: Sl > Sz

OFF: 81§52

0027

FAND>= |DFAND>=

Comparing the
floating-point numbers
ON: S;2S,

OFF: S;:<S,

1503

FASIN —

Arcsine of the
floating-point number

1505

FATAN —

Arctangent of the
floating-point number

0212

FBCD —

Converting the binary
floating-point number into
the decimal floating-point
number

0213

FBIN —

Converting the decimal
floating-point number into
the binary floating-point
number

0056

FCMP —

Comparing the
floating-point numbers

1501

FCOS —

Cosine of the
floating-point number

1507

FCOSH —

Hyperbolic cosine of the
floating-point number

1510

FDEG —

Converting the radian to
the degree

1513

FEXP -

An exponent of the
floating-point number

0205

FINT DFINT

Converting the 64-bit
floating-point number into
the binary integer

0022

FLD< DFLD<

Comparing the
floating-point numbers

ON: S;:<S,
OFF: S,>S,

0023

FLD<= DFLD<=

Comparing the
floating-point numbers

ON: S;5S,
OFF: S > S,

0019

FLD<> DFLD<>

Comparing the
floating-point numbers
ON: S;#S,

OFF: Sl = Sz

0018

FLD= DFLD=

Comparing the
floating-point numbers

3-41

AH500 Programming Manual

Instruction code Pulse .
Classificati . .
assification AP 16-bit 32-bit 64-bit instruction el

ON: Sl = Sg
OFF: S]_#Sg

Comparing the
floating-point numbers
0020 - FLD> DFLD> -_ ON Sl > 52

OFF: S;<S,

Comparing the
floating-point numbers

ON: 51252
OFF: S;:<S,

0021 — FLD>= DFLD>

Natural logarithm of the
1515 — FLN — v binary floating-point
number

Logarithm of the

_ - v
1514 FLOG floating-point number

Converting the binary
0202 |FLT DFLT — v integer into the binary
floating-point number

Converting the binary
0203 |FLTD DFLTD — v integer into the 64-bit
floating-point number

Converting the
floating-point number into
the binary-coded decimal
floating-point number

2120 |FMOD - - v

Reversing the sign of the
0211 |FNEG — — v 32-bit floating-point
number

1300 |FOR - - - Start of the nested loop

Comparing the
floating-point numbers
ON: Sl < Sg

OFF: 51252

0034 - FOR< DFOR< -

Comparing the
floating-point numbers
0035 - FOR<= DFOR<= — ON: Slész

OFF:S:> S,

Comparing the
floating-point numbers
0031 - FOR<> DFOR<> - ON: S,;#S,

OFF: Sl = SZ

Comparing the
floating-point numbers

ON: Sl = SZ
OFF: S,#S,

0030 - FOR= DFOR= -

Comparing the
0032 — FOR> DFOR> — floating-point numbers
ON:S;:>S,

3-42

Chapter 3 Instruction Tables

Instruction code

Pulse

Classificati _ : .
assification AP 16-bit 32-bit 64-bit instruction Function
OFF: 51§52
Comparing the
floating-point numbers
0033 - FOR>= DFOR>= - ON: S;=S,
OFF: S;:<S,
1516 — FPOW - v |Apowerofthe
floating-point number
1509 _ FRAD _ v Converting the degree to
the radian
Converting the
2121 | FREXP _ _ v Binary-coded decimal
floating-point number into
the floating-point number
Reading the data from
1400 |FROM DFROM - v the control register in the
special module
1500 _ ESIN _ v Sine of the floating-point
number
1506 _ ESINH _ v Hyperbolic sine of the
floating-point number
Square root of the
— — v
1512 FSQR floating-point number
1502 — FTAN - v |Tangentof the
floating-point number
1508 _ FTANH _ v Hyp.erbol|c. tangent of the
floating-point number
1801 | EWD _ _ _ The AC motor drive runs
clockwise.
0057 _ E7CP _ v Floating-point zone
comparison
Converting the Gray
0209 |GBIN DGBIN — v code into the binary
number
0402 |GOEND - - - Jumping to END
G .
1902 | GPWM _ _ _ General pulse width
modulation
Converting the binary
0208 |GRY DGRY — v number into the Gray
code
Converting the
2104 HABIN DHABIN - v |hexadecimal ASCII code
into the hexadecimal
H binary number
1701 |HKY DHKY - - Hexadecimal key input
1604 |HOUR DHOUR — — Running-time meter
0502 |IMASK — — — Controlling the interrupt
0115 |INC DINC _ v Adding one to the binary
| number
0706 | INCD _ _ _ Incremental drum
sequencer
0204 |INT DINT - v Converting the 32-bit

3-43

AH500 Programming Manual

Instruction code Pulse .
Classificati . .
assification AP 16-bit 32-bit 64-bit instruction elaislela

floating-point number into
the binary integer

J 0401 |JMP - - - Unconditional jump

Comparing the strings
0040 |LD$< - — — ON: S;<S,
OFF: S;=S,

Comparing the strings
0041 |LD$<= — — — ON: S;=S,
OFF: S:> S,

Comparing the strings
0037 |LD$<> — — — ON: S;#S,
OFF: Sl = SZ

Comparing the strings
0036 LD$= - - - ON: Sl = SZ
ON: S;#S,

Comparing the strings
0038 LD$> - - - ON: Sl > SZ
OFF: S;=S,

Comparing the strings
0039 |LD$>= — — — ON: S;2S,
OFF: S:< S,

ON: S,&S,#0

0809 |LD& DLD& — —
OFF: 51&52=O

L ON: S]_ASZ 70
0811 |LD* DLD” — —
OFF: S17S,=0

ON: S]_|82 70

0810 |LD| DLD| - - OFF: 6.5,20

Comparing the values

0004 |LD< DLD< — — ON: S, <S,
OFF: S;=S,

Comparing the values
0005 |LD<= DLD<= — — ON: S;55,
OFF: S:> S,

Comparing the values
0001 |LD<> DLD<> — - ON: S:#S,
OFF: Sl = SZ

Comparing the values
0000 |LD= DLD= - - ON: S; =S,
OFF: S;#S,

Comparing the values

0002 |LD> DLD> - — ON: S;>S;
OFF: S;<S,

0003 |LD>= DLD>= - - Comparing the values

3-44

Chapter 3 Instruction Tables

Instruction code

Pulse

Classificati _ : .
assification AP 16-bit 32-bit 64-bit instruction Function
ON: 51252
OFF: S;:<S,
Confining the value
- v
1221 |LIMIT DLIMIT within the bounds
0218 |LINE DLINE - v |Converting a column of
data into a line of data
1806 |LRC — — — Longitudinal parity check
0801 |MAND — — v Matrix AND operation
1214 |MBC _ _ v Counting the bits with the
value O or 1
0904 |MBR — — v Rotating the matrix bits
1212 |MBRD — — v Reading the matrix bit
1109 |MBS — — v Shifting the matrix bits
1213 |MBWR — — v Writing the matrix bit
0058 |MCMP — — v Matrix comparison
M 1208 |MEAN DMEAN — v Mean
1211 |MINV — — v Inverting the matrix bits
Converting the 16-bit
0206 |MMOV — — v value into the 32-bit
value
_ _ _ Reading/Writing the
1808 | MODRW MODBUS data
0803 |MOR — — v Matrix OR operation
0300 |MOV DMOV — v Transferring the data
0310 |MOVB - - v Transferring several bits
Reading the data from
2301 |MREAD - - - the memory card into the
PLC
2204 |MSEND — — v Sending the email
0704 |MTR — — — Matrix input
2302 | MTWRIT _ _ _ Writing the string into the
M memory card
Multiplication of binary
— v
0117 IMUL16 MUL32 numbers for 16-bit/32-bit
Writing the data from the
2300 |MWRIT - - - PLC into the memory
card
0807 | MXNR _ _ v Matrix exclusive NOR
operation
0805 |MXOR _ _ v Matrix exclusive OR
operation
0210 |NEG DNEG - v Two’s complement
1301 |NEXT — — — End of the nested loop
N 0305 | NMOV DNMOV _ v Transferring the data to
several devices
1115 | NSEL _ _ v i?tlftlng n registers to the

3-45

AH500 Programming Manual

Classification

AP|

Instruction code

16-bit

32-bit

64-bit

Pulse
instruction

Function

1114

NSFR

v

Shifting n registers to the
right

0052

OR%$<

Comparing the strings
ON: S;:<S,
OFF: 51252

0053

OR%$<=

Comparing the strings
ON: S;=S,

OFF:S;:> S,

0049

OR$<>

Comparing the strings
ON: S;#S,

OFF: Sl = SZ

0048

OR$=

Comparing the strings
ON: Sl = SZ
OFF: S1#S,

0050

ORS$>

Comparing the strings
ON: S;>S,
OFF: S;=S,

0051

ORS$>=

Comparing the strings
ON: S;=S,

OFF: S11<S,2

0815

OR&

DOR&

ON: S,&S,#0
OFF: S,&S,2=0

0817

OR~

DORA

ON: S,7S,# 0
OFF: S]_ASZZO

0816

OR]

DOR|

ON: S]_|82 70
OFF: $,/S,=0

0016

OR<

DOR<

Comparing the values
ON: S;<S,
OFF: S;2S,

0017

OR<=

DOR<=

Comparing the values
ON: S;5S,

OFF: S:> S,

0013

OR<>

DOR<>

Comparing the values
ON: S]_#Sg

OFF: Sl = SZ

0012

OR=

DOR=

Comparing the values
ON: Sl = Sg
OFF: S]_#Sg

0014

OR>

DOR>

Comparing the values
ON: S;>S,
OFF: S;<S,

0015

OR>=

DOR>=

Comparing the values
ON: 51252

3-46

Chapter 3 Instruction Tables

Instruction code

Pulse

Classificati _ : .
assification AP 16-bit 32-bit 64-bit instruction Function
OFF: Sll < Sz
P 0707 |PID - - - PID algorithm
0703 |RAMP - - - Ramp signal
1517 |RAND — — Random number
0903 |RCL DRCL _ Rotating to the left with
the carry flag
0901 |RCR DRCR _ v Rotating to the right with
the carry flag
Reading the statuses of
1804 | RDST the AC motor drives
0600 |REF — — v Refreshing the 1/0
1802 |REV _ _ _ The AC motor drive runs
counterclockwise.
Converting the 32-bit
0207 |RMOV — — v value into the 16-bit
R value
0902 |ROL DROL — v Rotating to the left
0900 |ROR DROR — v Rotating to the right
Passing the packet to the
1811 |RPASS — — — remote device through
routing
Transmitting the
1800 RS _ _ _ user-defined
communication
command
1000 | RST _ _ _ Resetting the contact or
clearing the register
1805 |RSTEE _ _ _ Resetting the abnormal
AC motor drives
0216 |SCAL - - v Scale value operation
2203 |SCLOSE — — v Closing the socket
0217 |SCLP DSCLP _ v Parameter type of scale
value operation
1204 |SEGD _ _ v Seven-segment
decoding
1704 | SEGL _ _ _ Seven-segment display
with latches
1200 |SER DSER — v Searching the data
S 2500 |SFCRUN — - — Enabling the SFC
2501 |SFCPSE — — — Making SFC to pause
2502 |SFCSTP — — — Stopping the SFC
1107 | SFDEL _ _ v Deleting the data from
the data list
1108 | SFINS _ _ v Inserting the data into the
data list
Shifting the values of the
1111 |SFL — — v bits in the 16-bit registers
by n bits to the left
1106 |SFPO — - v Reading the latest data

3-47

AH500 Programming Manual

Instruction code

Pulse

Classificati i
assification AP 16-bit 32-bit 64-bit instruction Function
from the data list
Shifting the values of the
1110 |SFR - - v bits in the 16-bit registers
by n bits to the right
Shifting the data and
1105 |SFRD — — v reading it from the word
device
1101 | SETL _ _ v Shifting the states of the
devices to the left
1100 |SETR _ _ v Shifting the states of the
devices to the right
Shifting the data and
1104 |SFWR — — v writing it into the word
device
0309 |SMOV — — v Transferring the digits
2200 |SOPEN — — v Opening the socket
1205 |SORT DSORT - - Sorting the data
1511 | SOR DSQR . v Square root of the binary
number
Receiving the data
— — v
2202 |SRCVD through the socket
2201 | SSEND _ _ v Sending the data through
the socket
0702 |STMR - - - Special timer
1803 | STOP _ _ _ The AC motor drive
stops.
1201 | SUM DSUM _ v Number of bits whose
states are ON
Exchange the high byte
— v
0308 |SWAP DSWAP with the low byte
1603 |T- — — v Subtracting the time
1602 [T+ — — v Adding the time
1605 |TCMP — — v Comparing the time
1903 |TIMCHK - - - Checking time
2401 | TKOFF — — v Disabling the cyclic task
2400 |TKON — — v Enabling the cyclic task
1700 |TKY DTKY - - Ten key input
T 1001 |TMR - - - 16-bit timer
1002 |TMRH - - - 16-bit timer
Writing the data into the
1401 |TO DTO v control register in the
special module
1600 |TRD — — v Reading the time
0701 | TTMR — — — Teaching timer
1601 |TWR — — v Writing the time
1606 |TZCP - - v Time zone comparison
U 1216 |UNI — — v Uniting the 16-bit data
W 0800 |WAND DAND — v Logical AND operation
1900 |WDT — — v Watchdog timer

3-48

Chapter 3 Instruction Tables

Instruction code Pulse .
Classificati . .
assification AP 16-bit 32-bit 64-bit instruction Function
0802 |WOR DOR — v Logical OR operation
Shifting the data in the
— — v
1103 |WSFL word devices to the left
Shifting the data in the
— — v
1102 |WSFR word devices to the right
1217 |WSUM DWSUM — v Getting the sum

Logical exclusive NOR

AN

0806 |WXNR DXNR —

operation
0804 |WXOR DXOR _ v Logical exclusive OR
operation
X 0306 |XCH DXCH — v Exchanging the data
0055 |zCP DzZCP — v Zone comparison
z 1223 |ZONE DZONE — v Controlling the zone
1206 |ZRST — — v Resetting the zone

3-49

AH500 Programming Manual

MEMO

3-50

Chapter 4 Instruction Structure

Table of Contents

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Composition of Applied INStrUCLIONScoevviiiieeeeeieeeeecee e 4-2
Restrictions on the Use of the INStructions............cccooooviiiiiiiiiiiiinneeeee, 4-5
INAEX REQISLEIS ...t e e e e e e e e e e e e e e e e aaes 4-6
POINtEr REGISTEIS ... it 4-7
Pointer Registers Of TIMEISccoviieiiiciee e 4-9
Pointer Registers of 16-bit COUNLErScooiiiiiiiiiiii e 4-10
Pointer Registers of 32-bit COUNLErScccoviviiiiiiiiiiee e 4-11

4-1

AH500 Programming Manual

4.1 Composition of Applied Instructions

Every instruction has its own instruction code and API nhumber. The APl number of the instruction in
the following table is 0300, and the instruction code is MOV, whose function is transferring the data.

API Instruction code Operand Function

0300 D| MOV |P S,D Transferring the data

Device | X | Y| M| S| T|C|HC|D| L [SM|SR| E |PR| K |16#| “$" | DF

S [] L] L] L] L] [] L] [] (¢] [] [] [] (¢]

D ° ° ° ° ° ° ° ° o) °

Pulse instruction |16-bit instruction (5 steps)| 32-bit instruction (5 steps)

AH500 AH500 AH500
Symbol:
MOy MOVP
En En S : Data source Word/Double word
5 ol ls D
oMoy DMOVP
En En D : Data destination Word/Double word
5 ol ls D
1. The devices used by the instruction are listed in the operand column. S, D, n, and m are used

as the operands according to their functions. When more than one operand is used, and these
operands share the same function, they are suffixed with numbers. For example, S;, S,, and
etc.

If the instruction can be used as the pulse instruction, the letter P is added in back of the
instruction. If the 16-bit instruction can be used as the 32-bit instruction, the letter D is added in
front of the 16-bit instruction to form the 32-bit instruction. For example, “D***P” in which “***" is
an instruction code.

Among the operands, the device PR is the pointer register Please refer to ISPSoft User
Manual and section 4.4 for more information about the pointer register.

If users want to use an instruction in the function block, and the timer, the 16-bit counter, and
the 32-bit counter are supported among the operands, users have to use the pointer register of
the timer, the pointer register of the 16-bit counter, and the pointer register of the 32-bit counter.
Please refer to sections 4.5~4.7 for more information.

Among the operands, the 32-bit single-precision floating-point numbers are notated by F,
whereas the 64-bit double-precision floating-point numbers are notated by DF.

The solid circle e indicates that the device can be modified by an index register, and the hollow
circle o indicates that the device can not be modified by an index register. For example, the
data register designated by the operand S can be modified by an index register.

The applicable model is indicated in the table. Users can check whether the instruction can be
used as the pulse instruction, the 16-bit instruction, the 32-bit instruction, or the 64-bit
instruction according to the information in the table.

The description of the symbols representing the instruction MOV in ISPSoft:

MOV, MOVP, DMOV, and DMOVP: Instruction codes

En: Enable

S: The data source (The applicable format of the operand is a word/double word.)

