Industrial Automation Headquarters
Taiwan: Delta Electronics, Inc
Jaoyuan Technology Center
No.18, Xinglong Rd., Taoyua
Taoyuan City 33068, Taiwan
TEL: +886-3-362-6301 / FAX: +886-3-371-6301

Asia

China: Delta Electronics (Shanghai) co
No. 182 Minyuu Rd., Pudong Shanghai, P.R.C.
EL: +86-21-6872-3988 / FAX: +86-21-6872-399 Customer Service: 400-820-9595
Japan: Delta Electronics (Japan), Inc.
ndustrial Automation Sales Departmen
2-1-14 Shibadaimon, Minato-ku
Tokyo, Japan 105-0012
TEL: +81-3-5733-1155 / FAX: +81-3-5733-1255
Korea: Delta Electronics (Korea), Inc 511, 219, Gasan Digital 1-Ro., Geumcheon-gu eoul, 08501 South Korea
$x:+82-2-515-5302$
Singapore: Delta Energy Systems (Singapore) Pte Ltd. Kaki Bukit Avenue 1, \#05-04, Singapore 41793 + L. $+65-6747$-5is5/rax. $+65-6744-9228$ ndia: Delta Electronics (India) Pvt. Ltd. Plot No.43, Sector 35, HSIIDC Gurgao
PIN 122001, Haryana, India TEL: +91-124-4874900 / FAX: +91-124-4874945
Thailand: Delta Electronics (Thailand) PCL So9 Soi 9 , Moo 4, Bangpoo Industrial Estate (EP 가), Pattana 1 Rd., T.Phraksa, A.Muang Samutprakarn 10280 , Thailand

Australia: Delta Electronics (Australia) Pty Ltd
Uount Waverley, Victoria 3149 Austra, Mount Waverley, Victoria 3149 Austrail TEL: +61-1300-335-823/+61-3-9543-3720

Americas

USA: Delta Electronics (Americas) Ltd. 5101 Davis Drive, Research Triangle Park, NC
TEL: $+1-999-767-3813$ / FAX: $+1-919-767-3969$

Brazil: Delta Electronics Brazil Ltd Estrada Velha Rio-São Paulo, 5300 Eugênio de Melo - São José dos Campos CEP: 12247-004EL: +55-12-3932-2300 / FAX: $+55-12-3932-237$
Mexico: Delta Electronics International Mexico S.A. de C.V. Gustavo Baz No. 309 Edificio E PB 103
Colonia La Loma, CP 54060
Tlalnepantla, Estado de M

EMEA
EMEA Headquarters: Delta Electronics (Netherlands) B. V
EMEA Headquarters: Delta Elect
Marketing: Marketing.IA.EMEA@deltaww.com
Technical Support: iatechnicalsupport@deltaw Customer Support: Customer-Support@deltaww.com Service: Service.IA.emea@deltaww.com TEL: +3T(0)40 8003900

BENELUX: Delta Electronics (Netherlands) B.V. Automotive Campus 260, 5708 JZ Helmond, The Netherlands | Mail: Sales.IA. Benelux@deltaww.com |
| :--- |
| TEL: $+31(0) 40$ |

DACH: Delta Electronics (Netherlands) B.
Coesterweg 45,D-59494 Soest, Germany Mail: Sales.IA.DACH@deltaww.com TEL: +49(0)29219870
France: Delta Electronics (France) S.A ZI du bois Challand 2,15 rue des Pyrénées, Mail: sales.IA.FR@deltaww.com TEL: +33(0)1 69778260
Iberia: Delta Electronics Solutions (Spain) S.L.U
Ctra. De Villaverde a Vallecas, 2651° Dcha Ed
Hormigueras - P.I. de Vallecas 28031 Madrid
TEL: + $34(0) 912237420$
Carrer Llacuna 166, 08018 Barcelona, Spain
, Denw.com
Italy: Delta Electronics (Italy) S.r.
Via Meda 2-22060 Novedratelco
Piazza Grazioli 1800186 Roma Italy
Mail: Sales.IA.Italy@deltaww.con
TEL: +39 0398900365
Russia: Delta Energy System LLC
Vereyskaya Plaza III, office 112 Vereyskaya st
17121357 Moscow Russia
Mail: Sales.IA.RU@delta
Turkey: Delta Greentech Elektronik San. Ltd. Sti. (Turkey)
Serifili Mah. Hendem Cad. Kule Sok. No:16-A
34775 Ürraniye - istanbu
Mail: Sales.IA. Turkey@de
TEL: +902164999910
MEA: Eltek Dubai (Eltek MEA DMCC
OFFICE 2504, 25th FIoo
Jumeirah Lakes Towers, Dubai, UAE
Mail: Sales.IA.MEA@deltaww.con
Mail: Sales.|A.MEA@delt
TEL: $+971(0) 42690148$

Digitized Automation for a Changing World
Delta High Performance Compact Drive MH300 Series User Manual

Copyright notice

©Delta Electronics, Inc. All rights reserved.
All information contained in this user manual is the exclusive property of Delta Electronics Inc.
(hereinafter referred to as "Delta ") and is protected by copyright law and all other laws. Delta retains the exclusive rights of this user manual in accordance with the copyright law and all other laws. No parts in this manual may be reproduced, transmitted, transcribed, translated or used in any other ways without the prior consent of Delta.

Limitation of Liability

The contents of this user manual are only for the use of the AC motor drives manufactured by Delta. Except as defined in special mandatory laws, Delta provides this user manual "as is" and does not offer any kind of warranty through this user manual for using the product, either express or implied, including but not limited to the following: (i) this product will meet your needs or expectations; (ii) the information contained in the product is current and correct; (iii) the product does not infringe any rights of any other person. You shall bear your own risk to use this product.

In no event shall Delta, its subsidiaries, affiliates, managers, employees, agents, partners and licensors be liable for any direct, indirect, incidental, special, derivative or consequential damages (including but not limited to the damages for loss of profits, goodwill, use or other intangible losses) unless the laws contains special mandatory provisions to the contrary.

Delta reserves the right to make changes to the user manual and the products described in the user manual without prior notice and afterwards.

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

DANGER
\square Disconnect AC input power before connecting any wiring to the AC motor drive.
\boxtimes Even if the power has been turned off, a charge may still remain in the DC-link capacitors with hazardous voltages before the POWER LED is OFF. Do not touch the internal circuits and components.
$\boxtimes \quad$ There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. Take anti-static measures before touching these components or the circuit boards.
$\square \quad$ Never modify the internal components or wiring.
\square Ground the AC motor drive by using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed.
$\boxtimes \quad$ DO NOT install the AC motor drive in a location with high temperature, direct sunlight or inflammable materials or gases.

CAUTION
$\boxtimes \quad$ Never connect the AC motor drive output terminals U/T1, V/T2 and W/T3 directly to the AC mains circuit power supply.
$\boxtimes \quad$ After finishing the wiring of the AC motor drive, check if U/T1, V/T2 and W/T3 are short-circuited to ground with a multimeter. Do NOT power the drive if short circuits occur. Eliminate the short circuits before the drive is powered.
$\boxtimes \quad$ The rated voltage of power system to install motor drives is listed below. Ensure that the installation voltage is in the correct range when installing a motor drive.
For 115 V models, the range is between $85-132 \mathrm{~V}$.
For 230 V models, the range is between $170-264 \mathrm{~V}$.
For 460 V models, the range is between $323-528 \mathrm{~V}$.
$\boxtimes \quad$ Refer to the table below for short circuit rating:

Model (Power)	Short circuit rating
115 V	5 kA
230 V	5 kA
460 V	5 kA

\square Only qualified persons are allowed to install, wire and maintain the AC motor drives.
\square Even if the three-phase AC motor is stopped, a charge with hazardous voltages may still remain in the main circuit terminals of the AC motor drive.
\square The performance of electrolytic capacitor will degrade if it is not charged for a long time. It is recommended to charge the drive which is stored in no charge condition every 2 years for $3 \sim 4$ hours to restore the performance of electrolytic capacitor in the motor drive. Note: When power up the motor drive, use adjustable AC power source (ex. AC autotransformer) to charge the drive at $70 \% \sim 80 \%$ of rated voltage for 30 minutes (do not run the motor drive). Then charge the drive at 100% of rated voltage for an hour (do not run the motor drive). By doing these, restore the performance of electrolytic capacitor before starting to run the motor drive. Do NOT run the motor drive at 100% rated voltage right away.

■ Pay attention to the following precautions when transporting and installing this package (including wooden crate and wood stave)
1 If you need to deworm the wooden crate, do not use fumigation or you will damage the drive. Any damage to the drive caused by using fumigation voids the warranty.
2 Use other methods, such as heat treatment or any other non-fumigation treatment, to deworm the wood packaging material.
3 If you use heat treatment to deworm, leave the packaging materials in an environment of over $56^{\circ} \mathrm{C}$ for a minimum of thirty minutes.
\boxtimes Connect the drive to a three-phase three-wire or three-phase four-wire Wye system to comply with UL standards.
$\square \quad$ If the motor drive produces a leakage current of over AC 3.5 mA or over DC 10 mA on the Protective Earthing conductor, the minimum specifications required of the Protective Earthing conductor to be installed have to comply with the national, local laws and regulations or follow IEC61800-5-1 to do grounding.
$\boxtimes \quad$ MH300 series is designed for the application of general industrial environment. Non-linear load causes harmonic current, if the drive uses with public low voltage (e.g. the power supplies to houses), then you have to assemble an appropriate restraint equipment (e.g. isolation transformer or input reactor) to restrain the interference may be caused. Contact with Delta for more information.

NOTE:

- In the pictures in this manual, the cover or safety shield is disassembled only when explaining the details of the product. During operation, install the top cover and wiring correctly according to the provisions. Refer to the operation descriptions in the manual to ensure safety.
- The figures in this instruction are only for reference and may be slightly different depending on your model, but it will not affect your customer rights.
- The content of this manual may be revised without prior notice. Consult our distributors or download the latest version at http://www.deltaww.com/iadownload acmotordrive.