D: The data destination (The applicable format of the operand is a word/double word.)

The composition of applied instructions:

Some applied instructions are composed of instruction codes. For example, the instructions El, DI,
WDT, and etc. however, most applied instructions consist of instruction codes and several

4-2

Chapter 4 Instruction Structure

operands.

Every applied instruction has its own APl number and instruction code. For example, the instruction

code of APIO300 is MOV (transferring the data).

Entering the instruction directly: Users can enter the instruction by means of ISPSoft. For the
instruction MOV, users only need to enter the instruction name and
the operands to designate “MOV DO D1".

k| MOy

Do {5 Dl-D1

Entering the instruction by dragging: Users can drag the instruction MOV from APIs in ISPSoft to
the area where the ladder diagram can be edited.
Entering the instruction by the toolbar: Users can click API/FB Selection on the toolbar in ISPSoft,
and then choose API. Finally, they can choose the
instruction MOV in Data Transfer. The operands are extra

designated.
MO MOV
— | 4
772 5 o] M

Source operand
S If there is more than one source operand, these source operands are represented by S;,

S,, and etc.

Destination operand
D If there is more than one destination operand, these destination operand is represented

by D;, D,, and etc.
If the operand only can designate the constant K/H or the register, it is represented by m, m;, m,,
n, Ny, Or N,.

The length of the operand (the 16-bit instruction, the 32-bit instruction, or the floating-point
number instruction):

The 16-bit instruction or the 32-bit instruction

The values of the operands can be divided into the 16-bit values and the 32-bit values. Accordingly,
in order to process data of difference lengths, the instructions are divided into the 16-bit instructions
and the 32-bit instructions. To separate the 32-bit instruction from the 16-bit one, a D is added in
front of the 16-bit instruction.

16-bit instruction MOV

M1 MoV When M1 is ON, the data in
—| I En DO is transferred to D1.
po |5 Dl-p1
32-bit instruction DMOV
™ e When M1 is ON, the data in
[o (D1, DO) is transferred to (D3,
U D2).
po {5 Dbz

The floating-point number instruction

The floating-point number instructions can be divided into the 32-bit floating-point number
instructions and the 64-bit floating-point number instructions, which correspond to the
single-precision floating-point number instructions and the double-precision floating-point number
instructions respectively. Users can refer to chapter 2 for more information about the floating-point

numbers.

4-3

AH500 Programming Manual

The values of the operands used in the instructions can be divided into the 32-bit values and the
64-bit values. Accordingly, in order to process data of difference lengths, the instructions are divided
into the 32-bit instructions and the 64-bit instructions. To separate the 64-bit instruction from the
32-bit one, a D is added in front of the 32-bit instruction.

32-bit single-precision floating-point number instruction F+

NETWORK 1
When X0.0 is ON, the data in
™ B (D11, D10) and (D21, D20) is
P e ol ps0 transferred to (D31, D30).
pz20 |52

64-bit double-precision floating-point number instruction DF+

NETWORK 1 When X0.0 is ON, the data in
(D13, D12, D11, D10) and
Xos A (D23, D22, D21, D20) is
11 — ol b3o transferred to (D33, D32, D31,
o202 D30).

The continuous execution of the instruction and the pulse execution of the instruction:

1. The execution of the instructions can be divided into the continuous execution and the pulse
execution. When the instruction is not executed, the time needed to execute the program is
shorter. Therefore, using the pulse instruction in the program can lessen the scan cycle.

2. The pulse function allows the related instruction to enable the rising edge-triggered control
input. The instruction is ON within one scan cycle.

3. If the control input stays ON, and the related instruction is not executed, the control input has
to be switched from OFF to ON again in order to execute the instruction.

4. The pulse instruction:

Pulse execution When M1 is switched from
OFF to ON, the instruction
M1 MOVP MOVP is executed once. The
_| I En instruction is not executed
pofs o|l-pz2 any more within the scan

cycle. Therefore, it is called
the pulse instruction.
Continuous execution Whenever M1 is ON during
the scan cycle, the instruction

M1 MOV MOV is executed once.

I I En Therefore, the instruction is

Do -5 Dl-p1 called the continuous
instruction.
When the conditonal contact M1 is OFF, the instruction is not executed, and the value in the
destination operand D does not change.
The objects that the operands designate:

Input relay: X0.0~X511.15 or X0~X511
Output relay: Y0.0~Y511.15 or YO~Y511
Internal relay: MO~M8191

Stepping relay: S0~S2047

Timer: TO~T2047

16-bit counter: CO~C2047

32-bit counter: HCO~HC63

Data register: DO~D65535 or D0.0~D65535.15
Link register: LO~L65535 or L0.0~D65535.15
Special auxiliary flag: SM0~SM2047

Special data register: SRO~SR2047

12. Index register: EO~E31

©CeNoOkrWNE

ol
= o

4-4

Chapter 4 Instruction Structure

13.
14.
15.
16.
17.

18.
19.

20.

21.

22.

PS

Pointer register: PRO~PR15

Pointer register of the timer: TRO~TR7

Pointer register of the 16-bit counter; CRO~CR7

Pointer register of the 32-bit counter; HCRO~HCR7

Constant: The decimal constants are notated by K, and the hexadecimal constants are notated
by 16#.

String: “$”

Floating-point number: The single-precision floating-point numbers are notated by F, and the

double-precision floating-point numbers are notated by DF.

The length of the data in one register is generally 16 bits. If users want to store the 32-bit data

in the register, they have to designate two consecutive registers.

If the operand used in the 32-bit instruction designates DO, the 32-bit data register composed

of (D1, DO) is occupied. D1 represents the higher 16 bits, and DO represents the lower 16 bits.

The same rule applies to the timer and the 16-bit counter. -

When the 32-bit counter HC is used as the data register, it is only can be designated by the
operand used in the 32-bit instruction.

. Please refer to chapter 2 for more information about devices.

4.2 Restrictions on the Use of the Instructions

The instructions which only can be used in the function blocks

AP10065 CHKADR, FB_NP, FB_PN, NED, ANED, ONED, PED, APED, and OPED

The instructions which can not be used in the interrupt tasks

GOEND

The instructions which are not supported in the function blocks

LDP, ANDP, ORP, LDF, ANDF, ORF, PLS, PLF, NP, PN, MC/MCR, GOEND, and all pulse
instructions in applied commands

If users want to use some of the instructions mentioned above, they can use the substitute
instructions.

Instruction which can not be used in the Substitute instruction in the function
function block block

LDP/ANDP/ORP PED/APED/OPED
LDF/ANDF/ORF NED/ANED/ONED
PLS -
PLF -
NP FB_NP
PN FB_PN
MC -
MCR -
All pulse instructions in applied commands Note 1

Note 1: Pulse instructions can not be used in the function blocks. If users want to get the
function of the pulse instruction in the function block, they can refer to the following
example.

Example:

1.

2.
3.
4.

First, declare 10 bit variables tempBit[10] used in the system.

When StartBitl is switched from ON to OFF, network 1 executes the instruction MOV once.
When StartBitl is switched from OFF to ON, network 2 executes the instruction MOV once.
The variable tempBit used in the system can not be used repeatedly.

4-5

AH500 Programming Manual

Local Symbols
Class Identifiers Address Trype... Initial Walue Identifier Coraraent...
b VAR ternpBit NI& [Auta] AFRAY[10] OF BOOL | [I0{FALSE)
VAR StartBitl NI& [Auta] BOOL Mis
VAR Datal NI& [Auta] WORD Mis
VAR Diata NI& [Auta] WORD Mis
— -~
Hetwork 1
NED MOV
Q En
StartBit] —31 Diatal —3 DDataz
tempBit[0] —52
Hetwork 2
StartBitl tempBit[1] MOV
|] |] E
(. {1 o
Datal 3 D'—Data2

4.3 Index Registers

The index register is the 16-bit data register. It is like the general register in that the data can be
read from it and written into it. However, it is mainly used as the index register. The range of index
registers is EO~E13.
The index register is used as follows.
1. Using the register name to modify the device

When MO is ON, E0=10, DO@EO=D (0+10)=D10, and D1=D10.

NETWORE 1
Mo MO
| I En
1045 ClEn
MY
En
Do@En =) |

When MO is ON, E0=10, E1=17, DA@EO0=D (1+10)=D11, and the bit part 1@E1=(1+17)=18.
However, the maximum bit number is 15. Since m=18/16=1 and n=18%16=2 (getting the
remainder), the last modification result is D (11+m).n=D12.2. D12.2 is ON.

NETWORE 1
Mo rCHY
| I En
105 Dl—Fo
MOy
En
17 45 Cl-E1
D1@ED. 1@E1

4-6

Chapter 4 Instruction Structure

2.

When MO is ON, E0O=10, and M1@EO=M (1+10)=M11. M11 is ON.

NETWORE 1
Mo MO
| | E
I n
105 Ul-Eo
M1@ED

Declaring the variables first, and then modifying the device

® Declare the three variables StartBit, Varl, and Var2 in ISPSoft.
The type of StartBit is the Boolean array, and its size is 2 bits. The range is from
StartBit[0] to StartBit[1].
The type of Varl is the word array, and its size is 11 words. The range is from Varl[0] to
Varl[10].
The type of Var2 is the word, and its size is one word.
Local Ssrobols
Class Identifiers Address Trype... Initial Value Identifier Corarent...
VAR StartBit & [Auta] ARBELY [OF BOOL |HfA
VAR Warl & [Auta] ARBELY[11] OF WORD HfA
VAR Warl & [Auta] WORD s
® When StartBit[0] is ON, E0=10, E1=1, Varl[0]@EO=Varl[10], Var2=Var1[10], and
StrartBit[0]@E1=StartBit[1]. StartBit[1] is ON.
NETWORK 1
StartBit[0] MOY
| | E
I M
10 {5 U'|-Eo
M
En
145 UlE1
M
En
Yari[o]@ED > Ol-varz
StanBr[0]&E1

Additional remark: When users declare the variables in ISPSoft, and the variables are added

to the contents of the registers to form the addresses to the actual data,
users must note the addresses to prevent the program from being executed
wrongly.

4.4 Pointer Registers

ISPSoft supports the function blocks. When the variable declaration type is VAR_IN_OUT, and
the data type is POINTER, the variable is the pointer register. The value in the pointer register
can refer directly to the value stored in the device X, Y, D, or L, and the pointer register can
point to the address associated with the variable set automatically in ISPSoft.

4-7

AH500 Programming Manual

® Users can declare 16 pointer registers in every function block. The range is PRO~PR15, or
PR0.0~PR15.15.

Example:
1. Establish a program organization unit (POU) in ISPSoft first.
2. Establish a function block which is called FBO.
g5 Function Blocks
=...Jé1 FBO [FB,LD]
W MyFBO[Pogl]
3. The program in the function block FBO

VarBit1 MY
| | En
|
145 o] B
MY
En
Point1 5 Dl-varl
MY
En
Point Li@ED > Dl-var2

4. Declare the varaible in the function block FBO.
Choose VAR_IN_OUT as the declaration type, Pointl as the identifier, POINTER as the data
type. The variable is the pointer register.

Local Syrabols
Class Identifiers = Address Type... | Indtial Value Identifier Cormment...
V&E VarBit] N [Auto] |BOOL FALSE
V&R Varl Nig [Auto] |WORD 0
V&R Vard Nig [Auto] |WORD 0

» |HPLR._IN_OUT Fointl N/t [Auto] |POINTER HiA
5. Declare the variable in the program organization unit (POU).

Local Syrahols
Class Identifiers Lddress Type... Initial Valne | Identifier Corament...
VAR StartBit |Mih [Auto] | ARRAY [J] OF BOOL Nik
VAR CVarl Wit [Auto] | ARRAY [J] OF WORD Nik
b VAR MyFBO Nih [Autg] |FBO Hit, |

6. Call the function block FBO in the program organization unit (POU).
7. The program in the program organization unit (POU)
Network 1: When StartBit[0] is ON, the address of DO is transmitted to Point 1 in FBO.

NETWORK 1
MyFBO
StantBit[0] FEO
_I I En Eno
D0 =Foinkl

When VarBitl in FBO is ON, EO=1, Var1=DO0, Pointl@EO0=D (0+1)=D1, and
Var2=D1.

4-8

Chapter 4 Instruction Structure

Network 2: When StartBit[1] is ON, the address of CVar1[0] is transmitted to Point1 in FBO.

NETWORK 2
MyFEQ
StartBi[1] FEO
_I I En Enol—
C¥ar1[0] =fFointl

When VarBitl in FBO is ON, EO=1, Var1=CVarl1[0], Pointl@EO=CVarl
(0+1)=Cvarl[1], and Var2=CVarl[1].

4.5 Pointer Registers of Timers

® |SPSoft supports the function blocks. If users want to use the timer in the function block, they
have to declare a pointer register of the timer in the function block. The address of the timer is
transmitted to the pointer register of the timer when the function block is called.
® When the variable declaration type is VAR_IN_OUT, and the data type is T_POINTER, the
variable is the pointer register of the timer. The value in the pointer register of the timer can
refer directly to the value stored in the device T or in the variable which is the timer in ISPSoft.
® Users can declare 8 pointer registers of the timers in every function block. The range is
TRO~TRY.
® |[f users want to use an instruction in the function block, and the timer is supported among the
operands, users have to use the pointer register of the timer.
Example:
1. Establish a program organization unit (POU) in ISPSoft first.
2. Establish a function block which is called FBO.
g5 Function Blocks
—---|e1] FBO [FB,LL
| MyFRO[Progl]
3. Declare the varaible in the function block FBO.
Choose VAR _IN_OUT as the declaration type, TPointl as the identifier, T_POINTER as the
data type. The variable is the pointer register of the timer.
Local Syrabols
Clazs Identifiers Address Type.. Iratial Value Identifier Corament...
VAR VarBitl Hi& [Buatg] |BOOL FALSE
VAR [N OUT | TPointl Nit [Autg] |T_POINTER. Hik
» |TJHR WarOnt NIt [fato] |BOOL F&AISE
4. The program in the function block FBO
NETWORK 1
VarBit1 THR.
| | E
| A
TPoint1 {51
| Q.
NETWORK 2
TPoint1 VarCnn
1 ()
| - b
5. Declare the variable in the program organization unit (POU).

The data type of CVarl should be TIMER.

4-9

AH500 Programming Manual

Local Syrahols
Class Identifiers = Address Type.. Initial Walne | Identifier Corment...
VAR StartBit |Mih [Auto] |ARRAY [J) OF BOOL |[XFALSE)
VAR CVarl 0 TIMEE. M4
b [VAR. MyFBO Nik [Autg] |FBO Hit |

Call the function block FBO in the program organization unit (POU).
The program in the program organization unit (POU)
Network 1: When StartBit[0] is ON, the address of T1920 is transmitted to TPointl in FBO.

NETWORK 1
MyFEO

StartBit[0] FEo

| | En Enol—
| |

T1920 = TP0inEL

When VarBitl in the FBO is ON, the instruction TMR is executed, and TPointl
(T1920) starts counting. When the value of TPointl matches the setting value,
VarOut is ON.

Network 2: When StartBit[1] is ON, the address of CVarl[0] is transmitted to TPoint1 in FBO.

NETWORK 2

MyFBO
StartBit[1] FEO

| | En Erno|—
| |

C¥arl =fTFoinkl

When VarBitl in FBO is ON, the instruction TMR is executed, and TPoint (CVar1)
starts counting. When the value of TPointl matches the setting value, VarOut is
ON.

4.6 Pointer Registers of 16-bit Counters

® [SPSoft supports the function blocks. If users want to use the 16-bit counter in the function
block, they have to declare a pointer register of the 16-bit counter in the function block. The
address of the 16-bit counter is transmitted to the pointer register of the 16-bit counter when
the function block is called.
® \When the variable declaration type is VAR_IN_OUT, and the data type is C_POINTE, the
variable is the pointer register of the 16-bit counter. The value in the pointer register of the
16-bit counter can refer directly to the value stored in the device T or in the variable which is
the counter in ISPSoft.
® Users can declare 8 pointer registers of the 16-bit counters in every function block. The range
is CRO~CRY7.
® |f users want to use an instruction in the function block, and the counter is supported among
the operands, users have to use the pointer register of the 16-bit counter.
Example:
1. Establish a program organization unit (POU) in ISPSoft first.
2. Establish a function block which is called FBO.
g5 Function Blocks
-.|é8| FBO [FB,LD]
| MyFBO[Frog]
3. Declare the varaible in the function block FBO.

Choose VAR _IN_OUT as the declaration type, CPointl as the identifier, C_POINTER as the
data type. The variable is the pointer register of the 16-bit counter.

4-10

Chapter 4 Instruction Structure

Local Syrnbols
Class Identifiers = Address Tape.. Initial Value Identifier Cornament...
VAR VarBitl Mi& [Auto] |BOCL FALSE

» |FIHR_IN_OT_TT CPaintl M/t [fato] |(C_POINTER. His
The program in the function block FBO
NETWORK 1

VarBi1 CPaoint1
| | ¢
| 1 |])
Declare the variable in the program organization unit (POU).
The data type of CVarl should be COUNTER.

Local Syrobols
Class Identifiers Lddress Type... Initial Value | Identifier Comenent. ..
VAR StartBit Wik [Auts] | ARRAY [J] OF BOOL |[2FALSE)]
VAR CVarl |1 COUNTER, Mk
b (VAR MyFBO MNiA [Auts] |FED Mk |

Call the function block FBO in the program organization unit (POU).

The program in the program organization unit (POU)

Network 1: When StartBit[0] is ON, the address of CO is transmitted to CPointl in FBO.
NETWORK 1

MyFBO
StartBit[0] FED

4| I En Emo]

L0 = _Fiinkl

When VarBitl in FBO is ON, CPoint1 (CO0) is ON.
Network 2: When StartBit[1] is ON, the address of CVarl is transmitted to CPointl in FBO.
NETWORK 2

MyFBO
StartBit[1] FEO

4| I En Emo]

CY¥arl =—_Foinkl

When VarBitl in FBO is ON, CPointl (CVarl) is ON.

4.7 Pointer Registers of 32-bit Counters

ISPSoft supports the function blocks. If users want to use the 32-bit counter in the function
block, they have to declare a pointer register of the 32-bit counter in the function block. The
address of the 32-bit counter is transmitted to the pointer register of the 32-bit counter when
the function block is called.

When the variable declaration type is VAR_IN_OUT, and the data type is HC_POINTER, the
variable is the pointer register of the 32-bit counter. The value in the pointer register of the
32-bit counter can refer directly to the value stored in the device HC or in the variable which is
the counter in ISPSoft.

Users can declare 8 pointer registers of the 32-bit counters in every function block. The range
is HCRO~HCRY.

If users want to use an instruction in the function block, and the 32-bit counter is supported
among the operands, users have to use the pointer register of the 32-bit counter.

Example:

1.

Establish a program organization unit (POU) in ISPSoft first.

4-11

AH500 Programming Manual

Establish a function block which is called FBO.
g5 Function Blocks
[t FBO [FB,LL]
[WyFRO[Fragl]
Declare the varaible in the function block FBO.

Choose VAR _IN_OUT as the declaration type, HCPointl as the identifier, HC_POINTER as
the data type. The variable is the pointer register of the 32-bit counter.

Local Syrahols
Class Identifiers Address Trype... Initial Value Identifier Cormrnent...
VAR VarBitl Nik [Auto] |BOOL FALSE

» |HPLR._IN_OUT HCPointl |MfA [Auta]
The program in the function block FBO
NETWOREK 1

HC POINTER Mk

VarBit1 HCPaoint1

| | {)

[\

Declare the variable in the program organization unit (POU).
The data type of CVarl should be COUNTER, and users have to fill in the address column with
the practical address of the 32-bit counter.

Local Syrahols
Class Identifiers Lddress Type... Initial Valne | Identifier Corament...
VAR StartBit |Mih [Auto] |ARRAY [J] OF BOOL |[XFALSE]
VAR CVarl HC1 COUNTER. Mk
b VAR MyFBO Nih [Autg] |FBO Hit, |

Call the function block FBO in the program organization unit (POU).

The program in the program organization unit (POU)

Network 1: When StartBit[0] is ON, the address of HCO is transmitted to HCPoint1 in FBO.
NETWORK 1

MyFBO
FEO

StantBit[0]

En
HCPaint1

Ena

HCO

When VarBitl in FBO is ON, HCPoint1 (HCO) is ON.
Network: When StartBit[1] is ON, the address of CVarl is transmitted to HCPoint1 in FBO.

NETWORK 2

MyFEO
FED

StartBit[1]

En
HCPaink1

Eno

CY¥arl =

When VarBitl in FBO is ON, HCPointl (CVarl) is ON.

4-12

Chapter 5 Basic Instructions

Table of Contents
51 List of Basic Instructions

52 Basic Instructions

5-1

AH500 Programming Manual

5.1 List of Basic Instructions

Instruction code Function Operand Step
Loading contact A/Connecting
LD/AND/OR contact A in series/Connecting DX, X, Y, M, SM, S, T, C, HC, 1-2
: D, L, and PR
contact A in parallel
Loading contact B/Connecting
LDI/ANI/ORI contact B in series/Connecting DX, X, Y, M, SM, S, T, C, HC, 1-2
. D, L, and PR
contact B in parallel
ANB/ORB Cor_mectmg the loop blocks in _ 1
- series/parallel
Storing the data in the
stack/Reading the data from the
MPS/MRD/MPP stack/Popping the data from the B 1
stack
- . DY, X, Y, M, SM, S, T, C, HC,
ouT Driving the coil D, L and PR 1-2
, , DY, X, Y, M, SM, S, T, C, HC,
SET Keeping the device on D, L and PR 1-2
MC/MCR Setting/Resetting the master control N 1
Starting the rising-edge
detection/Connecting the
LDP/ANDP/ORP rising-edge detection in DX, X, ¥, M, SM, S, T, C, HC, 1-2
.) - D, L, and PR
series/Connecting the rising-edge
detection in parallel
Starting the falling-edge
detection/Connecting the
LDF/ANDF/ORF falling-edge detection in DX, X, Y, M, SM, S, T, C, HC, 1-2
) X . D, L, and PR
series/Connecting the falling-edge
detection in parallel
Starting the rising-edge
detection/Connecting the rising X, Y, M, SM, S, T, C, HC, D,
PED/APED/OPED edge-detection in series/Connecting| L, and PR 5
the rising-edge detection in parallel
Starting the falling-edge
detection/Connecting the
NED/ANED/ONED falling-edge detection in X, Y, M, SM, S, T, C, HC, D, 5
) X . L, and PR
series/Connecting the falling-edge
detection in parallel
- DY, X, Y, M, SM, S, T, C, HC,
PLS Rising-edge output D, L and PR 1-2
, DY, X, Y, M, SM, S, T, C, HC,
PLF Falling-edge output D, L and PR 1-2
INV Inverting the logical operation result - 1
NOP No operation - 1
NP The circuit is rising edge-triggered. - 1
PN The circuit is falling edge-triggered. - 1
L . X, Y, M, SM, S, T, C, HC, D,
FB_NP The circuit is rising edge-triggered. L. and PR 1-2
L . . X, Y, M, SM, S, T, C, HC, D,
FB PN The circuit is falling edge-triggered. L and PR 1-2
PSTOP Stopping executing the program in _ 1

the PLC

Chapter 5 Basic Instructions

5.2 Basic Instructions

Instruction code Operand Function
Loading contact A/Connecting
LD/AND/OR S contact A in series/Connecting
contact A in parallel

Device DX | DY X Y M SM S T C HC D L PR

S ° ° ° ° ° ° ° ° ° ° ° °

Symbol:

LD S : Specified device Bit
AND
OR

Explanation:

1. The instruction LD applies to contact A which starts from the mother line or contact A which is
the start of a contact circuit. It functions to reserve the current contents, and store the contact
state which is acquired in the accumulative register.

2. Theinstruction AND is used to connect contact A in series. It functions to read the state of the
contact which is specified to be connected in series, and perform the AND operation with the
previous logical operation result. The final result is stored in the accumulative register.

3. Theinstruction OR is used to connect contact A in parallel. It functions to read the state of the
contact which is specified to be connected in parallel, and perform the OR operation with the
previous logical operation result. The final result is stored in the accumulative register.

Example:

1. Contact A of X0.0 is loaded, contact A of X0.1 is connected in series, contact A of X0.2 is
connected in parallel, and the coil Y0.0 is driven.

2. When both X0.0 and X0.1 are ON, or when X0.2 is ON, Y0.0 is ON.

NETWORK 1
X0.0 X0.1 ¥0.0
| | | {
— | 1 | {)
X0.2
| 1
[1

5-3

AH500 Programming

Manual

Instruction code Operand Function
Loading contact B/Connecting
LDI/ANI/ORI S contact B in series/Connecting
contact B in parallel

Device DX | DY

T C HC D L PR

S ° ° ° ° ° ° ° ° ° ° °
Symbol:
LDI S : Specified device Bit
ANI
ORI
Explanation:

1. The instruction LDI applies to contact B which starts from the mother line or contact B which is
the start of a contact circuit. It functions to reserve the current contents, and store the contact

state which is acquired in the accumulative register.

2. The instruction ANI is used to connect contact B in series. It functions to read the state of the
contact which is specified to be connected in series, and perform the AND operation with the
previous logical operation result. The final result is stored in the accumulative register.

3. Theinstruction ORI is used to connect contact B in parallel. It functions to read the state of the
contact which is specified to be connected in parallel, and perform the OR operation with the
previous logical operation result. The final result is stored in the accumulative register.

Example:

1. Contact B of X0.0 is loaded, contact B of X0.1 is connected in series, contact B of X0.2 is

connected in parallel, and the coil Y0.0 is driven.

2. When both X0.0 and X0.1 are ON, or when X0.2 is ON, Y0.0 is ON.

NETYWOREK 1

X0.0

—/|

X0.1
/]

Y0.0
{

X0.2

—/|

b

5-4

Chapter 5 Basic Instructions

Instruction code Operand Function
ANB/ORB i Connectlng the circuit blocks in
series/parallel
Symbol:
ANB
ORB
Explanation:

1. The instruction ANB is used to perform the AND operation between the reserved logical
operation result and the contents of the accumulative register.

2. Theinstruction ANB is used to perform the OR operation between the reserved logical
operation result and the contents of the accumulative register.

Example:

1. Contact A of X0.0 is loaded, contact A of X0.2 is connected in parallel, contact B of X0.1 is
loaded, contact B of X0.3 is connected in parallel, the circuit blocks are connected in series,

and the coil YO0.0 is driven.

¥ 0.0

NETWORK 1
X0.0 0.1
| | | /|
| Ir”fl
X0.2 X0.3
| | | /|
| Ir”fl

()

2. Contact A of X0.0 is loaded, contact B of X0.1 is connected in series, contact A of X0.2 is
loaded, contact B of X0.3 is connected in series, the circuit blocks are connected in parallel,

and the coil YO0.0 is driven.

¥ 0.0
{

NETWOREK 1
X0.0 X0.1
| | | /|
| I/(|
X0.2 X0.3
| | | /|
| I/{ |

L]

5-5

AH500 Programming Manual

Instruction code Operand Function

Storing the data in the stack/Reading
MPS/MRD/MPP - the data from the stack/Popping the
data from the stack

Explanation:

1. The instruction MPS is used to store the data in the accumulative register in the stack (the
value of the stack pointer increases by one).

2. Theinstruction MRD is used to read the data from the stack and store it in the accumulative
register (the value of the stack pointer remains the same).

3. Theinstruction MPP is used to pop the previous logical operation result from the stack, and
store it in the accumulative register (the value of the stack pointer decreases by one).

Example:

1. Contact Aof X0.0 is loaded, and the data in the accumulative register is stored in the stack.

2. Contact A of X0.1 is connected in series, the coil Y0.1 is driven, and the data is read from the
stack (the value of the stack pointer remains the same).

3. Contact A of X0.2 is connected in series, the coil MO is driven, and the previous logical
operation result is popped from the stack.

Instruction: Operation:

LD X0.0 Contact A of X0.0 is loaded.

MPS The data in the accumulative register is stored in the stack.
AND X0.1 Contact A of X0.1 is connected in series.

OUT Y0.1 The coil YO0.1 is driven.

MRD The data is read from the stack.

AND X0.2 Contact A of X0.2 is connected in series.

OuUT MO The coil MO is driven.

MPP The previous logical operation result is popped from the stack.
OUT Y0.2 The coil Y0.2 is driven.

END The program ends.

Note:

1. The number of MPS instructions must be equal to that of MPP instructions.
2. Theinstruction MPS can be used at most 31 times.

5-6

Chapter 5 Basic Instructions

Instruction code Operand Function

ouT S Driving the coil

Device DX | DY X Y M SM S T C HC D L PR

S ° °) ° ° °
Symbol:
777
() S : Specified device Bit

Explanation:

1. The logical operation result prior to the application of the instruction OUT is output into the
specified device.

2. The action of the coil contact:

ouT
Operation Contact
result Coil Contact A Contact B
(normally open) (normally closed)
False OFF OFF ON
True ON ON OFF
Example:
1. Contact B of X0.0 is loaded, contact A of X0.1 is connected in series, and the coil Y0.0 is
driven.
2. When X0.0 is OFF, and X0.1 is ON, Y0.0 is ON.
NETWORK 1
X0.0 X0.1 ¥0.0

| <

5-7

AH500 Programming Manual

Instruction code Operand Function

SET S Keeping the device on

Device DX | DY X Y M | SM S T C HC D L PR

S ° ° ° ° ° ° ° ° ° ° ° °
Symbol:
77
—s) S : Specified device Bit
Explanation:

When the instruction SET is driven, the specified device is set to ON. No matter the instruction SET
is still driven, the specified device keeps ON. Users can set the specified device to OFF by means of
the instruction RST.

Example:
1. Contact B of X0.0 is loaded, contact A of Y0.0 is connected in series, and Y0.1 keeps ON.

2. When X0.0 is OFF, and Y0.0 is ON, Y0.1 is ON. Even if the operation result changes, Y0.1 still
keeps ON.

NETWORK 1

X0.0 ¥0.0 ¥0.1

—1/ | | (s)

5-8

Chapter 5 Basic Instructions

Instruction code Operand Function
MC/MCR N Setting/Resetting the master
control
Symbol:
M
En MC N - Level of the nested NO~N31
Ny program structure
MCR,
MCR
M
Explanation:

1. The instruction MCR is used to set the master control. When the instruction MC is executed,
the instructions between MC and MCR are executed as usual. When the instruction MC is OFF,
the actions of the instructions between MC and MCR are as follows.

Instruction type Description

The timer value is reset to zero. The coil and the
contact are OFF.

The timer value is reset to zero. The coil and the
contact are OFF.

The coil is OFF. The timer value and the state of the
contact remains the same.

The coil is OFF. The timer value and the state of the

General-purpose timer

Timer used in the function block

Accumulative timer

Counter .
contact remains the same.
Coils driven by OUT All coils are OFF.
Devices driven by SET and RST The states of the devices remain the same.

All applied instructions are not executed. The

FOR/NEXT loop is still repeated N times, but the

actions of the instructions inside the FOR/NEXT loop

follow those of the instructions between MC and MR.

2. Theinstruction MCR is used to reset the master control, and is placed at the end of the master
control program. There should not be any contact instruction before MCR.

3. MC/MCR supports the nested program structure. There are at most 32 levels of nested
program structures (NO~N31). Please refer to the example below.

Applied instruction

5-9

AH500 Programming Manual

Example:
NETWORK 1

X0.0 MC

| -

No M

NETWORK 2

x0.1 Y0.0
_| | {
| b

NETWORK 3

X0.2 MC

=l -

N1 M

NETWORK 4

%0.3 ¥0.1
_| | {
| L

NETWORK 5

MR

N1 M

NETWORK 6

MCR

No M

NETWORK 7

— | i

NETWORK 8

X0.5 Y¥0.2
_| | {
| b

NETWORK @

MCR

No M

5-10

Chapter 5 Basic Instructions

Instruction code Operand Function

Starting the rising-edge
detection/Connecting the rising-edge
detection in series/Connecting the
rising-edge detection in parallel

LDP/ANDP/ORP S

Device DX | DY X Y M SM S T C HC D L PR

S ° ° ° ° ° ° ° ° ° ° ° °
Symbol:
LDP S : Specified device Bit
ANDP
ORP
Explanation:
1. The instruction LDP functions to reserve the current contents, and store the rising-edge
detection of the contact in the accumulative register.
2. Theinstruction ANDP is used to connect the rising-edge detection of the contact in series.
3. Theinstruction ORP is used to connect the rising-edge detection of the contact in parallel.
4. Only when LDP/ANDP/ORP is scanned can the state of the device be gotten, and not until
LDP/ANDP/ORP is scanned next time can whether the state of the device changes be judged.
5. Please use the instructions PED, APED, and OPED in the subroutine.
Example:
1. The rising-edge detection of X0.0 starts, the rising-edge detection of X0.1 is connected in
series, the rising-edge detection of X0.2 is connected in parallel, and the coil YO0.0 is driven.
2. When both X0.0 and X0.1 are switched from OFF to ON, or when X0.2 is switched from OFF
to ON, Y0.0 is ON for a scan cycle.
NETWORK 1
X0.0 X0.1 ¥0.0
— I (
X0.2
—1|

5-11

AH500 Programming Manual

Instruction code Operand Function

Starting the falling-edge
detection/Connecting the
LDF/ANDF/ORF S falling-edge detection in
series/Connecting the falling-edge
detection in parallel

Device DX | DY X Y M SM S T C HC D L PR

S ° ° ° ° ° ° ° ° ° ° ° °
Symbol:
LDF |S : Specified device Bit
ANDF
ORF
Explanation:
1. The instruction LDF functions to reserve the current contents, and store the falling-edge
detection of the contact in the accumulative register.
2. Theinstruction ANDF is used to connect the falling-edge detection of the contact in series.
3. Theinstruction ORP is used to connect the falling-edge detection of the contact in parallel.
4. Only when LDF/ANDF/ORF is scanned can the state of the device be gotten, and not until
LDF/ANDF/ORF is scanned next time can whether the state of the device changes be judged.
5. Please use the instructions NED, ANED, and ONED in the subroutine.
Example:
1. The falling-edge detection of X0.0 starts, the falling-edge detection of X0.1 is connected in
series, the falling-edge detection of X0.2 is connected in parallel, and the coil Y0.0 is driven.
2. When both X0.0 and X0.1 are switched from OFF to ON, or when X0.2 is switched from OFF

to ON, Y0.0 is ON for a scan cycle.