Table of Contents

CHAPTER 1 INTRODUCTION 1-1
1-1 Nameplate Information 1-2
1-2 Model Name 1-3
1-3 Serial Number 1-3
1-4 Apply After Service by Mobile Device 1-4
1-5 RFI Jumper 1-5
CHAPTER 2 DIMENSIONS 2-1
2-1 Frame A 2-2
2-2 Frame B 2-3
2-3 Frame C 2-4
2-4 Frame D 2-5
2-5 Frame E 2-6
2-6 Frame F 2-7
2-7 Frame G 2-8
2-8 Frame H 2-9
2-9 Frame I. 2-10
2-10 Digital Keypad 2-11
CHAPTER 3 INSTALLATION 3-1
3-1 Mounting Clearance 3-2
3-2 Airflow and Power Dissipation 3-3
CHAPTER 4 WIRING 4-1
4-1 System Wiring Diagram 4-3
4-2 Wiring 4-4
CHAPTER 5 MAIN CIRCUIT TERMINALS 5-1
5-1 Main Circuit Diagram 5-4
5-2 Main Circuit Terminals 5-5
CHAPTER 6 CONTROL TERMINALS 6-1
6-1 Control Terminal Specifications 6-4
CHAPTER 7 OPTIONAL ACCESSORIES 7-1
7-1 All Brake Resistors and Brake Units Used in AC Motor Drives 7-2
7-2 Magnetic Contactor / Air Circuit Breaker and Non-Fuse Circuit Breaker 7-6
7-3 Fuse Specification Chart 7-10
7-4 AC / DC Reactors 7-13
7-5 Zero Phase Reactors. 7-43
7-6 EMC Filter 7-46
7-7 EMC Shield Plate 7-54
7-8 Capacitive Filter 7-59
7-9 The Assembly of NEMA Kit 7-61
7-10 The Assembly of Fan Kit 7-74
7-11 Keypad Panel Mounting 7-78
7-12 DIN-Rail Mounting 7-79
7-13 Mounting Adapter Plate 7-81
7-14 Digital Keypad - KPC-CC01 7-85
CHAPTER 8 OPTION CARDS 8-1
8-1 Option Card Installation 8-2
8-2 EMM-PG01L -- PG Card (Line Driver) 8-13
8-3 EMM-PG01O -- PG Card (Open Collector) 8-16
8-4 EMM-PG01R -- PG Card (Resolver/Encoder Signal Input) 8-19
8-5 EMM-D33A -- Three-point Digital Input/Three-point Digital Output Extension 8-22
8-6 EMM-A22A -- Two Sets of Analog Input/Two Sets of Analog Output Extension 8-23
8-7 EMM-R2CA -- Relay Output Extension (Three-point N.C. Output Terminal) 8-24
8-8 EMM-R3AA -- Relay Output Extension (Three-point N.O. Output Terminal) 8-25
8-9 EMM-BPS02 -- +24V Power Extension Card 8-26
8-10 CMM-DN02 -- Communication Extension Card, DeviceNet 8-28
8-11 CMM-EIP02 -- Communication Extension Card, EtherNet/IP 8-31
8-12 CMM-EIP03 -- Communication Extension Card, EtherNetIIP 8-35
8-13 CMM-PD02 -- Communication Extension Card, PROFIBUS DP 8-39
8-14 CMM-EC02 -- Communication Extension Card, EtherCAT 8-41
8-15 Delta Standard Fieldbus Cables 8-44
CHAPTER 9 SPECIFICATION 9-1
9-1 115V Models 9-2
9-2 230V Models 9-3
9-3 460V Models 9-6
9-4 General Specifications 9-8
9-5 Environment for Operation, Storage and Transportation 9-9
9-6 Derating Curve 9-10
CHAPTER 10 DIGITAL KEYPAD 10-1
10-1 KPMH-LC01 Keypad 10-2
10-2 Descriptions of Keypad Functions 10-2
10-3 Keypad Operation Process 10-3
10-4 Reference Table for the 16-segment Digital Keypad LED Display 10-9
CHAPTER 11 SUMMARY OF PARAMETERS SETTINGS 11-1
CHAPTER 12 DESCRIPTIONS OF PARAMETER SETTINGS 12.1-00-1
12-1 Descriptions of Parameter Settings 12.1-00-1
00 Drive Parameters 12.1-00-2
01 Basic Parameters 12.1-01-1
02 Digital Input / Output Parameters 12.1-02-1
03 Analog Input / Output Parameters 12.1-03-1
04 Multi-Stage Speed Parameters 12.1-04-1
05 Motor Parameters 12.1-05-1
06 Protection Parameters (1) 12.1-06-1
07 Special Parameters 12.1-07-1
08 High-function PID Parameters 12.1-08-1
09 Communication Parameters 12.1-09-1
10 Speed Feedback Control Parameters 12.1-10-1
11 Advanced Parameters 12.1-11-1
12 Tension Control Parameters 12.1-12-1
13 Macro (User-defined) 12.1-13-1
14 Protection Parameters (2) 12.1-14-1
12-2 Adjustment \& Applications 12.2-1
CHAPTER 13 WARNING CODES 13-1
CHAPTER 14 FAULT CODES 14-1
CHAPTER 15 CANopen OVERVIEW 15-1
15-1 CANopen Ovreview 15-3
15-2 Wiring for CANopen 15-7
15-3 CANopen Communication Interface Descriptions 15-8
15-4 CANopen Supporting Index 15-20
15-5 CANopen Fault Codes 15-28
15-6 CANopen LED Function 15-33
CHAPTER 16 PLC FUNCTION APPLICATIONS 16-1
16-1 PLC Summary 16-2
16-2 Notes Before PLC Use 16-3
16-3 Turn On 16-5
16-4 Basic Principles of PLC Ladder Diagrams 16-16
16-5 Various PLC Device Functions 16-28
16-6 Introduction to the Command Window 16-40
16-7 Display and Treatment of PLC Related Faults and Codes 16-114
16-8 Explanation of each PLC Mode Control (Speed, Torque) 16-115
16-9 Count Function Using Pulse Input. 16-118
16-10 CANopen Master Control Applications 16-119
16-11 Modbus Remote IO Control Applications (Use MODRW) 16-130
CHAPTER 17 SAFE TORQUE OFF FUNCTION 17-1
17-1 Basic Function Description 17-2
17-2 Safe Torque Off Terminal Function Description 17-3
17-3 Wiring Diagram 17-4
17-4 Failure Rate of the Drive Safety Function 17-5
17-5 Reset the Parameter Settings 17-5
17-6 Timing Diagram Description 17-6
17-7 Fault Codes and Troubleshooting Instructions 17-9
17-8 Test and Fault Confirmation 17-11
APPENDIX A. MODBUS PROTOCOL A-1
A-1 Code Description A-2
A-2 Data Format A-2
A-3 Communication Protocol. A-4
A-4 Address List A-9
A-5 Exception Response A-16
APPENDIX B. REVISION HISTORY B-1
Issued Edition: 01
Firmware Version: V1.04 (Refer to Parameter 00-06 on the product to get the firmware version.) Issued Date: 2023/2
[This page intentionally left blank]

Chapter 1 Introduction

1-1 Nameplate Information
1-2 Model Name
1-3 Serial Number
1-4 Apply After Service by Mobile Device
1-5 RFI Jumper

After receiving the AC motor drive, check for the following. Inspect the unit after unpacking to ensure that it was not damaged during shipment. Make sure that the part number printed on the package matches the part number indicated on the nameplate.

1. Make sure that the mains voltage is within the range indicated on the nameplate. Install the AC motor drive according to the instructions in this manual.
2. Before applying power, make sure that all devices, including mains power, motor, control board, and digital keypad are connected correctly.
3. When wiring the $A C$ motor drive, make sure that the wiring for the input terminals "R/L1, S/L2, T/L3", and the output terminals "U/T1, V/T2, W/T3" are correct to prevent damage to the drive.
4. When power is applied, use the digital keypad (KPMH-LCO1) to select the language and set parameters. When executing a trial run, begin with a low speed and then gradually increase the speed to the desired speed.

1-1 Nameplate Information

1-2 Model Name

1-3 Serial Number

1-4 Apply After Service by Mobile Device

1-4-1 Location of Service Link Label

Frame A, B
Service link label (Service Label) will be pasted on the keypad area on the case body, as below drawing shown.

Frame C-I

Service link label (Service Label) will be pasted on the area as below drawing shown.

1-4-2 Service Link Label

Scan QR Code to apply

1. Find out the QR code sticker (as above shown).
2. Use a Smartphone to run a QR Code reader APP.
3. Point your camera to the QR Code. Hold your camera steady so that the QR code comes into focus.
4. Access the Delta After Service website.
5. Fill your information into the column marked with an orange star.
6. Enter the CAPTCHA and click "Submit" to complete the application.

Cannot find out the QR Code?

1. Open a web browser on your computer or smart phone.
2. Key in https://service.deltaww.com/ia/repair in address bar and press enter.
3. Fill your information into the columns marked with an orange star.
4. Enter the CAPTCHA and click "Submit" to complete the application.

1-5 RFI Jumper

The drive contains Varistors / MOVs that are connected from phase to phase and from phase to ground to protect the drive against mains surges or voltage spikes.
Because the Varistors / MOVs from phase to ground are connected to ground with the RFI jumper, removing the RFI jumper disables the protection.
(1) In models with a built-in EMC filter, the RFI jumper connects the filter capacitors to ground to form a return path for high frequency noise in order to isolate the noise from contaminating the mains power. Removing the RFI jumper strongly reduces the effect of the built-in EMC filter.
(2) Although a single drive complies with the international standards for leakage current, an installation with several drives with built-in EMC filters can trigger the RCD. Removing the RFI jumper can help, but the EMC performance of each drive is no longer guaranteed.

Non-built-in EMC filter models

Frame A-I
Loosen the screw and remove the RFI jumper (as shown below). Fasten the screw again after you remove the RFI jumper.
Screw Torque: 4-6 kg-cm / (3.5-5.2 lb-in.) / (0.39-0.59 Nm)

Built-in EMC filter models

Frame B-F
Remove the RFI jumper with a screwdriver (as shown below).

Frame G
Remove the RFI jumper with a screwdriver (as shown below).

Frame H-I

1. Remove RFI ON (frame H) or the screw of RFI-1 ON (frame I)

Screw Torque: 6-8 kg-cm / (5.2-6.9 lb-in.) / (0.59-0.78 Nm)

2. Remove the RFI jumper RFI-2 (frame I).

Isolating main power from ground:
When the power distribution system of the drive is a floating ground system (IT Systems) or an asymmetric ground system (Corner Grounded TN Systems), you must remove the RFI jumper. Removing the RFI jumper disconnects the internal capacitors from ground to avoid damaging the internal circuits and to reduce the ground leakage current.

Important points regarding ground connection:
\boxtimes To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, you must properly ground the drive during installation.
\square The diameter of the cables must comply with the local safety regulations.
\square The shields of shielded cables must be connected to the ground of the drive to meet safety regulations.
\boxtimes The shields of shielded power cables can only be used as the ground for equipment when the above points are met.

च When installing more drives, do not connect ground terminals of each drive to the ground with single point and series connection, but connects with single point and parallel connection. See the following pictures.

Pay particular attention to the following points:
\square Do not remove the RFI jumper while the power is on.
\boxtimes Removing the RFI jumper also disconnects the built-in EMC filter capacitors. Compliance with the EMC specifications is no longer guaranteed.
\boxtimes Do not remove the RFI jumper if the mains power is a symmetrical grounded power system in order to maintain the efficiency for EMC circuit.
\boxtimes Do not remove the RFI jumper while conducting high voltage tests. When conducting a high voltage test to the entire facility, you must disconnect the mains power and the motor if the leakage current is too high.

Floating Ground System (IT Systems)
A floating ground system is also called an IT system, an ungrounded system, or a high impedance / resistance (greater than 30Ω) grounded system.
■ Disconnect the RFI jumper.
\square Check whether there is excess electromagnetic radiation affecting nearby low-voltage circuits.
V In some situations, the transformer and cable naturally provide enough suppression. If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase suppression.
\square Do not install an external EMC filter. The EMC filter is connected to ground through the filter capacitors, thus connecting the power input to ground. This is very dangerous and can easily damage the drive.

Asymmetric Ground System (Corner Grounded TN Systems)

Caution: Do not remove the RFI jumper while there is power to the input terminal of the drive.

In the following four situations, you must remove the RFI jumper. This is to prevent the system from grounding through the RFI and filter capacitors and damaging the drive.

You must remove the RFI jumper

1. Grounding at a corner in a triangle configuration

L3
3. Grounding at one end in a single-phase configuration

2. Grounding at a midpoint in a polygonal configuration

4. No stable neutral grounding in a three-phase autotransformer configuration

You can use the RFI jumper

Internal grounding through RFI capacitors, which reduces electromagnetic radiation. In a symmetrically grounding power system with higher EMC requirements, you can install an EMC filter. As a reference, the diagram on the right is a symmetrical grounding power system.

[This page intentionally left blank]

Chapter 2 Dimensions

2-1 Frame A
2-2 Frame B
2-3 Frame C
2-4 Frame D
2-5 Frame E
2-6 Frame F
2-7 Frame G
2-8 Frame H
2-9 Frame I
2-10 Digital Keypad

2-1 Frame A

A1: VFD1A6MH11ANSAA; VFD1A6MH11ENSAA; VFD1A6MH21ANSAA; VFD1A6MH21ENSAA
A2: VFD2A5MH11ANSAA; VFD2A5MH11ENSAA; VFD2A8MH21ANSAA; VFD2A8MH21ENSAA; VFD1A6MH23ANSAA; VFD1A6MH23ENSAA; VFD2A8MH23ANSAA; VFD2A8MH23ENSAA; VFD1A5MH43ANSAA; VFD1A5MH43ENSAA
A3: VFD5A0MH23ANSAA; VFD5A0MH23ENSAA; VFD3A0MH43ANSAA; VFD3A0MH43ENSAA
A4: VFD5A0MH23ANSNA; VFD5A0MH23ENSNA; VFD3A0MH43ANSNA; VFD3A0MH43ENSNA

Frame	W	H	D	W 1	H 1	D 1	S 1
A1	$68.0(2.68)$	$128.0(5.04)$	$130.0(5.12)$	$56.0(2.20)$	$118.0(4.65)$	$3.0(0.12)$	$5.2(0.20)$
A2	$68.0(2.68)$	$128.0(5.04)$	$144.0(5.67)$	$56.0(2.20)$	$118.0(4.65)$	$3.0(0.12)$	$5.2(0.20)$
A3	$68.0(2.68)$	$128.0(5.04)$	$150.0(5.91)$	$56.0(2.20)$	$118.0(4.65)$	$3.0(0.12)$	$5.2(0.20)$
A4	$68.0(2.68)$	$128.0(5.04)$	$162.0(6.38)$	$56.0(2.20)$	$118.0(4.65)$	$3.0(0.12)$	$5.2(0.20)$

2-2 Frame B

B1: VFD7A5MH23ANSAA; VFD7A5MH23ENSAA; VFD4A2MH43ANSAA; VFD4A2MH43ENSAA
B2: VFD5A0MH21ANSAA; VFD5A0MH21ENSAA
B3: VFD1A6MH21AFSAA; VFD2A8MH21AFSAA; VFD5A0MH21AFSAA; VFD1A5MH43AFSAA; VFD3A0MH43AFSAA; VFD4A2MH43AFSAA

Frame	W	H	D	W 1	H 1	D 1	S
B1	$72.0(2.83)$	$142.0(5.59)$	$158.0(6.22)$	$60.0(2.36)$	$130.0(5.12)$	$6.4(0.25)$	$5.2(0.20)$
B2	$72.0(2.83)$	$142.0(5.59)$	$162.0(6.38)$	$60.0(2.36)$	$130.0(5.12)$	$3.0(0.12)$	$5.2(0.20)$
B3	$72.0(2.83)$	$142.0(5.59)$	$174.0(6.85)$	$60.0(2.36)$	$130.0(5.12)$	$4.3(0.17)$	$5.2(0.20)$

2-3 Frame C

C1: VFD5A0MH11ANSAA; VFD5A0MH11ENSAA; VFD7A5MH21ANSAA; VFD7A5MH21ENSAA; VFD11AMH21ANSAA; VFD11AMH21ENSAA; VFD11AMH23ANSAA; VFD11AMH23ENSAA; VFD17AMH23ANSAA; VFD17AMH23ENSAA; VFD5A7MH43ANSAA; VFD5A7MH43ENSAA; VFD9A0MH43ANSAA; VFD9A0MH43ENSAA

C2: VFD7A5MH21AFSAA; VFD11AMH21AFSAA; VFD5A7MH43AFSAA; VFD9A0MH43AFSAA
Unit: mm (inch)

Frame	W	H	D	W1	H1	D1	S1
C1	$87.0(3.43)$	$157.0(6.18)$	$167.0(6.57)$	$73.0(2.87)$	$144.5(5.69)$	$5.0(0.20)$	$5.5(0.22)$
C2	$87.0(3.43)$	$157.0(6.18)$	$194.0(7.64)$	$73.0(2.87)$	$144.5(5.69)$	$5.0(0.20)$	$5.5(0.22)$

2-4 Frame D

D1: VFD25AMH23ANSAA; VFD25AMH23ENSAA; VFD13AMH43ANSAA; VFD13AMH43ENSAA; VFD17AMH43ANSAA; VFD17AMH43ENSAA
D2: VFD13AMH43AFSAA; VFD17AMH43AFSAA
Unit: mm (inch)

Frame	W	H	D	W1	H1	D1	S1
D1	$109.0(4.29)$	$207.0(8.15)$	$169.0(6.65)$	$94.0(3.70)$	$193.8(7.63)$	$6.0(0.24)$	$5.5(0.22)$
D2	$109.0(4.29)$	$207.0(8.15)$	$202.0(7.95)$	$94.0(3.70)$	$193.8(7.63)$	$6.0(0.24)$	$5.5(0.22)$

2-5 Frame E

E1: VFD33AMH23ANSAA; VFD33AMH23ENSAA; VFD49AMH23ANSAA; VFD49AMH23ENSAA; VFD25AMH43ANSAA; VFD25AMH43ENSAA; VFD32AMH43ANSAA; VFD32AMH43ENSAA
E2: VFD25AMH43AFSAA; VFD32AMH43AFSAA
Unit: mm (inch)

Frame	W	H	D	W1	H1	D1	S1
E1	$130.0(5.12)$	$250.0(9.84)$	$200.0(7.87)$	$115.0(4.53)$	$236.8(9.32)$	$6.0(0.24)$	$5.5(0.22)$
E2	$130.0(5.12)$	$250.0(9.84)$	$234.0(9.21)$	$115.0(4.53)$	$236.8(9.32)$	$6.0(0.24)$	$5.5(0.22)$

2-6 Frame F

F1: VFD65AMH23ANSAA; VFD65AMH23ENSAA; VFD38AMH43ANSAA; VFD38AMH43ENSAA; VFD45AMH43ANSAA; VFD45AMH43ENSAA

F2: VFD38AMH43AFSAA; VFD45AMH43AFSAA
Unit: mm (inch)

Frame	W	H	D	W1	H1	D1	S1
F1	$175.0(6.89)$	$300.0(11.81)$	$207.0(8.15)$	$154.0(6.06)$	$279.5(11.00)$	$6.5(0.26)$	$8.4(0.33)$
F2	$175.0(6.89)$	$300.0(11.81)$	$259.0(10.20)$	$154.0(6.06)$	$279.5(11.00)$	$6.5(0.26)$	$8.4(0.33)$

2-7 Frame G

G: VFD60AMH43AFSAA; VFD60AMH43ANSAA; VFD75AMH23ANSAA; VFD90AMH23ANSAA
Unit: mm (inch)

Frame	W	H	D	W1	H1	D1	S1
G	$250.0(9.84)$	$400.0(15.75)$	$225.0(8.86)$	$231.0(9.09)$	$381.0(15.00)$	$10.0(0.39)$	$8.5(0.33)$

Detail A (Mounting Hole)

Detail B (Mounting Hole)

2-8 Frame H

H: VFD75AMH43AFSAA; VFD75AMH43ANSAA; VFD91AMH43AFSAA; VFD91AMH43ANSAA

Frame	W	H	D	$W 1$	$H 1$	Unit: mm (inch)
H	$280.0(11.02)$	$500.0(19.69)$	$280.0(11.02)$	$235.0(9.25)$	$475.0(18.70)$	$11.0(0.43)$

SEE DETAIL B

DETAIL A (MOUNTING HOLE)

DETAIL B (MOUNTING HOLE)

2-9 Frame I

I: VFD112MH43AFSAA; VFD112MH43ANSAA; VFD120MH23ANSAA; VFD146MH23ANSAA;
VFD150MH43AFSAA; VFD150MH43ANSAA
Unit: mm (inch)

Frame	W	H	D	$W 1$	$H 1$	S1
I	$330.0(12.99)$	$550.0(21.65)$	$300.0(11.81)$	$285.0(11.22)$	$525.0(20.67)$	$11.0(0.43)$

SEE DETAIL B

DETAIL B (MOUNTING HOLE)

2-10 Digital Keypad

KPMH-LC01
Unit: mm (inch)

W	W1	W2	W3	H	H1	H2
$68.0(2.67)$	$63.8(2.51)$	$45.2(1.78)$	$8.0(0.31)$	$46.8(1.84)$	$42.0(1.65)$	$26.0(1.02)$

H3	D	D1	D2	D3	D4	S1
$7.5(0.30)$	$36.1(1.41)$	$22.7(0.89)$	$7.9(0.30)$	$2.2(0.09)$	$1.3(0.05)$	M3 $^{*} 0.5(2 \mathrm{X})$

[This page intentionally left blank]

Chapter 3 Installation

3-1 Mounting Clearance
3-2 Airflow and Power Dissipation

3-1 Mounting Clearance

च Prevent fiber particles, scraps of paper, shredded wood (sawdust), metal particles, etc. from adhering to the heat sink.
\square Install the AC motor drive in a metal cabinet. When installing one drive below another one, use a metal separator between the AC motor drives to prevent mutual heating and to prevent the risk of accidental fire.
ஏ Install the AC motor drive in Pollution Degree 2 environments only: normally only non-conductive pollution occurs and temporary conductivity caused by condensation is expected.
\square To ensure the environment to install drives is in Pollution Degree 2, the drives should be installed in an IP54 cabinet or in a pollution-controlled environment. Pollution Degree 2 (IEC / EN 60664-1) is that temporary electric conduction may occur when dew forms, electrical equipment in control panel and thermostatic chamber just causes non-conductive pollution.

The following figures are for instruction, and the actual drives shall prevail.

Frame A-F

Installation method	A (mm)	$\mathrm{B}(\mathrm{mm})$	$\mathrm{C}(\mathrm{mm})$	Ambient temperature $\left({ }^{\circ} \mathrm{C}\right)$	
				Max. (Without derating)	Max. (derating)
Single drive installation	50	30	-	50	60
Side-by-side horizontal installation	50	30	30	50	60
Zero stack installation	50	30	0	40	50

Frame G-I

Installation method	(mm)	$\mathrm{B}(\mathrm{mm})$	$\mathrm{C}(\mathrm{mm})$	Ambient temperature (${ }^{\circ} \mathrm{C}$)	
				Max. (Without derating)	Max. (derating)
Single drive installation	100	50	-	50	60
Side-by-side horizontal installation	100	50	50	50	60
Zero stack installation	100	50	0	40	50

NOTE: The minimum mounting clearances $\mathrm{A}-\mathrm{C}$ in the table above apply to AC motor drives installation. Failing to follow the minimum mounting clearances may cause the fan to malfunction and cause heat dissipation problems.

3-2 Airflow and Power Dissipation

Frame	Airflow rate for cooling			Power Dissipation		
	Model No.	Flow Rate (Unit: cfm)	Flow Rate (Unit: $\mathrm{m}^{3} / \mathrm{hr}$)	Loss External (Heat sink, unit: W)	Internal (Unit: W)	Total (Unit: W)
A	VFD1A6MH11ANSAA VFD1A6MH11ENSAA	0.0	0.0	8.0	10.0	18.0
	VFD2A5MH11ANSAA VFD2A5MH11ENSAA			14.2	13.1	27.3
	VFD1A6MH21ANSAA VFD1A6MH21ENSAA			8.0	10.3	18.3
	VFD2A8MH21ANSAA VFD2A8MH21ENSAA			16.3	14.5	30.8
	VFD1A6MH23ANSAA VFD1A6MH23ENSAA			8.6	10.0	18.6
	VFD2A8MH23ANSAA VFD2A8MH23ENSAA			16.5	12.6	29.1
	VFD5AOMH23ANSAA VFD5A0MH23ENSAA	10.0	16.99	33.2	15.0	48.2
	VFD5A0MH23ANSNA VFD5A0MH23ENSNA	0	0	33.2	15.0	48.2
	VFD1A5MH43ANSAA VFD1A5MH43ENSAA	0.0	0.0	17.6	11.1	28.7
	VFD3AOMH43ANSAA VFD3AOMH43ENSAA	10.0	16.99	32.6	20.0	52.6
	VFD3AOMH43ANSNA VFD3AOMH43ENSNA	0	0	32.6	20.0	52.6
B	VFD1A6MH21AFSAA	0.0	0.0	8.0	10.3	18.3
	VFD2A8MH21AFSAA	10.0	16.99	16.3	14.5	30.8
	VFD5A0MH21ANSAA VFD5A0MH21ENSAA VFD5A0MH21AFSAA			31.1	22.5	53.6
	VFD7A5MH23ANSAA VFD7A5MH23ENSAA			50.1	24.2	74.3
	VFD1A5MH43AFSAA			17.6	11.1	28.7
	VFD3A0MH43AFSAA			32.6	20.0	52.6
	VFD4A2MH43ANSAA VFD4A2MH43ENSAA VFD4A2MH43AFSAA			45.9	21.7	67.6
C	VFD5A0MH11ANSAA VFD5A0MH11ENSAA	16.0	27.2	31.1	26.2	57.3
	VFD7A5MH21ANSAA VFD7A5MH21ENSAA VFD7A5MH21AFSAA			46.5	31.0	77.5
	VFD11AMH21ANSAA VFD11AMH21ENSAA VFD11AMH21AFSAA			70.0	35	105
	VFD11AMH23ANSAA VFD11AMH23ENSAA			76.0	30.7	106.7
	VFD17AMH23ANSAA VFD17AMH23ENSAA			108.2	40.1	148.3