NETWORK 1
X0.0 X0.1 ¥0.0
—1] (
X0.2
—!|

5-12

Chapter 5 Basic Instructions

Instruction code Operand Function

Starting the rising-edge
detection/Connecting the rising
edge-detection in series/Connecting the
rising-edge detection in parallel

PED/APED/OPED S1, S,

Device DX | DY X Y M SM S T C HC D L PR

S
Sz
Symbol:
FED
& - . :
a1 PED S; : Specified device Bit
a2
FED
— Q
. APED S, : Forinternal use Bit
52
FED __J
& OPED
51
52

Explanation:

1. PED/APED/OPED corresponds to LDP/ANDP/ORP. The only difference between
PED/APED/OPED and LDP/ANDP/ORP lies in the fact that users need to specify the bit
device S, in which the previous state of the contact is stored when PED/APED/OPED is
executed. Please do not use the device S, repeatedly in the program. Otherwise, the wrong
execution result will appear.

2. Theinstruction APED is used to connect the rising-edge detection of the contact in series.

3. The instruction OPED is used to connect the rising-edge detection of the contact in parallel.

4. Only when PED/APED/OPED is scanned can the state of the device be gotten, and not until
PED/APED/OPED is scanned next time can whether the state of the device changes be
judged.

5. PED/APED/OPED only can be used in the function block.

Example:

1. Therising-edge detection of X0.0 starts, the rising-edge detection of X0.1 is connected in
series, the rising-edge detection of X0.2 is connected in parallel, and the coil Y0.0 is driven.

2. When both X0.0 and X0.1 are switched from OFF to ON, or when X0.2 is switched from OFF

to ON, Y0.0 is ON for a scan cycle.

5-13

AH500 Programming Manual

Metwork 1
FED FED Yi.0
Q Q {)
¥0.0 51 ¥0.1—51
Mo 52 M1 sz
FED
8]
X0.2 51
M2 52

5-14

Chapter 5 Basic Instructions

Instruction code Operand Function

NED/ANED/ONED S, S,

Starting the falling-edge
detection/Connecting the falling-edge
detection in series/Connecting the
falling-edge detection in parallel

Device DX | DY X Y M SM S T C HC D L PR

S: ° °
S, ° ° °
Symbol:
MHED
o - . .
- NED S; : Specified device Bit
52
HED
— ol—
- ANED S, : Forinternal use Bit
52
MED __J
Q ONED
a1
g2

Explanation:

1. NED/ANED/ONED corresponds to LDF/ANDF/ORF. The only difference between
NED/ANED/ONED and LDF/ANDF/ORF lies in the fact that users need to specify the bit
device S, in which the previous state of the contact is stored when NED/ANED/ONED is
executed. Please do not use the device S, repeatedly in the program. Otherwise, the wrong
execution result will appear.

2. Theinstruction ANED is used to connect the falling-edge detection of the contact in series.

3. Theinstruction ONED is used to connect the falling-edge detection of the contact in parallel.

4. Only when NED/ANED/ONED is scanned can the state of the device be gotten, and not until
NED/ANED/ONED is scanned next time can whether the state of the device changes be
judged.

5. NED/ANED/ONED only can be used in the function block.

Example:

1. The falling -edge detection of X0.0 starts, the falling -edge detection of X0.1 is connected in
series, the falling -edge detection of X0.2 is connected in parallel, and the coil Y0.0 is driven.

2. When both X0.0 and X0.1 are switched from OFF to ON, or when X0.2 is switched from OFF

to ON, Y0.0 is ON for a scan cycle.

5-15

AH500 Programming Manual

Metwork 1
MED MED Y0.0
a a ()
X0.0 =1 ¥x0.1—51
Mo =2 M1 =z
HED
8]
0.2 51
M2 52

5-16

Chapter 5 Basic Instructions

Instruction code Operand Function
PLS D Rising-edge output
Device DX | DY Y M | SM T C HC D L PR

D ° ° ° ° ° ° ° ° ° °

Symbol:
PLS
En PLS |D : Specified device Bit
o

Explanation:

1. When the conditional contact is switched from OFF to ON, the instruction PLS is executed, and
the device D sends out a pulse for a scan cycle.

2. Please do not use the instruction PLS in the function block.

Example:

When X0.0 is ON, MO0 is ON for a pulse time. When MO is ON, Y0.0 is set to ON.

|

|

NETWORK 1

X0.0

En

NETWORK 2

Mo

¥0.0
(s)

Timing diagram:

X0

MO.0O

YO.

0|

FLS

‘I One scan cycle

01

5-17

AH500 Programming Manual

Instruction code Operand Function

PLF D Falling-edge output

Device DX | DY X Y M SM S T C HC D L PR

D ° ° ° ° ° ° ° ° ° ° ° °

Symbol:

PLF
En PLF |D : Specified device Bit

Explanation:

1. When the conditional contact is switched from ON to OFF, the instruction PLF is executed, and
the device D sends out a pulse for a scan cycle.

2. Please do not use the instruction PLS in the function block.

Example:
When X0.0 is ON, MO is ON for a pulse time. When MO is ON, Y0.0 is set to ON.
NMETWORK 1
X0.0 FLF
| | E
[n
U'mMo
NETWORK 2
Mo ¥0.0

— | (s)

Timing chart:

x0.0 [i

MO |‘| One scan cycle ”_

vo.o___|

5-18

Chapter 5 Basic Instructions

Instruction code Operand Function
Inverting the logical operation
INV -
result
Symbol:
Explanation:

The logical operation result preceding the instruction INV is inverted, and the inversion result stored

in the accumulative register.

Example:

When X0.0 is ON, Y0.0 is OFF. When X0.0 is OFF, Y0.0 is ON.

NETWORK 1

X0.0

|

5-19

AH500 Programming Manual

Instruction code

Operand

Function

NOP - No operation
Symbol: None
Explanation:

The instruction NOP does not perform any operation in the program. Therefore, the original logical
operation result is retained after NOP is executed. If users want to delete a certain instruction

without changing the length of the program, they can use NOP instead.

The instruction NOP only supports the instruction list in ISPSoft. It does not support ladder

diagrams.

Example:

The instruction list in ISPSoft:

Instruction: Operation:

LD X0.0 Contact A of X0 is loaded.
NOP No action

ouT Y1.0 The coil Y1.0 is driven.

5-20

Chapter 5 Basic Instructions

Instruction code Operand Function
NP - The circuit is rising edge-triggered.
Symbol:
Explanation:

1. When the value in the accumulative register turns from 0 to 1, the instruction NP keeps the

value 1 in the accumulative register for a scan cycle. After the second scan cycle is finished,
the value in the accumulative register changes to 0.

2. Please use the instruction FB_NP in the function block.

Example:
NETWORK 1

MQ M1 ¥0.0
| | | A {
11 | | \

Instruction: Operation:

LD MO Contact A of MO is loaded.

AND M1 Contact A of M1 is connected in series.

NP The circuit is rising edge-triggered.

ouT Y0.0 The coil YO0.0 is driven.

Timing diagram:

Y — m

M1 [

I : I

voo]

* One scancycle
K y

" One scancycle
© y

5-21

AH500 Programming Manual

Instruction code Operand Function
PN - The circuit is falling edge-triggered.
Symbol:
Explanation:

1. When the value in the accumulative register turns from 1 to 0, the instruction PN keeps the
value 1 in the accumulative register for a scan cycle. After the second scan cycle is finished,
the value in the accumulative register changes to 0.

2. Please use the instruction FB_ PN in the function block.

Example:
NETWORK 1
Mo Y0.0
| l {
| W !
Instruction: Operation: :
LD MO Contact A of MO is loaded.
AND M1 Contact A of M1 is connected in series.
PN The circuit is falling edge-triggered.
ouT YO0.0 The coil YO0.0 is driven.

Timing diagram:

Mo []
M 17#}

Y0.0

]
]

One scancycle © Onescancycle
~ V'

5-22

Chapter 5 Basic Instructions

Instruction code Operand Function
FB_NP S The circuit is rising edge-triggered.
Device DX | DY X Y M | SM T C HC D L PR
S ° ° ° ° ° ° ° ° ° °
Symbol:
2?7
_U—l : For internal use Bit
Explanation:

1. When the value in the accumulative register turns from 0 to 1, the instruction FB_NP keeps the
value 1 in the accumulative register for a scan cycle. After the second scan cycle is finished,

the value in the accumulative register changes to 0.

2. The previous state of the contact is stored in the bit device S. Please do not use S repeatedly

in the program. Otherwise, the wrong execution result will appear.

3. Theinstruction FB_NP only can be used in the function block.

Example:
NETWORK 1

Mo

¥0.0
{

|

Instruction:

LD MO
AND M1
FB_NP DO0.0
ouT Y0.0

Timing diagram:

Mo [

Operation:

Contact A of MO is loaded.

Contact A of M1 is connected in series.
The circuit is rising edge-triggered.

The coil YO0.0 is driven.

[

M1 []

One scan cycle
Vs

Y0.0

One scan cycle

N

5-23

AH500 Programming Manual

Instruction code Operand Function

FB_PN S The circuit is falling edge-triggered.

Device DX | DY X Y M SM S T C HC D L PR

S ° ° ° ° ° ° ° ° ° ° °

Symbol:

7

—f1—

Explanation:

1. When the value in the accumulative register turns from 1 to 0, the instruction FB_PN keeps the
value 1 in the accumulative register for a scan cycle. After the second scan cycle is finished,
the value in the accumulative register changes to 0.

2. The previous state of the contact is stored in the bit device S. Please do not use S repeatedly
in the program. Otherwise, the wrong execution result will appear.

3. Theinstruction FB_PN only can be used in the function block.

: For internal use Bit

Example:
NETWORK 1
M0 000 ¥0.0
| 17 1 (
| |—|_| 4
Instruction: Operation:
LD MO Contact A of MO is loaded.
AND M1 Contact A of M1 is connected in series.
FB_PN D0.0 The circuit is falling edge-triggered.
ouT Y0.0 The coil Y0.0 is driven.

Timing diagram:

Mo []
M1 [

Y0.0

]

L

One scan cycle

© One scan cycle
&

5-24

Chapter 5 Basic Instructions

Instruction code

Operand

Function

PSTOP

Stopping executing the program in

the PLC

Symbol:

—{ PSTOP

Explanation:

When the conditional contact is enabled, the instruction PSTOP stops the execution of the program,

and the PLC stops running.

Example:

When X0.0 is ON, Y0.0 is set to ON, Y0.1 remains OFF, and the PLC stops running.

NETWORK 1

X0

Y0.0
(s)

—_—

_|

0.1

—(s)

PSTOP

5-25

AH500 Programming Manual

MEMO

5-26

Chapter 6 Applied Instructions

Table of Contents

6.1 CompariSON INSIFUCHIONSccvuiiiiiee e e e e e e 6-3
6.1.1 List of Comparison INStrUCLIONScoeeiiiiiiiiiiiiiee e 6-3
6.1.2 Explanation of Comparison INStruCtions..........cccoeeeeevvvvviiiiiiineeeeeee, 6-6

6.2 Arthmetic INSTIUCHIONScooiiiiiiiiie e 6-36
6.2.1 List of Arithmetic INStrUCLIONS.........cooiiiieiii e 6-36
6.2.2 Explanation of Arithmetic INStructionsccooooeviiiiiiiiiiiiineeeee, 6-37

6.3 Data Conversion INSTIUCIONS.uuviiiiiiiiiiiiiiiiiiieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeees 6-74
6.3.1 List of Data Conversion INStruCtions...............ceveiiieiiiiiiiiiiiieee e 6-74
6.3.2 Explanation of Data Conversion INStructions............ccccccvceeeeeeeeee. 6-75

6.4 Data Transfer INSIrUCHIONS.uuuuiiei e eeeeeeees 6-112
6.4.1 List of Data Transfer INStruCtiONS.........coooeeiiieieiee e 6-112
6.4.2 Explanation of Data Transfer INStructions..............cccoevvviiiinneeeenee. 6-113

6.5 JUMP INSIIUCTIONS .evviiiie e e e e e e e e e e eeeannnes 6-135
6.5.1 List of JumMPpP INSLIUCLIONSoovviiiiiiie e 6-135
6.5.2 Explanation of Jump INStruCtionscvviiiiiiiiiieeeecce e 6-136

6.6 Program EXecution INStrUCHIONS.........cooiiiiiiiiiiiiiee e 6-144
6.6.1 List of Program Execution INStructions............ccccceevvvvvviiiiineeeeeen, 6-144
6.6.2 Explanation of Program Execution Instructions...............cccceeeeeee. 6-148

6.7 1/0O Refreshing INStrUCLIONSuiiiii e 6-152
6.7.1 List of I/O Refreshing INStruCtionScouuviiiiiiiiiiiiiiiee e 6-152
6.7.2 Explanation of I/0 Refreshing INStructionsccccevvvvvvciieeeeeenn. 6-153

6.8 Convenience INSIIUCIONSuuuuiiiiieieiieeiiiee e eeeeeeees 6-155
6.8.1 List of Convenience INSrUCHIONScccoooeeiieiniiee e 6-155
6.8.2 Explanation of Convenience INStructionsccccoevvvvvviinneeeeeee. 6-156

6.9 LOQIC INSIIUCTIONS. .. uuuiiiee e e eee et e e e e e e e e e e et e e e e e e e eeeennnnes 6-192
6.9.1 List of LOQIC INStIUCHIONS......ccovuiiiiieeieeeeeeee e 6-192
6.9.2 Explanation of LogiC INStrucCtions.............ccvvviiiiiiieiieeieiceee e 6-193

6.10 ROtatioN INSTIUCHONSccciiiiiiiiiiiiiee e eeeeeeeanes 6-216
6.10.1 List of Rotation INStrUCHONSuvvviviiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeee 6-216
6.10.2 Explanation of Rotation INStruCtionS............coevvvviiiiiniieiiiieeiiin. 6-217

6.11 BasSIiC INSIIUCHIONSoeiiiiiiiiiiiiiiiiiiiiieieieeeeee ettt e e e eeeeeeeeeeeeeees 6-227
6.11.1 List of BaSIC INSIIUCHIONScoooiiiiiiiiiiiiee e 6-227
6.11.2 Explanation of BasiC INStrUCLIONSccceeeeeviveiiiiiiie e 6-228

6.12 Shift INSTIUCHIONSeveiiie e e e eeeaanes 6-235
6.12.1 List of Shift INSTIUCLIONSuuviiiiiiiiiiiiiiiiiiiiiieieeeee e 6-235
6.12.2 Explanation of Shift INStrUCtIONScoviiiiiiiiii e, 6-236

6.13 Data Processing INSFUCHIONSuiiiieeieiieeiiiiie e e e e e e e e 6-261
6.13.1 List of Data Processing INStruCtionScoovvvvviiiineeeeeeeeeiiinnn 6-261
6.13.2 Explanation of Data Processing INStructions.............ccccvevvvvvvnnnnnnn. 6-262

6.14 Structure Creation INSITUCTIONSooiiiiiiiiiiiiicee e 6-308
6.14.1 List of Structure Creation INStrUCtIONSevvvvvreeeieiiiiiiiiiieeeneee. 6-308
6.14.2 Explanation of Structure Creation INStructionscccccevvvunnnnn.. 6-309

6.15 Module INSIIUCTIONScevviiiiiiiiiiiiiiiiiiiiiieiiee ettt e e e eeeeeeeeeees 6-316
6.15.1 List of Module INSIrUCHIONScooviiiiiiiiiee e 6-316

6-1

6.15.2 Explanation of Module INStructionsccccoevvvvveiiiiiiiee e 6-317

6.16 Floating-point Number INStrUCtIONS.........ccovviiiiiiiii e 6-322
6.16.1 List of Floating-point Number Instructions...........cccccceeeeeeeeveeeennnnnns 6-322
6.16.2 Explanation of Floating-point Number Instructions 6-323

6.17 Real-time CIock INStrUCLIONS.........coooiiiiiiiii 6-363
6.17.1 List of Real-time Clock INStruCtioNS.........ccooeieiiiiiiiiiiiie e 6-363
6.17.2 Explanation of Real-time Clock Instructions.............ccccceeeevvvvvnnnnns 6-364

6.18 Peripheral INStrUCHIONS.ooiiiiiiiie e 6-377
6.18.1 List of Peripheral INStruCtions..............cceiiiiiieiieiiiicceee e 6-377
6.18.2 Explanation of Peripheral INStructions.............ccoovvviiiininiiiiiiieiinnnns 6-378