Chapter 3 Installation | MH300

Frame	Airflow rate for cooling			Power Dissipation		
	Model No.	Flow Rate (Unit: cfm)	Flow Rate (Unit: m³ hr)	Loss External (Heat sink, unit: W)	Internal (Unit: W)	Total (Unit: W)
C	VFD5A7MH43ANSAA VFD5A7MH43ENSAA VFD5A7MH43AFSAA	16.0	27.2	60.6	22.8	83.4
	VFD9A0MH43ANSAA VFD9AOMH43ENSAA VFD9A0MH43AFSAA			93.1	42	135.1
D	VFD25AMH23ANSAA VFD25AMH23ENSAA	23.4	39.7	192.8	53.3	246.1
	VFD13AMH43ANSAA VFD13AMH43ENSAA VFD13AMH43AFSAA			132.8	39.5	172.3
	VFD17AMH43ANSAA VFD17AMH43ENSAA VFD17AMH43AFSAA			164.7	55.8	220.5
E	VFD33AMH23ANSAA VFD33AMH23ENSAA	53.7	91.2	244.5	79.6	324.1
	VFD49AMH23ANSAA VFD49AMH23ENSAA			374.2	86.2	460.4
	VFD25AMH43ANSAA VFD25AMH43ENSAA VFD25AMH43AFSAA			234.5	69.8	304.3
	VFD32AMH43ANSAA VFD32AMH43ENSAA VFD32AMH43AFSAA			319.8	74.3	394.1
F	VFD65AMH23ANSAA VFD65AMH23ENSAA	67.9	115.2	492.0	198.2	690.2
	VFD38AMH43ANSAA VFD38AMH43ENSAA VFD38AMH43AFSAA			423.5	181.6	605.1
	VFD45AMH43ANSAA VFD45AMH43ENSAA VFD45AMH43AFSAA			501.1	200.3	701.4
G	VFD75AMH23ANSAA	232.0	394.2	581.3	100.0	681.3
	VFD90AMH23ANSAA	266.0	451.9	732.5	107.0	839.5
	VFD60AMH43AFSAA			670.8	122.0	792.8
	VFD60AMH43ANSAA			655.3	122.0	777.3
H	VFD75AMH43AFSAA	322.0	547.1	872.8	157.0	1029.8
	VFD75AMH43ANSAA			896.8	135.0	1031.8
	VFD91AMH43AFSAA			993.5	166.0	1159.5
	VFD91AMH43ANSAA			1029.0	150.0	1179.0
I	VFD120MH23ANSAA	455.0	773.1	926.0	124.0	1050.0
	VFD146MH23ANSAA	493.0	837.6	1144.9	132.0	1276.9
	VFD112MH43AFSAA	455.0	773.1	1197.6	177.0	1374.6
	VFD112MH43ANSAA			1219.9	165.0	1384.9
	VFD150MH43AFSAA	493.0	837.6	1455.0	195.0	1650.0
	VFD150MH43ANSAA			1495.0	180.0	1675.0

Chapter 4 Wiring

4-1 System Wiring Diagram

4-2 Wiring

After removing the front cover, verify that the power and control terminals are clearly visible. Read the following precautions to avoid wiring mistakes.

	∇ It is crucial to cut off the AC motor drive power before doing any wiring. A charge with hazardous voltages may still remain in the DC bus capacitors even after the power has been turned off for a short time. Measure the remaining voltage with a DC voltmeter on +1/DC+ and DC- before doing any wiring. For your safety, do not start wiring before the voltage drops to a safe level (less than $25 \mathrm{~V}_{\mathrm{DC}}$). Installing wiring with a residual voltage may cause injuries, sparks and short-circuits. \square Only qualified personnel familiar with AC motor drives are allowed to perform installation, wiring and commissioning. Make sure the power is turned off before wiring to prevent electric shocks. \square The terminals R/L1, S/L2, and T/L3 are for mains power input. If mains power is incorrectly connected to other terminals, it may result in damage to the equipment. The voltage and current must be in the range indicated on the nameplate (see Section 1-1). \square All units must be grounded directly to a common ground terminal to prevent electrical shocks or damage from lightning. \square Tighten the screw of the main circuit terminals to prevent sparks due to loosening of the terminals resulted from vibration.
	When wiring, choose wires that comply with local regulations for your safety. \square Check the following items after you finish the wiring: 1. Are all connections correct? 2. Are there any loose wires? 3. Are there any short-circuits between the terminals or to ground?

4-1 System Wiring Diagram

$\left.\begin{array}{c|l}\hline \begin{array}{c}\text { Power input } \\ \text { terminal }\end{array} & \begin{array}{l}\text { Please refer to Chapter 9 Specification Table } \\ \text { in the user manual for detail. }\end{array} \\ \hline \text { NFB or fuse } & \begin{array}{l}\text { There may be a large inrush current during } \\ \text { power on. Refer to Section 7-2 NFB to select } \\ \text { a suitable NFB or Section 7-3 Fuse } \\ \text { Specification Chart. }\end{array} \\ \hline \begin{array}{c}\text { Electromagnetic } \\ \text { contactor }\end{array} & \begin{array}{l}\text { Switching the power ON/OFF before the } \\ \text { magnetic contactor more than one per hour } \\ \text { can damage the drive. }\end{array} \\ \hline & \begin{array}{l}\text { When the mains power capacity is > 500kVA or } \\ \text { when the drive is preceded by a capacitor bank, } \\ \text { the instantaneous peaks voltage and current } \\ \text { may destroy the drive. In that case it is }\end{array} \\ \text { AC reactor } \\ \text { (ecommended to install an AC input reactor } \\ \text { that also improves the power factor and } \\ \text { harmonics. The cable between reactor and } \\ \text { drive should be < 10m. } \\ \text { Please refer to Section 7-4. }\end{array}\right\}$

4-2 Wiring

- Shielded leads \& Cable
*1 Refer to Section 7-4 AC / DC Reactor for more details about the specifications of DC reactor.
*2 Refer to Section 7-1 Brake Resistors and Brake Units Used in AC Motor Drives for more details about the specifications of brake resistor.

\doteqdot Shielded leads \& Cable
*1 \& *2 Refer to Section 7-1 Brake Resistors and Brake Units Used in AC Motor Drives for more details about the specifications of brake module and brake resistor.
*3 Refer to Section 7-4 AC / DC Reactor for more details about the specifications of DC reactor.

SINK (NPN) / SOURCE (PNP) Mode
(1) Sink Mode
with internal power (+24 Voc)

(3) Sink Mode
with external power

(2) Source Mode
with internal power (+24 Voc)

(4) Source Mode with external power

Chapter 5 Main Circuit Terminals

5-1 Main Circuit Diagram
5-2 Main Circuit Terminals

\square Securely fasten the main circuit terminal screws to prevent sparking caused by loose screws due to vibration.
■ When needed, only use an inductive filter at the motor output terminals $\mathrm{U} / \mathrm{T} 1, \mathrm{~V} / \mathrm{T} 2$, W/T3 of the AC motor drive. DO NOT use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance), unless approved by Delta.
च DO NOT connect brake resistors directly to $+1 / \mathrm{DC}+$ to $\mathrm{DC}-,+2 / \mathrm{B} 1$ to $\mathrm{DC}-$ to prevent damage to the drive.
च Ensure proper insulation of the main circuit wiring in accordance with the relevant safety regulations.

Main power terminals

『 R/L1, S/L2 and T/L3 have no phase-sequence requirement; they can be connected in any sequence.
\square Add a magnetic contactor (MC) at the power input to quickly cut off power and reduce malfunction when activating the AC motor drive protection function. Both ends of the MC should have an R-C surge absorber.
\boxtimes Ensure that voltages and currents are within specification.
\boxtimes Although the leakage current of one single MH300 drive is less than 10 mA d.c., electric shock may still occur due to the leakage current from other equipment such as motors and leads. Therefore, it is recommended that you install one of the followings to prevent danger caused by electric shock.

1. Use a copper wire with a cross-section of $10 \mathrm{~mm}^{2}$ or above or an aluminum wire of $16 \mathrm{~mm}^{2}$ as the connection between the casing and the ground.
2. Install an Earth Leakage Circuit Breaker (ELCB).
\square Due to the high frequency current of the leakage current of the AC motor drive, select a Type B ELCB specifically for the drive when using an ELCB. For tripping or malfunctions on the usage of ELCB, refer to Section 7-8 Capacitive Filter for details. The power system of the AC motor drive affects the power factor, so select a MCCB with larger capacity.
च Use conduits or shielded cables for the power wiring, and ground both ends of the conduit or shielded cables.
\square DO NOT start or stop the drive by turning the power ON or OFF. Start and stop the drive with the RUN / STOP command. If you still need to run or stop the drive by turning the power ON or OFF, it is strongly recommended that you do so no more often than ONCE per hour.
$\boxtimes \quad$ To comply with UL standards, connect the drive to a three-phase three-wire or threephase four-wire Wye system type of mains power system.

Output terminals for main circuit

■ Use a well-insulated motor that is suitable for operation with an inverter.
■ When the AC drive output terminals U/T1, V/T2, and W/T3 are connected to the motor terminals U/T1, V/T2, and W/T3 respectively, the motor rotates
counterclockwise (as viewed from the shaft end of the motor, refer to the pointed direction in the figure below) when it receives a forward operation command. To permanently reverse the direction of rotation, exchange any two motor leads.

Terminals for connecting DC reactor, external brake resistor and DC circuit
$\checkmark \quad$ These are the terminals for connecting the DC reactor to improve the power factor and harmonics. At delivery they are shorted by a jumper. Remove the jumper before connecting the DC reactor.

च You must tightly fasten the jumper when it does not connect the DC reactor, use DC+/+1, +2/B1 to execute common DC bus, or connect with a brake resistor; otherwise the drive might lose power or break the terminals.

\square Connect a brake resistor in applications with frequent deceleration, short deceleration time, too low braking torque, or increased braking torque.

\checkmark Connect the external brake resistor to the terminals +2/B1, B2 on AC motor drives
\checkmark DO NOT short-circuit or connect a brake resistor directly to DC+/+1 and DC-, +2/B1 and DC-; otherwise the drive will be damaged.
ஏ Connect DC+/+1 and DC- in common DC bus applications. Refer to Section 5-2 (Main Circuit Terminal) for the wiring terminal specification and the wire gauge information.

Remove the front cover

Remove the front cover before connecting the main circuit terminals and control circuit terminals. Remove the cover according to the figure below.
[1] The figure below shows the Frame A model for example. Removing the cover on the other frame sizes is similar.

Press the clip on both sides, and take out the front cover by rotating.

5-1 Main Circuit Diagram

Frame A-G
Input: Single-phase / Three-phase power

Frame H-I
Input: Three-phase power
(optional) ${ }^{*}{ }^{2}$

Terminals	Descriptions
R/L1, S/L2	Mains input terminals one-phase
R/L1, S/L2, T/L3	Mains input terminals three-phase
U/T1, V/T2, W/T3	Motor output terminals for connecting three-phase IM and PM motors
$+1,+2$	Connections for DC reactor to improve the power factor and harmonics. Remove the jumper when using a DC reactor.
DC+, DC-	Connections for brake unit (VFDB series) Common DC bus
B1, B2	Connections for brake resistor (optional)
\doteq	Ground connection, comply with local regulations.

5-2 Main Circuit Terminals

- Use the specified ring lug for main circuit terminal wiring. See Fig. 1 and Fig. 2 for ring lug specifications. For other types of wiring use the wires that comply with the local regulation.
- After crimping the wire to the ring lug (must be UL approved), UL and CSA approved R/C (YDPU2/8), install heat shrink tubing rated at a minimum of $600 \mathrm{~V}_{\mathrm{AC}}$ insulation over the live part. Refer to Figure 2 below.
- Main circuit terminals:

R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC-, DC+/+1, +2/B1, B2
Note: Single-phase models are with no T/L3 terminal.

Fig. 1

Fig. 2

Dimensions of Ring Lug

The part number of the ring terminals (produced by K.S. Terminals) in the table below are for reference only. You can buy other ring terminals of your choice to match with different frame sizes.

Frame	AWG	Kit P/N	$\begin{gathered} \mathrm{A} \\ \text { (MAX) } \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \text { (MAX) } \end{gathered}$	$\begin{gathered} \text { C } \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} \mathrm{D} \\ (\mathrm{MAX}) \end{gathered}$	$\begin{gathered} \text { d2 } \\ \text { (MIN) } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} \text { W } \\ \text { (MAX) } \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{MAX}) \end{gathered}$
A	18	RNBS1-3.7	9.8	3.2	4.8	4.1	3.7	13.0	4.2	6.6	0.8
	16	RNBS2-3.7									
	14	RNBS2-3.7									
B	18	RNBS1-4	12.1	3.6	6.1	5.6	4.3	13.0	4.5	7.2	1
	16	RNBS1-4									
	14	RNBS2-4									
	12	RNBS5-4									
C	14	RNBS2-4	17.8	5.0	6.1	7.2	4.3	13.0	5.5	10.5	1.2
	12	RNBS5-4									
	10	RNBS5-4									
	8	RNBS8-4									
D	10	RNBS5-4	17.8	5.0	6.1	7.2	4.3	13.0	5.5	10.5	1.2
	8	RNBS8-4									
E	6	RNB14-5	27.1	6.1	10.5	11.5	5.3	13.0	6.5	12.6	1.7
	4	RNBS22-5									
F	6	RNBS14-6	35.0	9.0	13.3	14.0	6.2	13.0	10.0	19.5	1.8
	4	RNBS22-6									
	2	RNBS38-6									
G	6	RNB14-8	38.7	12.0	13.5	17.5	8.4	13.0	13.0	24.0	1.8
	4	RNB22-8									
	2	RNBS38-8									
	1/0	RNB60-8									

Frame	AWG	Kit P/N	$\begin{gathered} \mathrm{A} \\ (\mathrm{MAX}) \end{gathered}$	$\begin{gathered} B \\ (\mathrm{MAX}) \end{gathered}$	$\begin{gathered} \mathrm{C} \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} D \\ (\mathrm{MAX}) \end{gathered}$	$\begin{gathered} \text { d2 } \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{MIN}) \end{gathered}$	$\begin{gathered} W \\ (\text { MAX }) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{MAX}) \end{gathered}$
H	4	RNB22-8	40.0	11.0	10.0	23.0	8.3	13.0	$14.0{ }^{*}$	24.0	4.5
	2	RNBS38-8									
	1	SQNBS60-8									
	1/0	SQNBS60-8									
	2/0	SQNBS80-8									
	3/0	SQNBS80-8									
I	1/0	RNB60-8	50.0	16.0	10.0	27.0	8.3	13.0	14.0	28.0	6.0
	2/0	RNB70-8									
	3/0	RNB80-8									
	4/0	SQNBS100-8									
	$\begin{gathered} 250 \\ \text { MCM } \end{gathered}$	SQNBS150-8									
	$\begin{gathered} 300 \\ \text { MCM } \end{gathered}$	SQNBS150-8									

*1. AWG: Refer to the following tables for the wire size specification for models in each frame.
*2: $F(M A X)=16.5$

Frame A

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, select copper wire with voltage rating of 600 V and temperature resistance of $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For VFD2A5MH11ANSAA, VFD2A5MH11ENSAA models: If you install at $\mathrm{Ta} 40^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliance, use copper wires when installing.

The wire gauge is based on a temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wires.

Models	Main Circuit Terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC-, DC+/+1, +2/B1, B2			Terminals $\stackrel{(1)}{ }$		
	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)
VFD1A6MH11ANSAA	$\begin{gathered} 2.5 \mathrm{~mm}^{2} \\ \text { (14 AWG) } \end{gathered}$	$2.5 \mathrm{~mm}^{2}$ (14AWG)	M3.5 $9 \mathrm{~kg}-\mathrm{cm}$ (7.8 lb-in.) (0.88 Nm)	$\begin{gathered} 2.5 \mathrm{~mm}^{2} \\ \text { (14 AWG) } \end{gathered}$	$\begin{gathered} 2.5 \mathrm{~mm}^{2} \\ \text { (14 AWG) } \end{gathered}$	$\begin{gathered} \mathrm{M} 3.5 \\ 9 \mathrm{~kg}-\mathrm{cm} \\ (7.8 \mathrm{lb-in.}) \\ (0.88 \mathrm{Nm}) \end{gathered}$
VFD1A6MH11ENSAA						
VFD2A5MH11ANSAA						
VFD2A5MH11ENSAA						
VFD1A6MH21ANSAA		$1.5 \mathrm{~mm}^{2}$				
VFD1A6MH21ENSAA		(16AWG)				
VFD2A8MH21ANSAA		$2.5 \mathrm{~mm}^{2}$				
VFD2A8MH21ENSAA		(14AWG)				
VFD1A6MH23ANSAA						
VFD1A6MH23ENSAA		$0.75 \mathrm{~mm}^{2}$				
VFD2A8MH23ANSAA		(18AWG)				
VFD2A8MH23ENSAA						
VFD5A0MH23ANSAA						
VFD5A0MH23ENSAA		$2.5 \mathrm{~mm}^{2}$				
VFD5A0MH23ANSNA		(14AWG)				
VFD5A0MH23ENSNA						
VFD1A5MH43ANSAA						
VFD1A5MH43ENSAA		(18AWG)				
VFD3A0MH43ANSAA		$\begin{gathered} 1.5 \mathrm{~mm}^{2} \\ \text { (16AWG) } \end{gathered}$				
VFD3AOMH43ENSAA						
VFD3A0MH43ANSNA						
VFD3A0MH43ENSNA						

Frame B

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, select copper wire with voltage rating of 600 V and temperature resistance of $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For UL installation compliance, use copper wires when installing.

The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wires.

Models	Main Circuit Terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC-, DC+/+1, +2/B1, B2			Terminals Θ		
	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%)$
VFD1A6MH21AFSAA	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & \text { (16 AWG) } \end{aligned}$	$\begin{gathered} \mathrm{M} 4 \\ 15 \mathrm{Kg}-\mathrm{cm} \\ (13.0 \mathrm{lb}-\mathrm{in} .) \\ (1.47 \mathrm{Nm}) \end{gathered}$	2.5 mm ${ }^{2}$	$2.5 \mathrm{~mm}^{2}$	$\begin{gathered} \mathrm{M} 4 \\ 15 \mathrm{Kg}-\mathrm{cm} \\ (13.0 \mathrm{lb}-\mathrm{in} .) \\ (1.47 \mathrm{Nm}) \end{gathered}$
VFD2A8MH21AFSAA		$\begin{gathered} 2.5 \mathrm{~mm}^{2} \\ \text { (14 AWG) } \end{gathered}$		(14 AWG)	(14 AWG)	
VFD5A0MH21ANSAA		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ (12 \mathrm{AWG}) \end{gathered}$	
VFD5A0MH21ENSAA						
VFD5A0MH21AFSAA						
VFD7A5MH23ANSAA						
VFD7A5MH23ENSAA						
VFD1A5MH43AFSAA		$\begin{aligned} & 0.75 \mathrm{~mm}^{2} \\ & \text { (18 AWG) } \end{aligned}$		$\begin{gathered} 2.5 \mathrm{~mm}^{2} \\ \text { (14 AWG) } \end{gathered}$	$\begin{gathered} 2.5 \mathrm{~mm}^{2} \\ \text { (14 AWG) } \end{gathered}$	
VFD3A0MH43AFSAA		$\begin{array}{r} 1.5 \mathrm{~mm}^{2} \\ \text { (16 AWG) } \\ \hline \end{array}$				
VFD4A2MH43ANSAA						
VFD4A2MH43ENSAA		$2.5 \mathrm{~mm}^{2}$				
VFD4A2MH43AFSAA						

Frame C

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, select copper wire with voltage rating of 600 V and temperature resistance of $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For UL installation compliance, use copper wires when installing.

The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wires.

Models	Main Circuit TerminalsR/L1, S/L2, T/L3, U/T1, V/T2, W/T3,DC-, DC $+/+1,+2 / B 1, B 2$			Terminals (ㅋ)		
	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	 Torque ($\pm 10 \%$)
VFD5A0MH11ANSAA	$10 \mathrm{~mm}^{2}$ (8 AWG)	$10 \mathrm{~mm}^{2}$ (8 AWG)	$\begin{gathered} \mathrm{M} 4 \\ 20 \mathrm{Kg}-\mathrm{cm} \\ (17.4 \mathrm{lb}-\mathrm{in} .) \\ (1.96 \mathrm{Nm}) \end{gathered}$	$10 \mathrm{~mm}^{2}$ (8 AWG)	$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \mathrm{M} 4 \\ 20 \mathrm{Kg}-\mathrm{cm} \\ (17.4 \mathrm{lb}-\mathrm{in} .) \\ (1.96 \mathrm{Nm}) \end{gathered}$
VFD5A0MH11ENSAA						
VFD7A5MH21ANSAA						
VFD7A5MH21ENSAA						
VFD7A5MH21AFSAA						
VFD11AMH21ANSAA						
VFD11AMH21ENSAA						
VFD11AMH21AFSAA						
VFD11AMH23ANSAA		$6 \mathrm{~mm}^{2}$		$6 \mathrm{~mm}^{2}$	$6 \mathrm{~mm}^{2}$	
VFD11AMH23ENSAA		(10 AWG)		(10 AWG)	(10 AWG)	
VFD17AMH23ANSAA		$10 \mathrm{~mm}^{2}$		$10 \mathrm{~mm}^{2}$		
VFD17AMH23ENSAA		(8 AWG)		(8 AWG)	(8 AWG)	
VFD5A7MH43ANSAA						
VFD5A7MH43AFSAA		$\begin{gathered} 2.5 \mathrm{~mm}^{2} \\ \text { (14 AWG) } \end{gathered}$		$\begin{gathered} 2.5 \mathrm{~mm}^{2} \\ \text { (14 AWG) } \end{gathered}$	$\begin{gathered} 2.5 \mathrm{~mm}^{2} \\ \text { (14 AWG) } \end{gathered}$	
VFD5A7MH43ENSAA						
VFD9A0MH43ANSAA		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \end{gathered}$		$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \end{gathered}$	$\begin{gathered} 4 \mathrm{~mm}^{2} \\ \text { (12 AWG) } \end{gathered}$	
VFD9A0MH43ENSAA						
VFD9A0MH43AFSAA						

Frame D

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- If you install at Ta $50^{\circ} \mathrm{C}$ environment, select copper wire with voltage rating of 600 V and temperature resistance of $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For VFD25AMH23ANSAA: If you install at Ta $45^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliance, use copper wires when installing.

The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wires.

Models	Main Circuit Terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC-, DC+/+1, +2/B1, B2			Terminals (
	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)
VFD25AMH23ANSAA	$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \end{gathered}$	$10 \mathrm{~mm}^{2}$	$\begin{gathered} \mathrm{M} 4 \\ 20 \mathrm{Kg}-\mathrm{cm} \\ (17.4 \mathrm{lb}-\mathrm{in} .) \\ (1.96 \mathrm{Nm}) \end{gathered}$	$10 \mathrm{~mm}^{2}$	$10 \mathrm{~mm}^{2}$	$\begin{gathered} \mathrm{M} 4 \\ 20 \mathrm{Kg}-\mathrm{cm} \\ (17.4 \mathrm{lb}-\mathrm{in} .) \\ (1.96 \mathrm{Nm}) \end{gathered}$
VFD25AMH23ENSAA		(8 AWG)		(8 AWG)	(8 AWG)	
VFD13AMH43ANSAA						
VFD13AMH43ENSAA		$\begin{gathered} 6 \text { mm²² }^{(10 \text { AWG) }} \end{gathered}$		$\begin{gathered} 6 \mathrm{~mm}^{2} \\ (10 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 6 \text { mm²² }^{(10 \text { AWG) }} \end{gathered}$	
VFD13AMH43AFSAA						
VFD17AMH43ANSAA		$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \end{gathered}$		$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 10 \mathrm{~mm}^{2} \\ (8 \mathrm{AWG}) \end{gathered}$	
VFD17AMH43ENSAA						
VFD17AMH43AFSAA						

Frame E

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, select copper wire with voltage rating of 600 V and temperature resistance of $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For VFD33AMH23ANSAA, VFD33AMH23ENSAA models: If you install at Ta $40^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- For VFD49AMH23ANSAA, VFD49AMH23ENSAA models: If you install at Ta $35^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- For VFD32AMH43ANSAA, VFD32AMH43ENSAA, VFD32AMH43AFSAA models: If you install at Ta $45^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliance, use copper wires when installing.

The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wires.

- ** These drives must be wired with the specified ring lug dimensions.

Models	Main Circuit Terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC-, DC+/+1, +2/B1, B2			Terminals \pm		
	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque $(\pm 10 \%)$	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)
VFD33AMH23ANSAA	$16 \mathrm{~mm}^{2}$	16 mm ${ }^{2}$	$\begin{gathered} \mathrm{M} 5 \\ 25 \mathrm{Kg}-\mathrm{cm} \\ (21.7 \mathrm{lb-in} .) \\ (2.45 \mathrm{Nm}) \end{gathered}$	$16 \mathrm{~mm}^{2}$	$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \mathrm{M} 5 \\ 25 \mathrm{Kg}-\mathrm{cm} \\ (21.7 \mathrm{lin}-\mathrm{in} .) \\ (2.45 \mathrm{Nm}) \end{gathered}$
VFD33AMH23ENSAA	(6 AWG)	(6 AWG)		(6 AWG)		
VFD49AMH23ANSAA**	25 mm ${ }^{2}$	25 mm ${ }^{2}$		25 mm ${ }^{2}$		
VFD49AMH23ENSAA**	(4 AWG)	(4 AWG)		(4 AWG)		
VFD25AMH43ANSAA	$16 \mathrm{~mm}^{2}$ (6 AWG)	$16 \mathrm{~mm}^{2}$ (6 AWG)		$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \end{gathered}$		
VFD25AMH43ENSAA						
VFD25AMH43AFSAA						
VFD32AMH43ANSAA						
VFD32AMH43ENSAA						
VFD32AMH43AFSAA						

Frame F

IP20

- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, select copper wire with voltage rating of 600 V and temperature resistance of $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For VFD65AMH23ANSAA, VFD65AMH23ENSAA models: If you install at Ta $35^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliance, use copper wires when installing.