6.19 Communication INSTrUCLIONScooviiiiiiiiiiie 6-392
6.19.1 List of Communication INStruUCtiONSccooveeeiiiiiiiiiiiiiie e 6-392
6.19.2 Explanation of Communication INStructions.............cccoeeeeevevvvnnnnes 6-393

6.20 Other INSIIUCLIONSuueiii e e e e e eeeaaeee 6-429
6.20.1 List of Other INSIrUCHIONSeuvviiiiiiiiiiiiiiiieiieeeee e 6-429
6.20.2 Explanation of Other INStruCtioNS...........coovviiiiiiiiiiiiiiiee s 6-430

6.21 String Processing INSIIUCHIONSiiiiiiiiieeeiiii e e e e 6-439
6.21.1 List of String Processing INStrUCtIONSccooeviviiiiiiiiiiieee e 6-439
6.21.2 Explanation of String Processing Instructions................cccevvvvvvnnes 6-440

6.22 Ethernet INSIrUCLIONSooiiiiiiiiiiie e e e eeaaeees 6-501
6.22.1 List of Ethernet INStructionsuevvvviiiiiiiiiiiiiiiiiiieeiieeeeeeeeeeee 6-501
6.22.2 Explanation of Ethernet INStructionscccevvviiiiiiinei e 6-502

6.23 Memory Card INSITUCHIONSc.vvuiiiie e eeeeeeeiese e e e e e e e e e eeeaaaens 6-527
6.23.1 List of Memory Card INStruCtioNScoiiieiiiiiiiiiiiiee e 6-527
6.23.2 Explanation of Memory Card InStructionscccceeveeeeeeeveennnnnns 6-528

6.24 Task Control INStIUCHIONScouuuuiiiiieee e 6-539
6.24.1 List of Task Control INStruCtionsccoovveeeiiiiiiiiiiiiinee e 6-539
6.24.2 Explanation of Task Control Instructions............ccccccceeveeeeeieveennnnnns 6-540

6.25 TSFC INSIIUCHONS.uuiiiiieiiii ettt e e e e e e e eeeanenes 6-542
6.25.1 LiSt Of SFC INSIIUCHIONS.......uvviiiiiiiiiiiiiiiiiiiieieeeeiieeeeeeeeeeeeeeeeeeeeeeeeees 6-542
6.25.2 Explanation of SFC INStrUCIONS..........uuviiiiiieiiiiieiiiee e 6-543

6-2

AH500 Programming Manual

6.1 Comparison Instructions

6.1.1 List of Comparison Instructions

API 16—bit|nsm;:flboi? C0d§>4—bit inslzruulizon Function Step
0000 | LD= DLD= — - S:=S, 5
0001 | LD<> DLD<> - - S1#S; 5
0002 | LD> DLD> - - S;:>S, 5
0003 | LD>= DLD>= - - S;=S, 5
0004 | LD< DLD< - - S:<S, 5
0005 | LD<= DLD<= - - S,<S, 5
0006 AND= | DAND= - - S.=S, 5
0007 | AND<> | DAND<> — - S1#S; 5
0008 |AND> | DAND> - - S:>S, 5
0009 | AND>= | DAND>= - - 5,285, 5
0010 | AND< DAND< - - S:1<S, 5
0011 | AND<= | DAND<= — - S,=S, 5
0012 | OR= DOR= - - S:=S, 5
0013 | OR<> DOR<> - - Si#S, 5
0014 OR> DOR> - - S;>S, 5
0015 | OR>= DOR>= - - Si11=S; 5
0016 OR< DOR< - - S;:<S, 5
0017 |OR<= | DOR<= - - S,<S, 5
0018 — FLD= DFLD= - S =S, 5-7
0019 - FLD<> |DFLD<> - S:1#S, 5-7
0020 - FLD> | DFLD> - S,>S, 5-7
0021 — FLD>= |DFLD>= - 5,285, 5-7
0022 — FLD< DFLD< - S:1<S, 5-7
0023 — FLD<= |DFLD<= - S,=S, 5-7
0024 - FAND= | DFAND= - S:=S, 5-7
0025 — FAND<> | DFAND<> - S#S, 5-7
0026 — FAND> | DFAND> - S:1>S, 5-7
0027 - FAND>= | DFAND>= - S$,2S, 5-7
0028 — FAND< | DFAND< - S;1<S, 5-7
0029 — FAND<=| DFAND<= - S,=S, 5-7
0030 - FOR= DFOR= - S =S, 5-7
0031 — FOR<> | DFOR<> - S#S, 5-7
0032 - FOR> | DFOR> -~ S.>S, 5-7
0033 - FOR>= | DFOR>= - S:=S, 5-7

6-3

Chapter 6 OBApplied Instructions

Instruction code Pulse .
AP| . . F t
16-bit 32-bit 64-bit instruction unction Step
0034 - FOR< DFOR< - S1<S, 5-7
0035 - FOR<= | DFOR<= - S,=S; 5-7
0036 |LD$= - - - S1=S, 5-17
0037 | LD$<> - - - S1#S, 5-17
0038 | LD$> - - - S1>S, 5-17
0039 | LD$>= — - - S;2S, 5-17
0040 | LD$< - - - S1<S; 5-17
0041 | LD$<= - - - S|=S; 5-17
0042 | AND$= - - - S1=S; 5-17
0043 | AND$<> - - - S1#S, 5-17
0044 | AND$> - - - S:1>S, 5-17
0045 | AND$>= - - - S$,2S, 5-17
0046 | AND$< - - - S:<S, 5-17
0047 | AND$<= - - - S,=S, 5-17
0048 | OR$= - - - S1=S, 5-17
0049 | OR$<> - — - S#S, 5-17
0050 | OR$> - - - S:1>S, 5-17
0051 | OR$>= - - - S;=S, 5-17
0052 | OR$< - - - S1<S; 5-17
0053 | OR$<= - - - S,=S, 5-17
0054 |CMP | DCMP - v Comparing the 7
values
0055 | ZCP DZCP - v Zone comparison 9
Comparing the
0056 - FCMP - v floating-point 7-9
numbers
0057 B F7CP _ v Floatmg_—pomt zone 9-12
—_ comparison
0058 | MCMP - - v Matrix comparison 9
Comparing the
0059 | CMPT= - - v tables 9
ON: =
Comparing the
0060 | CMPT<> - - v tables 9
ON: #
Comparing the
0061 | CMPT> - - 4 tables 9
ON: >
Comparing the
0062 | CMPT>= - - v tables 9
ON: =

6-4

AH500 Programming Manual

AP|

Instruction code

16-bit

32-bit

64-bit

Pulse
instruction

Function

Step

0063 | CMPT<

v

Comparing the
tables
ON: <

0064 | CMPT<=

Comparing the
tables
ON: =

0065

CHKADR

Checking the

address of the
contact type of
pointer register

6-5

Chapter 6 OBApplied Instructions

6.1.2 Explanation of Comparison Instructions

API Instruction code Operand Function
0000~ .
D LDX S, S, Comparing the values
0005
Device| X | Y | M | S C |[HC| D L |SM| SR PR | K |16#| “$" | DF
S, [I e o o o { ® O] O
S, [I e o o o { ® O | O
Pulse instruction | 16-bit instruction (5 steps)| 32-bit instruction (5 steps)
- AH500 AH500
Symbol:
= D:
o o S Data source 1 Word/Double word
31 a1
52 52
S, Data source 2 Word/Double word

Taking LD= and DLD= for example

Explanation:

1. The instructions are used to compare the value in S; with that in S,. Take the instruction LD=

for example. When the comparison result is that the value in S; is equal to that in S,, the

condition of the instruction is met. When the comparison result is that the value in S; is not
equal to that in S,, the condition of the instruction is not met.

2. Only the 32-bit instruction can use the 32-bit counter.

API 16-bit 32-bit Comparison operation result
number | instruction instruction ON OFF
0000 LD= DLD= S$1=S; Si#S;
0001 LD< > DLD< > S1#S; S:1=S,
0002 LD > DLD > S;>S, S;<S;
0003 LD> = DLD > = Si2S, S1<S,
0004 LD < DLD < S:<S, S;=S,
0005 LD< = DLD< = S.<S, S:1>S,
Example:

1. When the value in C10 is equal to 200, Y0.10 is ON.

2. When the value in D200 is greater than -30, Y0.11 keeps ON.

3. When the value in (C201, C200) is less than 678,493, or when M3 is ON, M50 is ON.

6-6

AH500 Programming Manual

NETWORK 1

200 —
C10 —

NETWORK 2

Y0.10

D200 —

S1
S2

30

{)

Y0.11

NETWORK 3

678493 —

C200 —

(s)

M50

a—
ol

6-7

Chapter 6 OBApplied Instructions

API Instruction code Operand Function
0006~ _
D| ANDX S, S, Comparing the values
0011

Devicel X | Y| M| S| T | C|HC| D | L |[SM|SR| E |PR| K [16#| “$" | DF

S o O e 6| 6 o o ® O | @@ | O | O
S, o O e & o o o ® O | @ | O | O
Pulse instruction |16-bit instruction (5 steps)| 32-bit instruction (5 steps)
- AH500 AH500
Symbol:
= D=
ol a S; : Datasource 1 Word/Double word
51 51
52 52
S, : Data source 2 Word/Double word

Taking AND= and DAND= for example

Explanation:

1. The instructions are used to compare the value in S; with that in S,. Take the instruction
AND= for example. When the comparison result is that the value in S; is equal to that in S,
the condition of the instruction is met. When the comparison result is that the value in S; is
not equal to that in S,, the condition of the instruction is not met.

2. Only the 32-bit instruction can use the 32-bit counter.

AP| 16-bit 32-bit Comparison operation result
number instruction instruction ON OFF
0006 AND = DAND = S1=S; Si#S;
0007 AND < > DAND < > S1#S; S1=S;
0008 AND > DAND > S,>S, Si<S,
0009 AND > = DAND > = S:=S, S:1<S,
0010 AND < DAND < S1<S, Si2S;
0011 AND < = DAND < = Si<S, S;1>S;
Example:

1. When X0.0 is ON and the current value in C10 is equal to 100, Y0.10 is ON.
2. When X0.1 is OFF and the value in DO is not equal to -10, Y0.11 keeps ON.

3. When X0.2 is ON and the value in (D11, D10) is less than 678,493, or when M3 is ON, M50
is ON.

6-8

AH500 Programming Manual

¥0.11

(s)

M50

NETWORK 1
X0.0 =
| |
11
100 {51
Cio 52
NETWORK 2
0.1 E=
| /1
I/I
-10 451
Do {52
NETWORK 3
0.2 D=
| |
11
678493 51
Dio {52
M3
| |
|

6-9

Chapter 6 OBApplied Instructions

API Instruction code Operand Function
0012~ _
D ORX S1, Ss Comparing the values
0017
Devicel X | Y | M| S| T | C |HC| D L |SM| SR PR | K |16#| “$" | DF
S o o e o o o o [J ®@ | OO
S, { I e o o o o [] ®@ | OO
Pulse instruction [16-bit instruction (5 steps)| 32-bit instruction (5 steps)
- AH500 AH500
Symbol:
= D=
ol a S; : Data source 1 Word/Double word
=1 51
52 52
S, : Data source 2 Word/Double word

Taking OR= and DOR= for example

Explanation:

1. The instructions are used to compare the value in S; with that in S,. Take the instruction OR=
for example. When the comparison result is that the value in S; is equal to that in S,, the
condition of the instruction is met. When the comparison result is that the value in S; is not
equal to that in S,, the condition of the instruction is not met.

2. Only the 32-bit instruction can use the 32-bit counter.

AP| 16-bit 32-bit Comparison operation result
number instruction instruction ON OFF
0012 OR = DOR = Si1=S; Si#S;
0013 OR< > DOR< > S1#S; S:=5,
0014 OR > DOR > S,>S, Si<S,
0015 OR> = DOR > = S:=S, $,<S,
0016 OR< DOR < S;:<S, S;=S,
0017 OR< = DOR< = S.<S, S:1>S,
Example:

1. When X0.1 is ON, or when the current value in C10 is equal to 100, Y0.10 is ON.

2. When both X0.2 and M30 are ON, or when the value in (D101, D100) is greater than or equal
to 1000,000, M60 is ON.

6-10

AH500 Programming Manual

NETWORK 1

Y0.10

()

100 |51
c1o Jsz

NETYWORE 2

Maéo

D100 51
1000000 {32

6-11

Chapter 6 OBApplied Instructions

API Instruction code Operand Function
0018~ i iNO-DOI
D FLDX S. S, Comparing the floating-point
0023 numbers
Device|l X | Y | M| S| T|C|HC| D | L [SM|SR| E |PR| K |16#|“$" DF
S oo o e o o o @ O | e O
S, ® o o & o o o ® O | e O
Pulse instruction |32-hit instruction (5-7 steps)| 64-bit instruction (5-7 steps)
- AH500 AH500
Symbol:
F= DF=
a a S; Data source 1 Double word/Long word
51 5l
52 52
S, Data source 2 Double word/Long word

Taking FLD= and DFLD= for example

Explanation:

1.

AP| 32-bit 64-bit Comparison operation result
number instruction instruction ON OFF
0018 FLD = DFLD = S$1=S; S1#S;
0019 FLD < > DFLD < > S.#S, S,=S,
0020 FLD > DFLD > S1>S; SisS;
0021 FLD > = DFLD > = S:=S, $,<S,
0022 FLD < DFLD < S,<S, S12S,
0023 FLD< = DFLD < = S,<S, S;>S,
Example:

The instructions are used to compare the value in S; with that in S,, and the values
compared are floating-point numbers. Take the instruction FLD= for example. When the
comparison result is that the value in S; is equal to that in S,, the condition of the instruction
is met. When the comparison result is that the value in S; is not equal to that in S,, the
condition of the instruction is not met.

Take the instruction FLD = for example. When the value in DO is equal to that in D2, Y0.0 is ON.

NETYWWORK 1

DO —
D2 —

¥0.0
{

Additional remark:

1.

b

If the value in S; or S, exceeds the range of values which can be represented by the
floating-point numbers, the contact is OFF, SM is ON, and the error code in SRO is 16#2013.

6-12

AH500 Programming Manual

API Instruction code Operand Function
0024~ : .
Dl FANDX S, S, Comparing the floating-point
0029 numbers
Devicel X | Y | M| S | T | C |HC L |{SM|SR| E |PR| K |16#| “$" | DF
S o O o 0 | o o ®e | O| @ O
S, o O e O o o ® | O| @ O
Pulse instruction | 32-bit instruction (5-7 steps) | 64-bit instruction (5-7 steps)
- AH500 AH500
Symbol:
F= DF=
a a S, Data source 1 Double word/Long word
51 =1
52 52
S, Data source 2 Double word/Long word

Taking FAND= and DFAND= for example

Explanation:

1. The instructions are used to compare the value in S; with that in S,, and the values

compared are floating-point numbers. Take the instruction FAND= for example. When the

comparison result is that the value in S; is equal to that in S,, the condition of the instruction
is met. When the comparison result is that the value in S; is not equal to that in S,, the
condition of the instruction is not met.

API 32-bit 64-bit Comparison operation result
number instruction instruction ON OFF
0024 FAND = DFAND = S;i=S; S1#S;
0025 FAND < DFAND < > S1#S; S:=S;
0026 FAND > DFAND > S:1>S; Si<S,
0027 FAND > DFAND > = S12S, S:1<S;
0028 FAND < DFAND < S,<S, S:>S,
0029 FAND < DFAND < = Si<S; S1>S;
Example:

Take the instruction FAND = for example. When X1.0 is ON and the value in D1 is equal to that in

D2, Y1.0 is ON.
NETWORK 1

D1
D2 —

Additional remark:

1. Ifthevaluein S; or S, exceeds the range of values which can be represented by the
floating-point numbers, the contact is OFF, SM is ON, and the error code in SRO is 16#2013.

6-13

Chapter 6 OBApplied Instructions

API Instruction code Operand Function
0030~ i iNa-DO0i
Dl FORX S, S, Comparing the floating-point
0035 numbers
Devicel X | Y| M| S | T | C |HC| D L |[SM|SR| E |PR| K |16#]| “$” | DF
S o o o &6 o o o @ | O| @ O
S o o e | o6 o o o e | O| @ O
Pulse instruction | 32-bit instruction (5-7 steps) | 64-bit instruction (5-7 steps)
- AH500 AH500
Symbol:
F= DF=
a S, Data source 1 Double word/Long word
a1 51
52 52
S, Data source 2 Double word/Long word

Taking FOR= and DFOR= for example

Explanation:

1. The instructions are used to compare the value in S; with that in S,, and the values
compared are floating-point numbers. Take the instruction FOR= for example. When the
comparison result is that the value in S; is equal to that in S,, the condition of the instruction
is met. When the comparison result is that the value in S; is not equal to that in S,, the
condition of the instruction is not met.

API 32-bit 64-bit Comparison operation result
number instruction instruction ON OFF
0030 FOR = DFOR = S:=S; S1#S;
0031 FOR< > DFOR< > Si#£S, S,=S,
0032 FOR > DFOR > S;>S, S,<S,
0033 FOR> = DFOR> = S:=S, S:1<S,
0034 FOR < DFOR < S,<S, S1>S,
0035 FOR< = DFOR< = Si<S, S.>S,
Example:

When X1.0 is ON, or when the value in D1 is equal to that in D2, Y1.0 is ON.