The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wires.

Models	Main Circuit Terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC-, DC+/+1, +2/B1, B2			Terminals $\left.{ }^{(}\right)$		
	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)
VFD65AMH23ANSAA	$\begin{aligned} & 35 \mathrm{~mm}^{2} \\ & (2 \text { AWG }) \end{aligned}$	$35 \mathrm{~mm}^{2}$	$\begin{gathered} \mathrm{M6} \\ 40 \mathrm{Kg}-\mathrm{cm} \\ (34.7 \mathrm{lb-in} .) \\ (3.92 \mathrm{Nm}) \end{gathered}$	$35 \mathrm{~mm}^{2}$	$\begin{gathered} 16 \mathrm{~mm}^{2} \\ \text { (} 6 \mathrm{AWG} \text {) } \end{gathered}$	$\begin{gathered} \mathrm{M} 6 \\ 40 \mathrm{Kg}-\mathrm{cm} \\ (34.7 \mathrm{Ib}-\mathrm{in} .) \\ (3.92 \mathrm{Nm}) \end{gathered}$
VFD65AMH23ENSAA		(2 AWG)		(2 AWG)		
VFD38AMH43ANSAA						
VFD38AMH43ENSAA		$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \end{gathered}$		(4 AWG)		
VFD38AMH43AFSAA						
VFD45AMH43ANSAA		$\begin{gathered} 35 \text { mm}^{2} \\ \text { (2 AWG) } \end{gathered}$		$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$		
VFD45AMH43ENSAA						
VFD45AMH43AFSAA						

Frame G

- If you install at $\operatorname{Ta} 50^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 50^{\circ} \mathrm{C}$ environment, select copper wire with voltage rating of 600 V and temperature resistance of $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For VFD90AMH23ANSAA: If you install at Ta $40^{\circ} \mathrm{C}$ above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliance, use copper wires when installing.

The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wires.

Models	Main Circuit Terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, $\mathrm{DC}-, \mathrm{DC}+/+1,+2 / \mathrm{B} 1, \mathrm{~B} 2$			Terminals $\stackrel{1}{\theta}$		
	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)
VFD60AMH43AFSAA	$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 35 \mathrm{~mm}^{2} \\ (2 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \mathrm{M} 8 \\ 80 \mathrm{Kg}-\mathrm{cm} \\ (69.4 \mathrm{lb}-\mathrm{in} .) \\ (7.84 \mathrm{Nm}) \end{gathered}$	25 mm²	$\begin{gathered} 16 \mathrm{~mm}^{2} \\ (6 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \mathrm{M} 8 \\ 80 \mathrm{Kg}-\mathrm{cm} \\ (69.4 \mathrm{lb}-\mathrm{in} .) \\ (7.84 \mathrm{Nm}) \end{gathered}$
VFD60AMH43ANSAA				(4 AWG)		
VFD75AMH23ANSAA				$35 \mathrm{~mm}^{2}$		
VFD90AMH23ANSAA				(2 AWG)		

Frame H

R/L1 S/L2 T/L3 DC- DC+/+1DC+/+2 U/T1 V/T2 W/T3

- If you install at $\mathrm{Ta} 40^{\circ} \mathrm{C}$ (with conduit box) $/ 50^{\circ} \mathrm{C}$ (without conduit box) above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 40^{\circ} \mathrm{C}$ (with conduit box) $/ 50^{\circ} \mathrm{C}$ (without conduit box) environment, select copper wire with voltage rating of 600 V and temperature resistance of $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For UL installation compliance, use copper wires when installing. The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wires.

Install the drive with conduit box

Models	Main Circuit Terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC-, DC+/+1			Terminals		
	Max. Wire Gauge	Min. Wire Gauge	 Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	 Torque ($\pm 10 \%$)
VFD75AMH43AFSAA	$\begin{gathered} 70 \mathrm{~mm}^{2} \\ (2 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \text { M8 } \\ 80 \mathrm{Kg}-\mathrm{cm} \\ (69.4 \mathrm{lb}-\mathrm{in} .) \\ (7.84 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 70 \mathrm{~mm}^{2} \\ (2 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 25 \mathrm{~mm}^{2} \\ (4 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \text { M8 } \\ 80 \mathrm{Kg}-\mathrm{cm} \\ (69.4 \mathrm{lb}-\mathrm{in} .) \\ (7.84 \mathrm{Nm}) \end{gathered}$
VFD75AMH43ANSAA						
VFD91AMH43AFSAA		$\begin{gathered} 70 \mathrm{~mm}^{2} \\ (2 / 0 \mathrm{AWG}) \end{gathered}$			$35 \mathrm{~mm}^{2}$	
VFD91AMH43ANSAA					(2 AWG)	

Install the drive without conduit box

Models	Main Circuit Terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC-, DC+/+1			Terminals (
	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	 Torque ($\pm 10 \%$)
VFD75AMH43AFSAA	$\begin{gathered} 95 \mathrm{~mm}^{2} \\ (3 / 0 \text { AWG }) \end{gathered}$	$\begin{gathered} 50 \mathrm{~mm}^{2} \\ (1 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \mathrm{M} 8 \\ 80 \mathrm{Kg}-\mathrm{cm} \\ (69.4 \mathrm{lb}-\mathrm{in} .) \\ (7.84 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 95 \mathrm{~mm}^{2} \\ (3 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{aligned} & 25 \mathrm{~mm}^{2} \\ & (4 \mathrm{AWG}) \end{aligned}$	$\begin{gathered} \text { M8 } \\ 80 \mathrm{Kg}-\mathrm{cm} \\ (69.4 \mathrm{lb}-\mathrm{in} .) \\ (7.84 \mathrm{Nm}) \end{gathered}$
VFD75AMH43ANSAA						
VFD91AMH43AFSAA		95 mm²			$50 \mathrm{~mm}^{2}$	
VFD91AMH43ANSAA		(3/0 AWG)			(1/0 AWG)	

Frame I

> R/L1 S/L2 T/L3 DC- DC+/+1DC+/+2 U/T1 V/T2 W/T3

- If you install at $\mathrm{Ta} 40^{\circ} \mathrm{C}$ (with conduit box) $/ 50^{\circ} \mathrm{C}$ (without conduit box) above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- If you install at $\mathrm{Ta} 40^{\circ} \mathrm{C}$ (with conduit box) $/ 50^{\circ} \mathrm{C}$ (without conduit box) environment, select copper wire with voltage rating of 600 V and temperature resistance of $75^{\circ} \mathrm{C}$ or $90^{\circ} \mathrm{C}$.
- For VFD150MH43AFSAA, VFD150MH43ANSAA models: If you install at $\mathrm{Ta} 30^{\circ} \mathrm{C}$ (with conduit box) / $40^{\circ} \mathrm{C}$ (without conduit box) above environment, select copper wire with voltage rating of 600 V and temperature resistance of $90^{\circ} \mathrm{C}$ or above.
- For UL installation compliance, use copper wires when installing.

The wire gauge is based on temperature resistance of $75^{\circ} \mathrm{C}$, in accordance with UL requirements and recommendations. Do not reduce the wire gauge when using high-temperature resistant wires.

Install the drive with conduit box

Models	Main Circuit Terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC-, DC+/+1			Terminals (
	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	Screw \& Torque ($\pm 10 \%$)
VFD120MH23ANSAA	$\begin{gathered} 120 \mathrm{~mm}^{2} \\ \text { (4/0 AWG) } \end{gathered}$	$\begin{gathered} 95 \mathrm{~mm}^{2} \\ (3 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \text { M8 } \\ 180 \mathrm{Kg}-\mathrm{cm} \\ \text { (156.2 lb-in.) } \\ (17.65 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 150 \mathrm{~mm}^{2} \\ (300 \mathrm{MCM}) \end{gathered}$	$\begin{gathered} 95 \mathrm{~mm}^{2} \\ (3 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \text { M8 } \\ 180 \mathrm{Kg}-\mathrm{cm} \\ (156.2 \mathrm{lb}-\mathrm{in} .) \\ (17.65 \mathrm{Nm}) \end{gathered}$
VFD146MH23ANSAA		$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \\ \hline \end{gathered}$				
VFD112MH43AFSAA		$95 \mathrm{~mm}^{2}$			$70 \mathrm{~mm}^{2}$	
VFD112MH43ANSAA		(3/0 AWG)			(2/0 AWG)	
VFD150MH43AFSAA		$\begin{gathered} 120 \mathrm{~mm}^{2} \\ (4 / 0 \mathrm{AWG}) \end{gathered}$			$\begin{gathered} 95 \mathrm{~mm}^{2} \\ (3 / 0 \mathrm{AWG}) \end{gathered}$	
VFD150MH43ANSAA						

Install the drive without conduit box

Models	Main Circuit Terminals R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, DC-, DC+/+1			Terminals		
	Max. Wire Gauge	Min. Wire Gauge	 Torque $\pm 10 \%$)	Max. Wire Gauge	Min. Wire Gauge	 Torque $\pm 10 \%$)
VFD120MH23ANSAA	$\begin{gathered} 150 \mathrm{~mm}^{2} \\ (300 \mathrm{MCM}) \end{gathered}$	$\begin{gathered} 150 \mathrm{~mm}^{2} \\ (250 \mathrm{MCM}) \end{gathered}$	$\begin{gathered} \text { M8 } \\ \text { 180 Kg-cm } \\ \text { (156.2 } \mathrm{lb}-\mathrm{in} .) \\ (17.65 \mathrm{Nm}) \end{gathered}$	$\begin{gathered} 150 \mathrm{~mm}^{2} \\ (300 \mathrm{MCM}) \end{gathered}$	$\begin{gathered} 95 \mathrm{~mm}^{2} \\ (3 / 0 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} \text { M8 } \\ 180 \mathrm{Kg}-\mathrm{cm} \\ (156.2 \mathrm{lb}-\mathrm{in} .) \\ (17.65 \mathrm{Nm}) \end{gathered}$
VFD146MH23ANSAA		$\begin{gathered} 150 \mathrm{~mm}^{2} \\ (300 \mathrm{MCM}) \\ \hline \end{gathered}$				
VFD112MH43AFSAA		$120 \mathrm{~mm}^{2}$			$70 \mathrm{~mm}^{2}$	
VFD112MH43ANSAA		(4/0 AWG)			(2/0 AWG)	
VFD150MH43AFSAA		$\begin{gathered} 150 \mathrm{~mm}^{2} \\ (300 \mathrm{MCM}) \end{gathered}$			$\begin{gathered} 95 \mathrm{~mm}^{2} \\ (3 / 0 \mathrm{AWG}) \end{gathered}$	
VFD150MH43ANSAA						

Chapter 6 Control Terminals

6-1 Control Terminals Specifications

Analog input terminals (AVI, ACI, ACM)
\boxtimes Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible (less than 20 m) with proper grounding. If the noise is inductive, connecting the shield to the ACM terminal can reduce interference.
च Use twisted-pair wire for weak analog signals.
\square If the analog input signals are affected by noise from the drive, connect a capacitor and ferrite core as shown in the following diagram.

Fig. 6-1

Contact input terminals (MI1-MI7, DCM, +24 V)

(1) Sink Mode with internal power (+24 Voc)

Fig. 6-2
(3) Sink Mode with external power

Fig. 6-4
(2) Source Mode with internal power (+24 Voc)

Fig. 6-3
(4) Source Mode with external power

Fig. 6-5
\square When the photo coupler is using the internal power supply, the switch connection for Sink and Source modes are as shown in the picture above: MI-DCM: Sink mode, MI+24 V: Source mode.

Transistor output terminals (MO1, MO2, MCM)

\square Make sure to connect the digital outputs to the correct polarity. See the wiring diagram when connecting a relay to the digital output, connect a surge absorber across the coil, and check the polarity.

6-1 Control Terminal Specifications

Fig. 6-6 Control Terminal Distribution Diagram

Fig. 6-7 Control Terminal Location Map

Wiring precautions:

- The default condition is $+24 \mathrm{~V} / \mathrm{S} 1 / \mathrm{S} 2$ shorted by jumper, as shown 1. in the Fig. 6-6. Refer to Chapter 4 WIRING for more details
- The +24 V of safety function is for STO only, as shown 2. in the Fig. 6-7, and cannot be used for other purpose.
- The RELAY terminal uses the PCB terminal block (as shown area © ${ }^{\star}$ in the Fig. 6-6):

1. Tighten the wiring with a 2.5 mm (wide) $\times 0.4 \mathrm{~mm}$ (thick) slotted screwdriver.
2. The ideal length of stripped wire at the connection side is $6-7 \mathrm{~mm}$.
3. When wiring bare wires, make sure they are perfectly arranged to go through the wiring holes.

- The Control terminal uses a spring clamp terminal block (as shown area © in the Fig. 6-6):

1. When removing wires, use the slotted screwdriver to press down the terminal, and the suggested force is 1.5 kgf .
The specification of slotted screwdriver: 2.5 mm (wide) $\times 0.4 \mathrm{~mm}$ (thick).
2. The ideal length of stripped wire at the connection side is 9 mm .
3. When wiring bare wires, make sure they are perfectly arranged to go through the wiring holes.

Wiring Specifications of Control Terminal

Function name	Conductor	Stripping length (mm)	Maximum wire gauge	Minimum wire gauge	Screw size tightening torque $(\pm 10 \%)$
RELAY Terminals	Conductor cross section solid wire	6~7	$\begin{gathered} 1.5 \mathrm{~mm}^{2} \\ \text { (16AWG) } \end{gathered}$	$\begin{gathered} 0.2 \mathrm{~mm}^{2} \\ (24 \mathrm{AWG}) \end{gathered}$	$\begin{gathered} 5 \mathrm{Kg}-\mathrm{cm} \\ (4.3 \mathrm{lb}-\mathrm{in} .) \\ (0.49 \mathrm{Nm}) \end{gathered}$
	Conductor cross section stranded wire				
Control Terminals	Conductor cross section solid wire	9	$\begin{aligned} & 0.75 \mathrm{~mm}^{2} \\ & \text { (18AWG) } \end{aligned}$	$\begin{gathered} 0.2 \mathrm{~mm}^{2} \\ \text { (24AWG) } \end{gathered}$	
	Conductor cross section stranded wire				
	Stranded with ferrules with plastic sleeve	9	$\begin{gathered} \hline 0.5 \mathrm{~mm}^{2} \\ \text { (20AWG) } \end{gathered}$		

Table 6-1

Fig. 6-8

Recommended model and size of crimp terminals
Unit: mm

AWG	Vendor	Vendor P/N	A(MAX)	B(MAX)	D(MAX)	W(MAX)
$\begin{gathered} 0.2 \mathrm{~mm}^{2} \\ (24 \mathrm{AWG}) \end{gathered}$	PHOENIX CONTACT	Al 0,25-8 YE	12.5	8	2.6	1.1
$\begin{aligned} & 0.34 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \\ & \hline \end{aligned}$		AI 0,34-8 TQ	12.5	8	3.3	1.3
$\begin{aligned} & 0.5 \mathrm{~mm}^{2} \\ & (20 \mathrm{AWG}) \end{aligned}$		AI 0,5-8 WH	14	8	3.5	1.4

Recommended model and specifications of crimp tool:
CRIMPFOX 10S - 1212045, Manufacturer: PHOENIX CONTACT
DNT13-0101, Manufacturer: DINKLE
Table 6-2

Terminals	Terminal Function	Description
+24 V	Digital control signal common (Source)	$+24 \mathrm{~V} \pm 10 \% 100 \mathrm{~mA}$ When used in parallel, if the +24 V terminal is used with a feedback sensor, unequal current may occur, and there will be a risk of failure.
MI1-MI7	Multi-function input 1-7	Refer to Pr.02-01-02-07 to program the multi-function inputs MI1-MI7. Source mode ON : the activation current is $3.3 \mathrm{~mA} \geq 11 \mathrm{VDC}$ OFF: cut-off voltage $\leq 5 \mathrm{~V} D$ Sink mode ON : the activation current is $3.3 \mathrm{~mA} \leq 13 \mathrm{VDC}$ OFF: cut-off voltage $\geq 19 \mathrm{VDC}$ - When Pr.02-00 $=0, \mathrm{MI} 1$ and MI2 can be programmed. - When Pr.02-00 $\neq 0$, the function of MI1 and MI2 is according to Pr.02-00 setting. - When Pr.02-07 $=0, \mathrm{MI7}$ is pulse input terminal - MI7 uses pulse input, the maximum input frequency = 33 kHz .

Terminals	Terminal Function	Description
DFM	Digital frequency meter	DFM is a pulse-signal output; Duty-cycle: 50\% Minimum load impedance RL: $1 \mathrm{k} \Omega / 100 \mathrm{pf}$ Maximum current: 30 mA Maximum voltage: $30 V_{D C} \pm 1 \%$
DCM (1)	Digital frequency signal common (Sink)	(when $30 \mathrm{~V}_{\mathrm{DC}} / 30 \mathrm{~mA} / \mathrm{R}_{\mathrm{L}}=100 \mathrm{pf}$) Maximum output frequency: 33 kHz Internal current limiting resistor $\mathrm{R}: \geq 1 \mathrm{~K} \Omega$ Output load impedance R_{L}
DCM (2)	Digital frequency signal common (Sink), it can switch to SGND	Capacitive load ≤ 100 pf Resistive load $\geq 1 \mathrm{k} \Omega$ resistance determines the output voltage value. DFM-DCM voltage $=$ external voltage $*\left(R_{L} /\left(R_{L}+R\right)\right)$
MO1	Multi-function Output 1 (photo coupler)	The AC motor drive output various monitoring signals, such as drive in operation, frequency reached, and
MO2	Multi-function Output 2 (photo coupler)	overload indication through a transistor (open collector).
MCM	Multi-function Output Common	$\text { Max } 48 \text { VDc } 50 \mathrm{~mA}$
RA	Multi-function relay output 1 (Relay N.O. a)	Resistive load $\begin{aligned} & 3 \mathrm{~A}(\mathrm{~N} . \mathrm{O} .) / 3 \mathrm{~A}(\mathrm{~N} . \mathrm{C} .) 250 \mathrm{VAC}_{\mathrm{AC}} \\ & 5 \mathrm{~A}(\mathrm{~N} . \mathrm{O} .) / 3 \mathrm{~A}(\mathrm{~N} . \mathrm{C} .) 30 \mathrm{VDC} \end{aligned}$
RB	Multi-function relay output 1 (Relay N.C. b)	Inductive load (COS 0.4) $\text { 1.2 A (N.O.) / 1.2 A (N.C.) } 250 \mathrm{~V}_{\mathrm{AC}}$
RC	Multi-function relay common (Relay)	2.0 A (N.O.) / 1.2 A (N.C.) 30 VDC Various kinds of monitor signals output, e.g.: operation, frequency reached , overload indication etc.
+10 V	Potentiometer power supply	Power supply for analog frequency setting: $+10.5 \pm 0.5 \mathrm{VDc} / 20 \mathrm{~mA}$
AVI	Analog voltage frequency command	Impedance: $20 \mathrm{k} \Omega$ Range: $0-10 \mathrm{~V} /-10-+10 \mathrm{~V}=0-$ maximum output frequency (Pr.01-00) Mode switching by setting Pr.03-00, Pr.03-28 AVI resolution = 12 bits

Terminals	Terminal Function	Description
ACI	Analog current frequency command	Impedance: 250Ω Range: 0-20 mA / 4-20 mA / 0-10 V = 0-maximum output frequency (Pr.01-00) Mode switching by setting Pr.03-01, Pr.03-29 ACl resolution $=12$ bits
AFM	Multi-function analog voltage output	Switch: The AFM default is $0-10 \mathrm{~V}$ (voltage mode). Use the switch and Pr.03-31 to change to current mode ($0-20 \mathrm{~mA} / 4-20 \mathrm{~mA}$). You must follow the indication on the back side of the front cover or page 6-2 of the user manual when using the switch. Voltage mode Range: 0-10 V (Pr.03-31=0) corresponding to the maximum operating range of the control object Maximum output current: 2 mA Maximum load: $5 \mathrm{k} \Omega$ Current mode Range: 0-20 mA (Pr.03-31=1) / 4-20 mA (Pr.03-31=2) corresponding to the maximum operating range of the control object Maximum load: 500Ω
ACM	Analog Signal Common	Common for analog terminals
S1,S2	Default: S1 / S2 shorted for +24 V Rated voltage: $24 \mathrm{~V}_{\mathrm{DC}} \pm 10 \%$; Maximum voltage: $30 \mathrm{~V}_{\mathrm{DC}} \pm 10 \%$ Activation current: $6.67 \mathrm{~mA} \pm 10 \%$ STO activation mode Input voltage level: $0 \mathrm{~V}_{\mathrm{DC}}<\mathrm{S} 1-\mathrm{DCM}<5 \mathrm{~V}_{\mathrm{DC}}$ or $0 \mathrm{~V}_{\mathrm{DC}}<\mathrm{S} 2-\mathrm{DCM}<5 \mathrm{~V}_{\mathrm{DC}}$ STO response time $\leq 20 \mathrm{~ms}$ S1 / S2 operates until the AC motor drive stops outputting current. STO cut-off mode Input voltage level: $11 \mathrm{~V}_{\mathrm{DC}}<\mathrm{S} 1-\mathrm{DCM}<30 \mathrm{~V}_{\mathrm{DC}}$ and $11 \mathrm{~V}_{\mathrm{DC}}<\mathrm{S} 2-\mathrm{DCM}<30 \mathrm{~V}_{\mathrm{DC}}$ Power removal safety function according to EN 954-1 and IEC/EN 61508 Note: refer to user manual Chapter 17 SAFE TORQUE OFF FUNCTION for more details	
DCM		
SG+	Modbus RS-485 Note: refer to parameter group 09 of Chapter 12 DESCRIPTION OF PARAMETER SETTINGS in user manual for more information.	
SG-		
SGND		
RJ45	$\begin{array}{ll}\text { PIN 1: CAN_H } & \text { PIN 2: CAN } \\ \text { PIN 5: SG+ } & \text { PIN 6: Res }\end{array}$	N_L PIN 3, 7: SGND PIN 4: SG- erved PIN 8: +10 VS (provide KPC-CC01 power supply)

NOTE: Wire size of analog control signals: $0.75 \mathrm{~mm}^{2}(18 \mathrm{AWG})$ with shielded wire.
[This page intentionally left blank]

Chapter 7 Optional Accessories

7-1 All Brake Resistors and Brake Units Used in AC Motor Drives
7-2 Magnetic Contactor / Air Circuit Breaker and Non-Fuse Circuit Breaker
7-3 Fuse Specification Chart
7-4 AC / DC Reactors
7-5 Zero-phase Reactors
7-6 EMC Filter
7-7 EMC Shield Plate
7-8 Capacitive Filter
7-9 The Assembly of NEMA KIT
7-10 The Assembly of Fan Kit
7-11 Keypad Panel Mounting
7-12 DIN-Rail Mounting
7-13 Mounting Adapter Plate
7-14 Digital Keypad - KPC-CC01

The optional accessories listed in this chapter are available upon request. Installing additional accessories to your drive substantially improves the drive's performance. Select accessories according to your need or contact your local distributor for suggestions.