NETWORK 1

D1

Dz |52

51

6-14

AH500 Programming Manual

Additional remark:

1. Ifthevaluein S; or S, exceeds the range of values which can be represented by the
floating-point numbers, the contact is OFF, SM is ON, and the error code in SRO is 16#2013.

6-15

Chapter 6 OBApplied Instructions

API Instruction code Operand Function
0036~ _ _
LD$X S1, S Comparing the strings
0041

Devicel X | Y | M| S| T|C|HC| D | L |SM|SR| E |PR| K |16#| “$" | DF

S, | @ @ e | O e O ® | O | @ @)
S, |[®@| @ o | O o O ®e O e @)

Pulse instruction| 16-bit instruction (5-17 steps) 32-bit instruction

- AH500 -
Symbol:
$= .
Q S; : Datasource 1 String
51
52 .
S, : Data source 2 String

Taking LD$= for example

Explanation:

1. The instructions are used to compare the data in S; with that in S, and the data compared is
strings. Take the instruction LD$= for example. When the comparison result is that the data in
S, is equal to that in S,, the condition of the contact is met. When the comparison result is
that the data in S; is not equal to that in S,, the condition of the contact is not met.

API (TR Comparison operation result
number ON OFF
0036 LD$ = S:1=S, S1#S;
0037 LD$ < > Si#S; S;=S;
0038 LD$ > $1>S; SiS;
0039 LD$> = S:=S, $,<S,
0040 LD$ < S1<S; S$:1=S;
0041 LD$< = Si<S, S1>S;

2. Only when the data in S~S+n (n indicates the n" device) includes 16#00 can the data be
judged as a complete string.

b15 be7 b0
s 16#32(2) | 16#31(1)
S+1| 16#34(4) ' 16#33(3)
S+2 16#00 16#35(5)
" 12345"

3. When two strings are the same, the corresponding comparison operation results of the
instructions are listed below.

b15 b8 b7 b0 b15 b8 b7 b0

s1 | 16#42(8) ! 16#41(A) | Comparisonsign sz | 16#42(8) ! 16#41(A)

s1+1| 16#44(D) ' 16#43(C)] s2+1| 16#44(D) ' 16#43(C)

s1+2| 16#00 i 16#45(E) s2+2 | 16#00 i 16#45(E)
"ABCDE" "ABCDE"

6-16

AH500 Programming Manual

Comparison symbol Comparison operation result
$= ON
$< > OFF
$> OFF
$> = ON
$< OFF
$< = ON
4. When the lengths of the strings are the same, but their contents are different, the first
different values (ASCII codes) met in the strings are compared. For example, the string in S;
is “ABCDF”, and the string in S; is “ABCDE". The first different values met in the strings are
“F” (16#46) and “E” (16#45). Owing to the fact that 16#46 is greater than 16#45, the string in
S, is greater than that in S;. The corresponding comparison operation results of the
instructions are listed below.
b15 b8‘b7 b0 b15 b8‘b7 b0
s1 16#42(B) ‘ 16#41(A) Comparison sign s2 16#42(B) ‘ 16#41(A)
s1+1| 16#44(D) ' 16#43(C)] s2+1| 16#44(D) ' 16#43(C)
s1+2| 16#00 16#46(F) s2+2 | 16#00 16#45(E)
" ABCDF" " ABCDE"
Comparison symbol Comparison operation result
$= OFF
$< > ON
$> ON
$> = ON
$< OFF
$< = OFF
5. When the lengths of the strings are different, the string whose length is longer is greater than

the string whose length is shorter. For example, the string in S is “1234567”, and the string
in S, is “99999™. Owing to the fact that the string in S; is composed of 7 characters, and the
string in S, is composed of 5 characters, the string in S, is greater than the string in S,. The
corresponding comparison operation results of the instructions are listed below.

b15 b8 b7 b0 b15 b8 b7 b0
S1+1| 16#34(4) | 16#33(3) S s2+1| 16#39(9) | 16#39(9)
s1+2| 16#36(6) 1 16#35(5) s2+2| 16#00 i 16#39(9)
s143| 16#00 16#37(7) "99999"
"1234567"
Comparison symbol Comparison operation result

$= OFF

$< > ON

$> ON

$> = ON

6-17

Chapter 6 OBApplied Instructions

Comparison symbol

Comparison operation result

$<

OFF

$< =

OFF

Example:

When the string starting with the data in DO is equal to the string staring with D2, Y0.0 is ON.

NETWORK 1

Y0.0
{

Do |51
D2 |52

Additional remark:

\

1. If the string does not end with 16#00, the instruction is not executed, SM is ON, and the error

code in SRO is 16#200E.

6-18

AH500 Programming Manual

Instruction code Operand Function

0042~
0047

ANDS$X S1, S, Comparing the strings

Devicel X | Y | M| S| T| C|HC| D | L |SM|SR| E |PR| K |16#| “$" | DF

o o oo e o ® | O @ @)

o o oo o o ®e | O @ O

Pulse instruction |16-bit instruction (5-17 steps)| 32-bit instruction

- AH500 -
Symbol:
$= .
a S; : Datasource 1 String
51
S .
S, : Data source 2 String

Taking AND$= for example

Explanation:

1.

The instructions are used to compare the data in S; with that in S,, and the data compared is
strings. Take the instruction AND$= for example. When the comparison result is that the data
in S; is equal to that in S,, the condition of the contact is met. When the comparison result is
that the data in S; is not equal to that in S,, the condition of the contact is not met.

Only when the data in S~S+n (n indicates the ny, device) includes 16#00 can the data be
judged as a complete string.

When the strings are completely the same, the corresponding comparison operation results
of the instructions are listed below.

b15 b8 b7 b0 b15 b8 b7 b0
s1 16#42(B) | 16#41(A) _ _ s2 16#42(B) © 16#41(A)
: Comparison sign :
s1+1| 16#44(D) ' 16#43(C) S s2+41 | 16#44(D) | 16#43(C)
si+2| 16#00 | 16#45(E) s2+2 | 16#00 | 16#45(E)
"ABCDE" "ABCDE"
Comparison symbol Comparison operation result

$= ON

$< > OFF

$> OFF

$> = ON

$< OFF

$< = ON

When the lengths of the strings are the same, but their contents are different, the first
different values (ASCII codes) met in the strings are compared. For example, the string in S;
is “ABCDF”, and the string in S; is “ABCDE". The first different values met in the strings are
“F" (16#46) and “E” (16#45). Owing to the fact that 16#46 is greater than 16#45, the string in
S, is greater than that in S;. The corresponding comparison operation results of the
instructions are listed below.

6-19

Chapter 6 OBApplied Instructions

Comparison sign

]

b15 b8‘b7 b0
s1 16#42(B) | 16#41(A)
s141| 16#44(D) ' 16#43(C)
s142| 16#00 16#46(F)
" ABCDF"

b15

S2
S2+1

S2+2

b8 b7 b0

16#42(B) | 16#41(A)

16#44(D) | 16#43(C)

16#00

16#45(E)

"ABCDE"

Comparison symbol

Comparison operation result

$= OFF
$< > ON
$> ON
$> = ON
$< OFF
$< = OFF

5. When the lengths of the strings are different, the string whose length is longer is greater than
the string whose length is shorter. For example, the string in S; is “1234567”, and the string
in S, is “99999™. Owing to the fact that the string in S; is composed of 7 characters, and the
string in S, is composed of 5 characters, the string in S; is greater than the string in S,. The
corresponding comparison operation results of the instructions are listed below.

b15 b8.b7 b0 b15 b8lb7 b0
s1 16#32(2) @ 16#31(1) Comparison sign ~ S2 16#39(9) : 16#39(9)
s1+1| 16#34(4) @ 16#33(3)] s2+1| 16#39(9) ' 16#39(9)
s1+2| 16#36(6) i 16#35(5) s2+2| 16#00 i 16#39(9)
s14+3| 16#00 16#37(7) 199999"
"1234567"
Comparison symbol Comparison operation result
$= OFF
$< > ON
$> ON
$> = ON
$< OFF
$< = OFF
Example:
When MO is ON and the string starting with the data in DO is equal to the string staring with D2,
Y0.0 is ON.
NETWORK 1
Mo $= Y0.0
N ° (
Do |51
pz-|52

6-20

AH500 Programming Manual

Instruction code Operand Function

0048~
0053

OR$X S1, S, Comparing the strings

Devicel X | Y | M| S| T | C|HC|D | L |[SM|SR| E |PR| K |16#| “$" | DF

® O e | O o O ® O | @ @)

® O e | O e | O ®e | O | 0 @)

Pulse instruction | 16-bit instruction (5-17 steps)| 32-bit instruction

- AH500 -
Symbol:
$= .
Q S; : Datasource 1 String
51
52 .
S, : Data source 2 String

Taking OR$= for example

Explanation:

1.

The instructions are used to compare the data in S; with that in S,, and the data compared is
strings. Take the instruction OR$= for example. When the comparison result is that the data
in S; is equal to that in S,, the condition of the contact is met. When the comparison result is
that the data in S; is not equal to that in S,, the condition of the contact is not met.

Only when the data in S~S+n (n indicates the ny, device) includes 16#00 can the data be
judged as a complete string.

When the strings are completely the same, the corresponding comparison operation results
of the instructions are listed below.

b15 b8 b7 b0 bi15 b8 b7 b0
s1 16#42(B) | 16#41(A)) . s2 16#42(B) | 16#41(A)
: Comparison sign :
S1+1 | 16#44(D) ' 16#43(C) S s2+1 | 16#44(D) ' 16#43(C)
si+2| 16#00 | 16#45(E) s2+2 | 16#00 | 16#45(E)
"ABCDE" " ABCDE"

Comparison symbol Comparison operation result

$= ON

$< > OFF

$> OFF

$> = ON

$< OFF

$< = ON

When the lengths of the strings are the same, but their contents are different, the first
different values (ASCII codes) met in the strings are compared. For example, the string in S;
is “ABCDF”, and the string in S; is “ABCDE". The first different values met in the strings are
“F" (16#46) and “E” (16#45). Owing to the fact that 16#46 is greater than 16#45, the string in
S, is greater than that in S;. The corresponding comparison operation results of the
instructions are listed below.

6-21

Chapter 6 OBApplied Instructions

b15 b8‘b7 b0 b15 b8‘b7 b0
s1 16#42(B) | 16#41(A) _ . s2 16#42(B) | 16#41(A)
; Comparison sign ;
s1+1| 16#44(D) ! 16#43(C) S s2+1 | 16#44(D) | 16#43(C)
s1+2| 16#00 16#46(F) s2+2 | 16#00 16#45(E)
" ABCDF" " ABCDE"
Comparison symbol Comparison operation result

$= OFF

$< > ON

$> ON

$> = ON

$< OFF

$<= OFF

5. When the lengths of the strings are different, the string whose length is longer is greater than
the string whose length is shorter. For example, the string in S; is “1234567”, and the string
in S, is “99999™. Owing to the fact that the string in S; is composed of 7 characters, and the
string in S, is composed of 5 characters, the string in S; is greater than the string in S,. The
corresponding comparison operation results of the instructions are listed below.

b15 b8lb7 b0 b15 b8lb7 b0
s1 16#32(2) ! 16#31(1) Comparison sign S2 16#39(9) ! 16#39(9)
s1+1| 16#34(4) @ 16#33(3)] s2+1| 16#39(9) ' 16#39(9)
s1+2| 16#36(6) | 16#35(5) s2+2| 16#00 1 16#39(9)
s143| 16#00 16#37(7) " 99999"
"1234567"
Comparison symbol Comparison operation result
$= OFF
$< > ON
$> ON
$> = ON
$< OFF
$< = OFF

Example:

When MO is ON, or when the string starting with the data in DO is equal to the string staring with D2,
Y0.0 is ON.

NETWORK 1

0.0

| | ¢
1 '

Do {51
D2z |52

6-22

AH500 Programming Manual

API Instruction code Operand Function
0054 | D CMP P S1, S,, D Comparing the values
Devicel X | Y | M| S| T | C |HC| D L |[SM|SR| E |PR| K |[16#| “$” | DF
S o O e & o o o ® | O | @®@| O | O
S, o O e o o o o ® O | @ | O | O
D e o o o e o o [
Pulse instruction | 16-bit instruction (7 steps)| 32-bit instruction (7 steps)
AH500 AH500 AH500
Symbol:
P PP
En En S; : Comparison value 1 Word/Double word
51 o ls1 o
52 52
S, : Comparison value 2 Word/Double word
DCMP D MPP
En En
51 o ls1 o . .
D : Comparison result Bit
52 52
Explanation:
1. The instruction is used to compare the value in S; with that in S,, and the values compared

are singed decimal numbers. The comparison results are stored in D.

The operand D occupies three consecutive devices. The comparison results are stored in D,

D+1, and D+2. If the comparison value in S; is greater than the comparison value in S,, D will
be ON. If the comparison value in S; is equal to the comparison value in S,, D+1 is ON. If the
comparison value in S; is less than the comparison value in S,, D+2 will be ON.

Only the instructions DCMP and DCMPP can use the 32-bit counter.

If the operand D is MO, the comparison results will be stored in MO, M1 and M2, as shown

When X0.0 is ON, the instruction CMP is executed. M0, M1, or M2 is ON. When X0.0 is OFF,

the execution of the instruction CMP stops. The state of MO, the state of M1, and the state of

CMP

— MO

2.
3.
Example:
1.
below.
2.
M1 remain unchanged.
NETWORK 1
X0.0
| | E
I 1 "
10-f51
Dio {52
3.

If users want to clear the comparison result, they can use the instruction RST or ZRST.

6-23

Chapter 6 OBApplied Instructions

Additional remark:

If users declare the operand D in ISPSoft, the data type will be ARRAY [3] of BOOL.
If D+2 exceeds the device range, the instruction is not executed, SMO is ON, and the error

1.
2.

code in SRO is 16#2003.

NETWORK 1
x0.0 Mo
—/ (R)
M1
- (R)
M2
——(R)
NETWOREK 2
x0.0
—/] i
Mo =
M2

ZR3T

6-24

AH500 Programming Manual

API Instruction code Operand Function
0055 | |D ZCP P S.,,S,, S,D Zone comparison
Devicel X | Y| M| S| T | C|HC| D | L |SM|SR| E |PR| K |16#| “$" | DF
S: e o e o o o o ® O @@ | O|O
S, e o e o o o o ® O|@®@ | O|O
S o O e & o o o ® O|®@ | O | O
D o o o o e o o]
Pulse instruction | 16-bit instruction (9 steps) | 32-bit instruction (9 steps)
AH500 AH500 AH500
Symbol:
7P FCPP i
s, - M|n|mum value of the zone Word/Double word
En En comparison
51 DHs1 O
52 52 i
s, - MaX|mu_m value of the zone Word/Double word
5 5 comparison
DZCP DZCPP
En En S : Comparison value Word/Double word
51 DYysl O
52 52 . .
. . D : Comparison result Bit
Explanation:

1. The instruction is used to compare the value in S with that in S;, and compare the value in S
with that in S,. The values compared are singed decimal numbers, and the comparison

results are stored in D.

2. Thevalue in S; must be less than that in S,. If the value in S; is larger than that in S,, S; will
be taken as the maximum/minimum value during the execution of the instruction ZCP.

3. The operand D occupies three consecutive devices. The comparison results are stored in D,
D+1, and D+2. If the comparison value in S; is less than the comparison value in S, D will be
ON. If the comparison value in S is within the range between the value in S; and the value in
S,, D+1 will ON. If the comparison value in S is greater than the value in S,, D+2 will be ON.

4. Only the instructions DZCP and DZCPP can use the 32-bit counter.

Example:

1. If the operand D is MO, the comparison results will be stored in MO, M1 and M2, as shown
below.

2. When X0.0 is ON, the instruction ZCP is executed. MO, M1, or M2 is ON. When X0.0 is OFF,
the instruction ZCP is not executed. The state of MO, the state of M1, and the state of M2
remain the same as those before X0.0’s being OFF.

NETWORK 1
X0.0 P
— | "
10 {51 Dl-mo
100 {52
o=
3. If users want to clear the comparison result, they can use the instruction RST or ZRST.

6-25

Chapter 6 OBApplied Instructions

Additional remark:

If users declare the operand D in ISPSoft, the data type will be ARRAY [3] of BOOL.
If D+2 exceeds the device range, the instruction is not executed, SMO is ON, and the error

1.
2.

code in SRO is 16#2003.

NETWORK 1
x0.0 Mo
—/ (R)
M1
——(R)
Mz
L——(R)
NETWORK 2
x0.0
—1/] i
Mo {5
M2

ZR3T

6-26

AH500 Programming Manual

API Instruction code Operand Function
0056 ECMP = S, S, D Comparing the floating-point
numbers
Device] X | Y | M| S C|/HC| D | L |[SM|SR| E |PR| K |16#| “$" | DF
SH e o e o o o ® O e O
S, e o e o o o ® O e ©)
D e o o o e o o []
Pulse instruction | 32-bit instruction (7-9 steps) | 64-bit instruction
AH500 AH500 -
Symbol:
FCMPP S: : Floating-point number 1 Double word
En
e D S, : Floating-point number 2 Double word
=2 D : Comparison result Bit
Explanation:
1. The instruction FCMP is used to compare the floating-point number in S; with the

floating-point number in S,. The comparison results are stored in D.

2. The operand D occupies three consecutive devices. The comparison results are stored in D,
D+1, and D+2. If the comparison value in S; is greater than the comparison value in S;, D will
be ON. If the comparison value in S; is equal to the value in S,, D+1 will ON. If the
comparison value in S; is less than the value in S,, D+2 will be ON.

Example:

1. If the operand D is M10, the comparison results will be stored in M10, M11 and M12, as
shown below.

2. When X0.0 is ON, the instruction FCMP is executed. M10, M11, or M12 is ON. When X0.0 is
OFF, the instruction FCMP is not executed. The state of M10, the state of M11, and the state
of M12 remain the same as those before X0.0’s being OFF.

3. If users want to get the comparison result 2, <, or #, they can connect M10~M12 is series or
in parallel.

4. If users want to clear the comparison result, they can use the instruction RST or ZRST.

NETWORK 1

X0.0 FCMP
| | En

oo J51 ol mMio
p1oo sz

Additional remark:

1.

2.
3.

If the value in S; or S, exceeds the range of values which can be represented by the
floating-point numbers, the contact is OFF, SM is ON, and the error code in SRO is 16#2013.

If users declare the operand D in ISPSoft, the data type will ARRAY [3] of BOOL.

If D+2 exceeds the device range, the instruction is not executed, SMO is ON, and the error
code in SRO is 16#2003.

6-27

Chapter 6 OBApplied Instructions

APl | | Instruction code Operand Function

0057 FzZCP P S1, S, S, D Floating-point zone comparison

Device

M| S Bm|SM|SR PR| K |16#|“$"| DF

Sy

Sz

S

® 00 -
® 00 O
(2K JN)

D

Ole e e x
o000 <
I IR
o000 =
o000 r
°
I)
O|o|o| m
°®
Oo|olo

Pulse instruction | 32-bit instruction (9-12 steps) | 64-bit instruction

AH500 AHS500 -

Symbol:

~ Minimum value of the zone
S, - .

FZCPR comparison
En . Maximum value of the zone

S, ;
s1 o comparison

Double word
Double word

57 S : Comparison value Double word

D : Comparison result Bit

Explanation:

1.

The instruction is used to compare the value in S with that in S;, and compare the value in S
with that in S,. The values compared are floating-point numbers, and the comparison results
are stored in D.

The value in S; must be less than that in S,. If the value in S; is larger than that in S,, S; will
be taken as the maximum/minimum value during the execution of the instruction FZCP.

The operand D occupies three consecutive devices. The comparison results are stored in D,
D+1, and D+2. If the comparison value in S; is greater than the comparison value in S, D will
be ON. If the comparison value in S is within the range between the value in S; and the value
in S,, D+1 will be ON. If the compared value in S, is less than the value in S, D+2 will be ON.

Example:

If the operand D is MO, the comparison results will be stored in MO, M1 and M2.

When X0.0 is ON, the instruction FZCP is executed. MO, M1, or M2 is ON. When X0.0 is OFF,
the instruction FZCP is not executed. The state of MO, the state of M1, and the state of M2
remain the same as those before X0.0’s being OFF.

If users want to clear the comparison result, they can use the instruction RST or ZRST.
NETWORK 1

| En
1

X0.0 FzCP
|
I

po 51 Dl-mo
D10 |52
D20 {5

Additional remark:

1.

2.
3.

If the value in S; or S, or S exceeds the range of values which can be represented by the
floating-point numbers, the contact is OFF, SM is ON, and the error code in SRO is 16#2013.

If users declare the operand D in ISPSoft, the data type will be ARRAY [3] of BOOL.

If D+2 exceeds the device range, the instruction is not executed, SMO is ON, and the error
code in SRO is 16#2003.

6-28

AH500 Programming Manual

API Instruction code Operand Function
0058 MCMP P S, S, n, D Matrix comparison
Devicel X | Y | M| S| T | C|HC| D | L |[SM|SR| E |PR| K |16#| “$" | DF
[2N o O o O o o
[2 o O o O { {
(N o O ® O o ® 0|0
[N ® O ® O o {
Pulse instruction | 16-bit instruction (9 steps) | 32-bit instruction
AH500 AH500 -
Symbol:
MCMPE S; : Matrix source device 1 Word
En S, : Matrix source device 2 Word
51 b
57 n : Length of the array Word
n D : Pointer Word
Explanation:
1. The search for the bits whose states are different starts from the bits specified by the number

5.

gotten from the addition of one to the current value in D. After the bits whose states are
different are found, the bit number is stored in D, and the comparison is finished.

The operand n should be within the range between 1 and 256.

When SM607 is ON, the equivalent values are compared. When SM607 is OFF, the different
values are compared. When the matching bits are compared, the comparison stops
immediately, and SM610 is ON. When the last bits are compared, SM608 is ON, and the bit
number is stored in D. The comparison starts from the 0" bits in the next scan cycle, and
SM609 is ON. When the value in D exceeds the range, SM611 is ON.

When the instruction MCMP is executed, users need a 16-bit register to specify a certain bit
among the 16n bits in the matrix for the operation. The register is called the pointer, and is
specified by users. The value in the register is within the range between 0 and 16n-1, and
corresponds to the bit within the range between b0 and b16n-1. During the operation, users
should be prevented from altering the value of the pointer in case the search for the matching
bits is affected. If the value of the pointer exceeds the range, SM611 will be ON, and the
instruction MCMP will not be executed.

If SM608 and SM610 occur simultaneously, they will be ON simultaneously.

Example:

1.

When X0.0 is switched from OFF to ON, SM609 is OFF. The search for the bits whose states
are different (SM607 is OFF) starts from the bits specified by the number gotten from the
addition of one to the current value of the pointer.

Suppose the current value in D20 is 2. When X0.0 is switched from OFF to ON four times,
users can get the following execution results.

o The value in D20 is 5, SM610 is ON, and SM608 is OFF.
. The value in D20 is 45, SM610 is ON, and SM608 is OFF.
] The value in D20 is 47, SM610 is OFF, and SM608 is ON.
° The value in D20 is 1, SM610 is ON, and SM608 is OFF.

6-29

Chapter 6 OBApplied Instructions

NETYWORE 1
X0.0 MCHP
— | -
po 51 Ol-Dp2o
p1o sz
3 n
I 2 |Pointer
*\ b0 D20
polofz]ofz]|o|1 101n101 1
p1]of1]o]z]o 1{o]z{o|2]o]1|o]2
DZE:L 1|ofz]o[z]ofz]o]2]o|1|o]2
ba7
MCMP
K] bo
0100101010101101 1
p11 Jo|1|ofz|ofz]o[z]ofz|olz]ofz]0]z
p12 [o| 1M <[o]zfo[z]o]<[o[1]o]]0]z
ba7

Additional remark:

1. The description of the operation error code:

If the devices S;+n-1 and S,+n-1 exceed the range, the instruction MCMP is not executed,
SM is ON, and the error code in SRO is 16#2003.

If the value in the operand n is not within the range between 1 and 256, the instruction
MCMP is not executed, SM is ON, and the error code in SRO is 16#200B.

2. The description of the flags:
It is the matrix comparison flag.
SM607: ON: Comparing the equivalent values
OFF: Comparing the different values

SM608: The ma’grix comparison comes to an end. When the last bits are compared,
SM608 is ON.

SM609: When SM609 is ON, the comparison starts from bit 0.

SM610: Itis the_matrix bit s_earch flag. When the ma’Fching bits are compared, the
comparison stops immediately, and SM610 is ON.

SM611: It is the matrix pointer error flag. When the value of the pointer exceeds

the comparison range, SM611 is ON.

6-30

AH500 Programming Manual

API Instruction code Operand Function
0059~ . .
CMPTX | P S, S,,n, D Comparing the tables
0064
DevicelX| Y| M | S| T | C |HC| D | L |SM|SR| E |PR| K |16#| “$" DF
S, @ @ o | o { I ® | O | ®@ | OO
S, @ @ o | o { I ® O | @
n @ @ ® | O (I J ® | O | @ OO
D e & o | @ o o o (]
Pulse instruction | 16-bit instruction (9 steps) | 32-bit instruction
AH500 AH500 -
Symbol:
CMPT=F S; : Source device 1 Word
E .
r S, : Source device 2 Word
51 D
57 n : Data length Word
rn D : Comparison result Bit

Explanation:

1. The instruction is used to compare n pieces of data in devices starting from S; with those in
devices starting from S,. The values compared are signed decimal numbers, and the
comparison results are stored in D.

2. The operand n should be within the range between 1 and 256.

3. The value which is written into the operand D is a one-bit value.

4. When the results gotten from the comparison by using the instruction CMPT# are that all
devices are ON, SM620 is ON. Otherwise, SM620 is OFF.

5. Ifthe operand S; is a device, the comparison will be as shown below.

Comparison result
s1 1234(BIN) s2 1111(BIN) D 1
S1+1 5678(BIN) S2+1 2222(BIN) D +1 1
S1+2 5000(BIN) Comparison sign s242 3333(BIN) D +2 1
s1+3 | 1000(BIN)| |n s2+3 | 4444(BIN)| |n [> b3 0
l l !

S1+(N-2)_ 10(BIN) | S2+(N-2) 8888(BIN) D +(N-2) 0

S1+(N-1)_ 90(BIN) S2+(N-1) 9999(BIN) D +(N-1) 0

6. Ifthe operand S; is a constant within the range between -32768 and 32767, the comparison

will be as shown below.

Comparison result

s2 1111(BIN) D 0

S2+1 2222(BIN) D +1 0

Compariosn sign S242 3333(BIN) D +2 1

s1[3333(BIN)] = S2+3 | 4444(BIN)| |n :> D +3 0
! l

S2+(N-2) 8888(BIN) D +(N-2 0

S2+(N-1)_9999(BIN) D +(N-1) 0

7.

The corresponding comparison operation results of the instructions are listed below.

6-31

Chapter 6 OBApplied Instructions

API 16-bit Comparison operation result
number instruction ON OFF
0059 CMPT = S1=S; S1#S;
0060 CMPT < > S1#S, S1=S;
0061 CMPT > S1>S, SisS;
0062 CMPT > = S:=S, S,<S,
0063 CMPT < S:<S, S12S,
0064 CMPT < = SisS; S1>S,
Example:

The data in DO~D3 are compared with that in D10~D13. If the comparison result is that the data in
D0~D3 is the same as that in D10~D13, Y0.1~Y0.4 will be ON.

NETWORK 1
%x0.1 CMPT=
— | X
oo {51 Ovo.1
D10 |52
4 —n
Comparison result
DO 1000 . . D10 1000 Y0.1 1
Comparison sign

D1 2000 [::::] D11 1000 Y0.2 0
D2 3000 D12 1000 Y0.3 0
D3 4000 D13 1000 Y0.4 0

Additional remark:
1. If the value in the operand n is not within the range between 1 and 256, the instruction is not

executed, SM is ON, and the error code in SRO is 16#200B.

2. If the number of devices specified by S;~S;+n, S,~S,+n, or D is insufficient, the instruction is
not executed, SMO is ON, and the error code in SRO is 16#2003.

6-32

AH500 Programming Manual

API Instruction code Operand Function
0065 CHKADR S, n. D Checking _the addr_ess of the contact
type of pointer register

Devicel X | Y| M| S| T|C|HC| D | L |SM|SR| E |PR| K |16#]| “$" | DF
S o
n e | © [I o O ® O @ OO
D e o o o e o o (]
Pulse instruction |16-bit instruction (7 steps)|32-bit instruction
- AH500 -
Symbol:
) . . POINTER/T_POINTER/
CHKADR S . Pointer register C_POINTER/HC_POINTER
F n : Number of devices Word
5 D
In D : Check result Bit

Explanation:

1. The instruction CHKADR is used to check whether the value in S and (the value in S)+n-1
exceed the device range. If the check result is that the value in S and (the value in S)+n-1 do
not exceed the device range, the device D will be ON. Otherwise, it will be OFF.

2. S supports the pointer registers PR, TR, CR, and HCR.

3. The operand n should be within the range between 1 and 1024.

4. The instruction CHKADR only can be used in the function block.

Example:

1. Establish a program and a function block in ISPSoft.

=8 Progrars
E3 Progl [PRG,LL]
=g Function Blocks
[ca| FBO [FB,LL]
Declare two variables in the program.
Local Syrahols
Class Identifiers Lddress Type... Initial Valne | Identifier Corament...
VAR ik all] His [Auta] |FEO ik
b [VAR. StartBit B/A [utg] |BOOL FALSE |
2. Declare VarPR1, VarTR1, VarCR1, and VarHCRL1 in the function block, and assign the data

types POINTER, T_POINTER, C_POINTER, and HC_POINTER to them respectively.

6-33

Chapter

6 OBApplied Instructions

Local Syohols
Class Identifiers & ddress Tape... Initial Walue Identifier Cornament...

VAR _IN_OUT | VarPR1 Mi4 [Auto] POINTER M4

VAR _IN_OUT VarTRI Mi& [Aute] |T_POINTER Mk

VAR_IN_OUT VaCRI Mis [Aute] |C_POINTER Mk

VAR_IN_OUT VaHCRI |Mis [utg] HC_POINTER |Nit

VAR, PR_CHkBit N4 [Autd] BOOL FALSE

VAR, TR_CHEBit N4 [Autd] |BOOL FALSE

VAR CR_CHkBit NIk [Auts] BOOL FALSE

VAR, HCR_CHEBit N/ [Autd] |BOOL FALSE

VAR, chEPR. Hi4 [Aute] BOOL M4

VAR, chETE. Hi4 [Aute] |BOOL M4

VAR, chECR. Hi4 [Aute] BOOL M4

b [VAR. chEHCE. it [Autg] |BOOL it |

Call the function block FBO in the program, and assign D65535, TO, C2047, and HC50 to
VarPR1, VarTR1, VarCR1, and VarHCR1 in FBO respectively.

myfh(

FEO
Enc

StartBit
_| I En
D65535 =
TO =
C2047 =
HCS0 =

VarPR1
VarTR1
VarCR 1~

\arHCR~

Use the instruction CHKADR to check whether VarPR1, VarTR1, VarCR1, and VarHCR1

exceed the range.

When chkPR is ON, the practical device represented by VarPR1 is D65535. Since the legal
range of devices is from DO to D65535, and D65535+10-1=D65544, which exceeds the
range, PR_ChkBit is OFF.

NETWOREK 1

chkPR
| |

En

[}

YarPR1 —
10 —

3

CHEADR,

)

PR _ChkBit

When chkTR is ON, the practical device represented by VarTR1 is TO. Since the legal range
of devices is from TO to T2047, and TO+10-1=T9, which does not exceed the range,

TR_ChkBit is ON.

NETWORK 2

chkTR
|]

En

¥YarTR1 >
10 n

CHKADR.

)

L TR_ChkBit

When chkCR is ON, the practical device represented by C2047. Since the legal range of
devices is from CO to C2047, and C2047+10-1=C2056, which exceeds the range,

CR_ChkBit is OFF.

6-34

AH500 Programming Manual

NETWORK 3

chkCR
| |

En

YarCR1 —]
10—

[}

CHKADR.

=]

| CR_ChkBit

8. When chkHCR is ON, the practical device represented by HC50 is VarHCR1. Since the legal
range of deices is from HCO to HC63, and HC50+10-1=HC59, which does not exceed the

range, HCR_ChkBit is ON.
NETWORK 4

chkHCR
| |

En

Additional remark:

YarHCR1 —

[}

3

10—

CHKADR.

[

| —HCR_ChkBit

1. If the value (the practical device address) in S exceeds the device range, the instruction
CHKADR is not executed, SM is ON, and the error code in SRO is 16#2003.

2. If the value in the operand n is not within the range between 1 and 1024, the instruction
CHKADR is not executed, SM is ON, and the error code in SRO is 16#200B.