7-1 All Brake Resistors and Brake Units Used in AC Motor Drives

115V, single-phase

Model	Applicable Motor		125\% Braking Torque / 10\% ED *1							Max. Braking Torque		
	HP	kW	Braking Torque*2 (kg-m)	Braking Unit	Equivalent Resistance for each AC motor Drive	Braking Resistor for each Brake Unit			Braking Current (A)	Min. Resistor Value (Ω)	Max. Total Braking Current (A)	Max. Peak Power (kW)
				VFDB x Q'ty		Part No. *3	Amount	Usage				
VFD1A6MH11XNSXX	0.25	0.2	0.1	-	80W 750Ω	BR080W750	1	-	0.5	190.0	2	0.8
VFD2A5MH11XNSXX	0.5	0.4	0.3	-	80W 200Ω	BR080W200	1	-	1.9	95.0	4	1.5
VFD5A0MH11XNSXX	1	0.75	0.5	-	80W 200Ω	BR080W200	1	-	1.9	63.3	6	2.3

Table 7-1
230 V , single-phase

Model	Applicable Motor		125\% Braking Torque / 10\% ED *1							Max. Braking Torque		
	HP	kW	Braking Torque*2 (kg-m)	Braking Unit	Equivalent Resistance for each AC motor Drive	Braking Resistor for each Brake Unit			Braking Current (A)	Min. Resistor Value (Ω)	Max. Total Braking Current (A)	Max. Peak Power (kW)
				VFDB x Q'ty		Part No. *3	Amount	Usage				
$\begin{aligned} & \text { VFD1A6MH21XNSXX } \\ & \text { VFD1A6MH21AFSAA } \end{aligned}$	0.25	0.2	0.1	-	$80 \mathrm{~W} 750 \Omega$	BR080W750	1	-	0.5	190.0	2	0.8
$\begin{aligned} & \hline \text { VFD2A8MH21XNSXX } \\ & \text { VFD2A8MH21AFSAA } \end{aligned}$	0.5	0.4	0.3	-	$80 \mathrm{~W} 200 \Omega$	BR080W200	1	-	1.9	95.0	4	1.5
VFD5A0MH21XNSXX VFD5A0MH21AFSAA	1	0.75	0.5	-	$80 \mathrm{~W} 200 \Omega$	BR080W200	1	-	1.9	63.3	6	2.3
$\begin{aligned} & \text { VFD7A5MH21XNSXX } \\ & \text { VFD7A5MH21AFSAA } \end{aligned}$	2	1.5	1	-	$200 \mathrm{~W} 91 \Omega$	BR200W091	1	-	4.2	47.5	8	3.0
VFD11AMH21XNSXX VFD11AMH21AFSAA	3	2.2	1.5	-	$300 \mathrm{~W} 70 \Omega$	BR300W070	1	-	5.4	38.0	10	3.8

Table 7-2
230 V , three-phase

Model	Applicable Motor		125\% Braking Torque / 10\% ED *1							Max. Braking Torque		
	HP	kW	Braking Torque*2 (kg-m)	Braking Unit	Equivalent Resistance for each AC motor Drive	Braking Resistor for each Brake Unit			Braking Current (A)	Min. Resistor Value (Ω)	Max. Total Braking Current (A)	Max. Peak Power (kW)
				VFDB \times Q'ty		Part No. *3	Amount	Usage				
VFD1A6MH23XNSXX	0.25	0.2	0.1	-	$80 \mathrm{~W} 750 \Omega$	BR080W750	1	-	0.5	190.0	2	0.8
VFD2A8MH23XNSXX	0.5	0.4	0.3	-	$80 \mathrm{~W} 200 \Omega$	BR080W200	1	-	1.9	95.0	4	1.5
VFD5A0MH23XNSXX	1	0.75	0.5	-	$80 \mathrm{~W} 200 \Omega$	BR080W200	1	-	1.9	63.3	6	2.3
VFD7A5MH23XNSXX	2	1.5	1	-	$200 \mathrm{~W} 91 \Omega$	BR200W091	1	-	4.2	47.5	8	3.0
VFD11AMH23XNSXX	3	2.2	1.5	-	$300 \mathrm{~W} 70 \Omega$	BR300W070	1	-	5.4	38.0	10	3.8
VFD17AMH23XNSXX	5	3.7	2.5	-	$400 \mathrm{~W} 40 \Omega$	BR400W040	1	-	9.5	19.0	20	7.6
VFD25AMH23XNSXX	7.5	5.5	3.7	-	$1000 \mathrm{~W} 20 \Omega$	BR1K0W020	1	-	19	16.5	23	8.7
VFD33AMH23XNSXX	10	7.5	5.1	-	$1000 \mathrm{~W} 20 \Omega$	BR1K0W020	1	-	19	14.6	26	9.9
VFD49AMH23XNSXX	15	11	7.4	-	1500 W 13Ω	BR1K5W013	1	-	29	12.6	29	11.0
VFD65AMH23XNSXX	20	15	10.2	-	2000 W 8.6 ת	BR1K0W4P3	2	2 in series	44	8.3	46	17.5
VFD75AMH23ANSAA	25	18.5	14.6	-	2000 W 8 ת	BR1K0W016	2	$\begin{array}{\|c\|} \hline 2 \text { in } \\ \text { parallel } \end{array}$	47.5	8.3	46	17.5
VFD90AMH23ANSAA	30	22	17.9	-	$3000 \mathrm{~W} 6.6 \Omega$	BR1K5W3P3	2	$\begin{array}{c\|} \hline 2 \text { in } \\ \text { series } \end{array}$	57.6	5.8	66	25.1
VFD120MH23ANSAA	40	30	24.4	2015×2	4000W 5.1 ת	BR1K0W5P1	2	$\begin{gathered} \hline 2 \text { in } \\ \text { series } \end{gathered}$	74.5	4.8	79	30.1
VFD146MH23ANSAA	50	37	30.1	2022×2	4800Q 3.9 ת	BR1K2W3P9	2	$\begin{gathered} 2 \mathrm{in} \\ \text { series } \\ \hline \end{gathered}$	97.4	3.2	119	45.1

Table 7-3

460V，three－phase

Model	Applicable Motor		125\％Braking Torque／10\％ED＊1							Max．Braking Torque		
	HP	kW	Braking Torque＊2 （kg－m）	Braking Unit	Equivalent Resistance for each AC motor Drive	Braking Resistor for each Brake Unit			Braking Current （A）	Min． Resistor Value （ Ω ）	Max． Total Braking Current （A）	Max． Peak Power （kW）
				VFDB x Q＇ty		Part No．＊3	Amount	Usage				
VFD1A5MH43XNSXX VFD1A5MH43AFSAA	0.5	0.4	0.3	－	80W 750Ω	BR080W750	1	－	1	380.0	2	1.5
VFD3A0MH43XNSXX VFD3A0MH43AFSAA	1	0.75	0.5	－	80W 750Ω	BR080W750	1	－	1	190.0	4	3.0
VFD4A2MH43XNSXX VFD4A2MH43AFSAA	2	1.5	1	－	200W 360』	BR200W360	1	－	2.1	126.7	6	4.6
VFD5A7MH43XNSXX VFD5A7MH43AFSAA	3	2.2	1.5	－	300W 250』	BR300W250	1	－	3	108.6	7	5.3
VFD9A0MH43XNSXX VFD9A0MH43AFSAA	5	3.7	2.5	－	400W 150』	BR400W150	1	－	5.1	84.4	9	6.8
VFD13AMH43XNSXX VFD13AMH43AFSAA	7.5	5.5	3.7	－	1000W 75＠	BR1K0W075	1	－	10.2	50.7	15	11.4
VFD17AMH43XNSXX VFD17AMH43AFSAA	10	7.5	5.1	－	1000W 75＠	BR1K0W075	1	－	10.2	40.0	19	14.4
VFD25AMH43XNSXX VFD25AMH43AFSAA	15	11	7.4	－	1500W 43』	BR1K5W043	1	－	17.6	33.0	23	17.5
VFD32AMH43XNSXX VFD32AMH43AFSAA	20	15	10.2	－	2000W 32，	BR1K0W016	2	$\begin{gathered} \hline 2 \mathrm{in} \\ \text { series } \\ \hline \end{gathered}$	24	26.2	29	22.0
VFD38AMH43XNSXX VFD38AMH43AFSAA	25	18	12.2	－	2000W 32，	BR1K0W016	2	$\begin{gathered} 2 \mathrm{in} \\ \text { series } \end{gathered}$	24	26.2	29	22.0
VFD45AMH43XNSXX VFD45AMH43AFSAA	30	22	14.9	－	3000W 26，	BR1K5W013	2	$\begin{gathered} 2 \mathrm{in} \\ \text { series } \end{gathered}$	29	23.0	33	25.1
VFD60AMH43AFSAA VFD60AMH43ANSAA	40	30	24.4	－	3000 W 20Ω	BR1K5W040	2	$\begin{array}{\|c\|} \hline 2 \text { in } \\ \text { parallel } \end{array}$	38.0	15.2	50	38.0
VFD75AMH43AFSAA VFD75AMH43ANSAA	50	37	30.1	4045×1	4800W 15Ω	BR1K2W015	4	2 in series 2 in parallel	50.7	12.7	60	45.5
VFD91AMH43AFSAA VFD91AMH43ANSAA	60	45	36.6	4045×1	6000 W 13Ω	BR1K5W013	4	2 in series 2 in parallel	58.5	12.7	60	45.5
VFD112MH43AFSAA VFD112MH43ANSAA	75	55	44.7	4030×2	8000 W 10．2 ת	BR1K0W5P1	4	$\begin{gathered} \text { In } \\ \text { series } \end{gathered}$	74.5	9.5	80	60.8
VFD150MH43AFSAA VFD150MH43ANSAA	100	75	60.7	4045×2	9600 W 7.5Ω	BR1K2W015	4	2 in series 2 in parallel	101.3	6.3	121	91.7

Table 7－4
${ }^{* 1}$ ：Calculation for standard braking torque is $(\mathrm{kW}) \times 125 \% \times 0.8$ ；where 0.8 is the motor efficiency．
Because of the limited resistor power，the longest operation time for 10% ED is 10 seconds（ON： 10 seconds／
OFF： 90 seconds）．
＊2：Calculation for braking resistor is based on a four－pole motor（1800 rpm）．
＊3：Resistors of 400 W or lower should be fixed to the frame and at a surface temperature below $250^{\circ} \mathrm{C}$ ．
Resistors of 1000 W and above should be fixed on a surface with temperature below $350^{\circ} \mathrm{C}$ ．（If the surface temperature is higher than the temperature limit，install extra cooling system or increase the size of the resistor）

NOTE：

1．Select the resistance value，power and brake usage（ED \％）according to Delta rules．
Definition for Brake Usage ED\％

ED\％＝T1／T0 x 100 （\％）
Explanation：ED（\％）is defined to allow enough time for the brake unit and brake resistor to dissipate the heat generated by braking． When the brake resistor gets hot，the resistance increases with the temperature， and the braking torque decreases accordingly．

For safety, install a thermal overload relay (O.L) between the brake unit and the brake resistor in conjunction with the magnetic contactor (MC) before the drive for additional protection. The thermal overload relay protects the brake resistor from damage due to frequent or continuous braking. Under such circumstances, turn off the power to prevent damage to the brake resistor, brake unit and drive. Attention: Do NOT interrupt the connection of the brake resistor by switching ON / OFF the power.

- When AC Drive is equipped with a DC reactor, please read user manual for the correct wiring for the brake unit input circuit $+(\mathrm{P})$.
- DO NOT connect input circuit -(N) to the neutral point of the power system.

Fig. 7-2
2. Any damage to the drive or other equipment caused by using brake resistors and brake modules that are not provided by Delta voids the warranty.
3. Consider environmental safety factors when installing the brake resistors. If you use the minimum resistance value, consult local dealers for the power calculation.
4. When using more than two brake units, the equivalent resistor value of the parallel brake unit cannot be less than the value in the column "Minimum Resistor Value (Ω)". Read the wiring information in the brake unit user manual thoroughly prior to operation. Visit the following links to get the instruction sheets for the wiring in the brake unit:

- VFDB2015 / 2022 / 4030 / 4045 / 5055 Braking Modules Instruction Sheet https://downloadcenter.deltaww.com/downloadCenterCounter.aspx?DID=1525\&DocPath=1\&hl=en-US
- VFDB4110 / 4160 / 4185 Braking Modules Instruction Sheet https://downloadcenter.deltaww.com/downloadCenterCounter.aspx?DID=1516\&DocPath=1\&hl=en-US
- VFDB6055 / 6110 / 6160 / 6200 Braking Modules Instruction Sheet
https://downloadcenter.deltaww.com/downloadCenterCounter.aspx?DID=8592\&DocPath=1\&hl=en-US

5. The suggested value in the tables above are for general application. If the $A C$ motor drive requires frequent braking, increases the watts by two to three times.
6. Thermal Overload Relay (TOR): Choosing a thermal overload relay is based on whether its overload capacity is appropriate for the MH300. The standard braking capacity of the MH300 is 10% ED (Tripping time $=10 \mathrm{~s}$). As shown in the figure below, the thermal overload relay continuously operates for 10 seconds and it can withstand a 260% overload (Host starting).

For example, a 460 V , 15 kW MH300 has a braking current of 24 A (refer to the tables in this section), so it can use the thermal overload relay with a rated current of $10 \mathrm{~A}(10 \times 260 \%=26 A>24 A)$. The specification of each thermal relay may vary among different manufacturers, carefully read the specification before using it.

Fig. 7-3

7-2 Magnetic Contactor / Air Circuit Breaker and Non-Fuse Circuit Breaker

Magnetic Contactor (MC) and Air Circuit Breaker (ACB)

It is recommended the surrounding temperature for MC should be $\geq 60^{\circ} \mathrm{C}$ and that for ACB should be $\geq 50^{\circ} \mathrm{C}$. In the meanwhile, consider temperature derating for components with ON/OFF switch in accordance with the ambient temperature of the on-site distribution panel.

115 V models

Frame	Model	Heavy Duty Output Current (A)	Heavy Duty Input Current (A)	MC / ACB Selection (A)
A	VFD1A6MH11ANSAA	1.6	6	11
	VFD2A5MH11ANSAA	2.5	9.4	18
C	VFD5A0MH11ANSAA	5	18.8	32

Table 7-5
230 V models

Frame	Model	Heavy Duty Output Current (A)	Heavy