6-35

AH500 Programming Manual

6.2 Arithmetic Instructions

6.2.1 List of Arithmetic Instructions

Instruction code Pulse :
API - - - . - Function t
16-bit | 32-bit | 64-bit | instruction uneto Step
0100 |+ D+ B v Addition of binary 7
— numbers
0101 |- D- _ v Subtraction of binary 7
— numbers
0102 | * D - v Multlpllcat|on of 7
— binary numbers
0103 |/ D/ - v Division of binary 7
— numbers
Addition of
0104 - F+ DF+ v floating-point 7-9
numbers
Subtraction of
0105 - F- DF- v floating-point 7-9
numbers
- Multiplication of
0106 F* DF* v floating-point 7-9
numbers
- Division of
0107 F/ DF/ v floating-point 7-9
numbers
- Addition of
0108 | B+ DB+ v binary-coded 7

decimal numbers

- Subtraction of
0109 |B- DB- v binary-coded 7
decimal numbers

- Multiplication of

0110 |B* DB* v binary-coded 7
decimal numbers
- Division of
0111 | B/ DB/ v binary-coded 7
decimal numbers
0112 | BK+ - - v Bma_try number block 9
— addition
0113 | BK- - - v Binary n_umber block 9
— subtraction
0114 | $+ - - v Linking the strings 7-19
0115 |INC | DINC | ~ v Adding one to the 3
— binary number
- Subtracting one
0116 |DEC |DDEC v from the binary 3
number
_ Multiplication of
0117 |MUL16 MUL32 v binary numbers 7
0118 | DIVi6 | DIV32 _ v Division of binary 7

e numbers

6-36

Chapter 6 Applied Instructions

6.2.2 Explanation of Arithmetic Instructions
API Instruction code Operand Function
0100 D + P S1, S,, D Addition of binary numbers
Device| X | Y | M| S| T|C |HC| D | L |SM|SR| E |PR| K |16#| “$" | DF
S, o | O e & o o o ® O|@®@| OO
S, o | o e & o o o ® O|®| OO
D o | o e & o o o ® | O| @
Pulse instruction | 16-bit instruction (7 steps)| 32-bit instruction 7 steps)
AH500 AH500 AH500
Symbol:
+ +F
En En S; : Augend Word/Double word
51 olst b
52 52
S, : Addend Word/Double word
D+ D+P
En En
21 I b D : Sum Word/Double word
5z 52
Explanation:
1. The binary value in S, is added to the binary value in S;, and the sum is stored in D.
2. Only the 32-bit instructions can use the 32-bit counter.
3. The Flags: SM600 (zero flag), SM601 (borrow flag), and SM602 (carry flag)
4. When the operation result is zero, SM600 is ON. Otherwise, it is OFF.
5. The addition of 16-bit binary values:
When the operation result exceeds the range of 16-bit binary values, SM602 is ON. Otherwise,
it is OFF.
6. The addition of 32-bit binary values:
When the operation result exceeds the range of 32-bit binary values, SM602 is ON. Otherwise,
it is OFF.
Example 1:

The addition of 16-bit binary values: When X0.0 is ON, the addend in D10 is added to the augend in

DO

, and sum is stored in D20.

When the values in DO and D10 are 100 and 10 respectively, DO plus D10 equals 110, and 110
is stored in D20.

When the values in DO and D10 are 16#7FFF and 16#1 respectively, DO plus D10 equals
16#8000, and 16#8000 is stored in D20.

6-37

AH500 Programming Manual

U When the values in DO and D10 are 16#FFFF and 16#1 respectively, DO plus D10 equals
16#10000. Since the operation result exceeds the range of 16-bit binary values, SM602 is ON,
and the value stored in D20 is 16#0. Besides, since the operation result is 16#0, SM600 is ON.

Example 2:

The addition of 32-bit binary values: When X0.0 is ON, the addend in (D41, D40) is added to the
augend in (D31, D30), and sum is stored in (D51, D50). (The data in D30, D40, and D50 is the lower
16-bit data, whereas the data in D31, D41, and D51 is the higher 16-bit data).

NETWORK 1
X0.0 O+
— | i
D305 ol pso
D40 {52

U When the values in (D31, D30) and (D41, D40) are 11111111 and 44444444 respectively,
(D31, D30) plus (D41, D40) equals 55555555, and 55555555 is stored in (D51, D50).

U When the values in (D31, D30) and (D41, D40) are 16#80000000 and 16#FFFFFFFF
respectively, (D31, D30) plus (D41, D40) equals 16#17FFFFFFF. Since the operation result
exceeds the range of 32-bit binary values, SM602 is ON, and the value stored in (D51, D50) is
16#7FFFFFFF.

Flag:

The 16-bit instruction:

1. If the operation result is zero, SM600 will be set to ON.

2. If the operation result exceeds 65,535, SM602 will be set to ON.

The 32-bit instruction:

1. If the operation result is zero, SM600 will be set to ON.

2. If the operation result exceeds 4,294,967,295, SM602 will be set to ON.

The 16-bitinstruction: Zero flag Zero flag Zero flag
65,535-0-1 <«—65535-0~1 —> 65535-0-1-2
“J N U s
Borrow flag Carry flag
The 32-bitinstruction: Zero flag Zero flag Zero flag
4,294,967,295-0~1 <«— 4,294,967,295-0~1 — > 4,294,967,295-0-1-2
“\J T WU w2
Borrow flag Carry flag

6-38

Chapter 6 Applied Instructions

API Instruction code Operand Function
0101 D P S4, S, D Subtraction of binary numbers
Devicel X | Y | M| S| T | C|HC| D | L |[SM|SR| E |PR| K |16#| “$" | DF
S { I o e o o o ® O | @ O|O
S, { I e & o o o ® O | ®@| O|O
D o o e o o o o ® O | @
Pulse instruction | 16-bit instruction (7 steps) |32-bit instruction (7 steps)
AH500 AH500 AH500
Symbol:
P
En S; : Minuend Word/Double word
=1 O
o2
S, : SubtrAH500end Word/Double word
o- o-p
En En
51 O H51 o .
D : Difference Word/Double word
32 e
Explanation:
1. The binary value in S, is subtracted from the binary value in Sy, and the difference is stored in
D.
2. Only the 32-bit instructions can use the 32-bit counter.
3. The Flags: SM600 (zero flag), SM601 (borrow flag), and SM602 (carry flag)
4. When the operation result is zero, SM600 is ON. Otherwise, it is OFF.
5. When a borrow occurs during the arithmetic, SM601 is ON. Otherwise, it is OFF.
Example 1:

The subtraction of 16-bit binary values: When X0.0 is ON, the subtrAH500end in D10 is subtracted
from the minuend in DO, and the difference is stored in D20.

NETWORK 1

oo J51 0lpzo
D105z

When the values in DO and D10 are 100 and 10 respectively, DO minus D10 leaves 90, and 90
is stored in D20.

When the values in DO and D10 are 16#8000 and 16#1 respectively, DO minus D10 leaves
16#7FFF, and 16#7FFF is stored in D20.

When the values in DO and D10 are 16#1 and 16#2 respectively, DO minus D10 leaves
16#FFFF. Since the borrow occurs during the arithmetic, SM601 is ON, and the value stored in
D20 is 16#FFFF.

When the values in DO and D10 are 16#0 and 16#FFFF respectively, DO minus D10 leaves
16#F0001. Since the borrow occurs during the arithmetic, SM601 is ON, and the value stored
in D20 is 16#1.

6-39

AH500 Programming Manual

Example 2: :

The addition of 32-bit binary values: When X0.0 is ON, the subtrAH500end in (D41, D40) is
subtracted from the minuend in (D31, D30), and sum is stored in (D51, D50). (The data in D30, D40,
and D50 is the lower 16-bit data, whereas the data in D31, D41, and D51 is the higher 16-bit data).

. When the values in (D31, D30) and (D41, D40) are 55555555 and 11111111 respectively,
(D31, D30) minus (D41, D40) D10 leaves 44444444, and 44444444 is stored in (D51, D50).

° When the values in (D31, D30) and (D41, D40) are 16#80000000 and 16#FFFFFFFF
respectively, (D31, D30) minus (D41, D40) leaves 16#F80000001. Since the borrow occurs
during the arithmetic, SM601 is ON, and the value stored in (D51, D50) is 16#80000001.

6-40

Chapter 6 Applied Instructions

API Instruction code Operand Function
0102 D * P S, S, D Multiplication of binary numbers
Devicel X | Y | M| S| T|C|HC| D| L |SM|SR| E | PR | K |16#|“$" DF
S o o e o6 o o o @ O| @ O | O
S, e o e o6 o o o @ O| @ O | O
o o e o o o o ® O o
Pulse instruction | 16-bit instruction (7 steps) | 32-bit instruction (7 steps)
AHS500 AHS500 AH500
Symbol:
*p
En S; : Multiplicand Word/Double word
=1 O
o2
S, : Multiplier Word/Double word
o L
En En
51 O H51 o
D : Product Double word/Long word
32 e
Explanation:
1. The signed binary value in S; is multiplied by the singed binary value in S,, and the product is

stored in D.

2. Only the instruction D* can use the 32-bit counter.
3. The multiplication of 16-bit binary values:
S]_ S2 D +1 D
b15.. . i, bO bl5...... b0 b31........b16 b15...........b0O
|| |=| |
b15is thesign bit. bl5isthesign bit. b31,i.e.bl5in D+1,is the sign bit.
The product is a 32-bit value, and is stored in the register (D+1, D), which is composed of 32
bits. When the sign bit b31 is 0, the product is a positive value. When the sign bit b31 is 1, the
product is a negative value.
4. The multiplication of 32-bit binary values:
S; +1 S S2 +1 S2 D +3 D +2 D +1 D
—t— T — —l— T — et —— N —
b31..b16 b15..b0 b31..b16 b15..b0 b63..b48b47...b32b31..b16 b15...b0
I || = |
b31listhesignbit. b31listhesignbit. be3,i.e.b15in D+3,is the sign bit.
The product is a 64-bit value, and is stored in the register (D+3, D+2, D+1, DO), which is
composed of 64 bits. When the sign bit b63 is 0, the product is a positive value. When the sign
bit b63 is 1, the product is a negative value.
Example:

The 16-bit value in DO is multiplied by the 16-bit value in D10, and the 32-bit product is stored in
(D21, D20). The data in D21 is the higher 16-bit data, whereas the data in D20 is the lower 16-bit
data. Whether the result is a positive value or a negative value depends on the state of the highest
bit b31. When b31 is OFF, the result is a positive value. When b31 is ON, the result is a negative

6-41

AH500 Programming Manual

value.

NETWORK 1

DOxD10=(D21, D20)

16-bit valuex16-bit value=32-bit value

DO
D10 -]

D20

6-42

Chapter 6 Applied Instructions

API Instruction code Operand Function
0103 D / P Si, S, D Division of binary numbers
Devicel X | Y | M| S | T | C |HC| D L |[SM|SR| E |PR| K |16#| “$" | DF
S [N e o o o o ® O | @®@| O | O
S, [N J e o o o o ® O | @®&@| O | O
D [B e o o o o ® O | o
Pulse instruction | 16-bit instruction (7 steps) | 32-bit instruction (7 steps)
AH500 AH500 AH500
Symbol:
P
En S; : Dividend Word/Double word
a1 O
52
S, : Divisor Word/Double word
o/ /P
En En
91 OYys1 o . .
- - D : Quotient; remainder Word/Double word
Explanation:

1. The singed binary value in S; is divided by the signed binary value in S,. The quotient and the
remainder are stored in D.

2. Only the 32-bit instructions can use the 32-bit counter.

3. When the sign bit is 0, the value is a positive one. When the sign bit is 1, the value is a
negative one.

4. The division of 16-bit values:
Quotient Remainder
S1 S: D D+1

b15............. b0 b15............. b0 bl5.......... b0 b15.............. b0
]

The operand D occupies two consecutive devices. The quotient is stored in D, and the
remainder is stored in D+1.

5. The division of 32-bit values:
Quotient Remainder

S+l S1 S2+1 S D+1 D D+3 D+2
N r— e | — e | e

b15...b0b15....00 b15...b0b15....b0 b15...b0b15....b0 bl5.....b0 b15.....b0
| n = |

The operand D occupies two devices. The quotient is stored in (D+1, D), and the remainder is
stored in (D+3, D+2).

Example:

When X0.0 is ON, the dividend in DO is divided by the divisor in D10, the quotient is stored in D20,
and the remainder is stored in D21. Whether the result is a positive value or a negative value
depends on the state of the highest bit.

6-43

AH500 Programming Manual

NETWORK 1
X0.0 i
— | e
po =1 DHD2zo
D10 {52

Additional remark:

1.

2.

If the device exceeds the range, the instruction is not executed, SMO is ON, and the error code
in SRO is 16#2003.

If the divisor is 0, the instruction is not executed, SMO is ON, and the error code in SRO is
16#2012.

If the operand D used during the execution of the 16-bit instruction is declared in ISPSoft, the
data type will be ARRAY [2] of WORD/INT.

If the operand D used during the execution of the 32-bit instruction is declared in ISPSoft, the
data type will be ARRAY [2] of DWORD/DINT.

6-44

Chapter 6 Applied Instructions

API Instruction code Operand Function
0104 D F+ P Si1, S,, D Addition of floating-point numbers
Device| X | Y | M| S| T | C|HC| D | L |SM|SR| E |PR| K |16#| “$" | DF
S: e o e o o o o ®e O | e O
S, e o e o o o o ® O | e O
D (I o & o o o ® O| e
Pulse instruction | 32-bit instruction (7-9 steps) | 64-bit instruction (7-9 steps)
AH500 AH500 AH500
Symbol:
F+P
En S; : Augend Double word/Long word
=1 O
o2
S, : Addend Double word/Long word
DF+ DF+F
En En
51 O H51 o
D : Sum Double word/Long word
32 e
Explanation:

1. The floating-point number in S, is added to the floating-point number in S;, and the sum is
stored in D.

2. The addition of 32-bit single-precision floating-point numbers:

When the operation result is zero, SM600 is ON.

When the absolute value of the operation result is less than the value which can be
represented by the minimum floating-point number, the value in D is 16#FF7FFFFF.
When the absolute value of the operation result is larger than the value which can be
represented by the maximum floating-point number, the value in D is 16#7F7FFFFF.

3. The addition of 64-bit double-precision floating-point numbers:

Example:

When the operation result is zero, SM600 is ON.

When the absolute value of the operation result is less than the value which can be
represented by the minimum floating-point number, the value in D is
16#FFEFFFFFFFFFFFFF.

When the absolute value of the operation result is larger than the value which can be
represented by the maximum floating-point number, the value in D is
16#7FEFFFFFFFFFFFFF.

The addition of single-precision floating-point numbers: When X0.0 is ON, the addend
16#4046B852 in (D21, D20) is added to the augend 16#3FB9999A in (D11, D10), and the sum
16#4091C28F is stored in (D31, D30). 16#4046B852, 16#3FB9999A, and 16#4091C28F represent
the floating point numbers 3.105, 1.450, and 4.555 respectively.

6-45

AH500 Programming Manual

NETWORK 1
X0.0 F+
— | i
o105] T
pzo |52

The addition of double-precision floating-point numbers: When X0.0 is ON, the addend
16#4008D70A3D70A3D7 in (D23, D22, D21, D20) is added to the augend 16#3FF7333333333333
in (D13, D12, D11, D10), and the sum 16# 40123851EB851EBS is stored in (D33, D32, D31, D30).

NETWORK 1

X0.0 DF+

o1o 5 0lp3o0
pzo |52

Additional remark:

If the value in S; or the value in S, exceeds the range of values which can be represented by the
floating-point numbers, the instruction is not executed, SMO is ON, and the error code in SRO is
16#2013.

6-46

Chapter 6 Applied Instructions

API Instruction code Operand Function
0105 D = p S, S, D Subtraction of floating-point
numbers
Devicel| X | Y| M| S | T | C|HC| D | L |[SM|SR| E |PR| K |16#| “$" | DF
[N e o o o o ® O | e e
[N e o o o o ® O | e e
® o e o o o o ® O | e

Pulse instruction | 32-bit instruction (7-9 steps) | 64-bit instruction (7-9 steps)

AH500 AH500 AH500
Symbol:
F-F
En S; : Minuend Double word/Long word
51 B
sz
S, : SubtrAH500end Double word/Long word
DF- DF-P
En En
51 o lst D .
D : Difference Double word/Long word
52 Sz
Explanation:
1. The floating-point number in S, is subtracted from the floating-point number in S, and the
difference is store in D.
2. When the operation result is zero, SM600 is ON.
3. The subtraction of 32-bit single-precision floating-point numbers:
. When the absolute value of the operation result is less than the value which can be
represented by the minimum floating-point number, the value in D is 16#FF7FFFFF.
° When the absolute value of the operation result is larger than the value which can be
represented by the maximum floating-point number, the value in D is 16#7F7FFFFF.
S1 +1 S1 S2 +1 S2 D+1 D
b31........b16 bl5...........bO b31........b16 bl5..........bO b31........b16 b15...........b0O
4. The subtraction of 64-bit double-precision floating-point numbers:

. When the absolute value of the operation result is less than the value which can be
represented by the minimum floating-point number, the value in D is
16#FFEFFFFFFFFFFFFF.

. When the absolute value of the operation result is larger than the value which can be

represented by the maximum floating-point number, the value in D is
16#7FEFFFFFFFFFFFFF.

6-47

AH500 Programming Manual

S1+3 S142 Si+1 S1
—— T

b63...b48b47...b32 b31...b16 b15...b0
D+3 D+2 D+1 D

—t—— e~ —
= = Db63...b48b47...b32 b31...b16 b1l5...b0

S2 43 S +2 S +1 Sz \ H
e NI N

b63...b48b47...b32 b31...b16 b15...b0

Example:

The subtraction of 32-bit single-precision floating-point numbers: When X0.0 is ON, the
subtrAH500end in (D21, D20) is subtracted from the minuend in (D21, D20), and the difference is
stored in (D31, D30).

NETWORK 1

o1o 5 0lp3o0
pzo |52

The subtraction of 64-bit double-precision floating-point numbers: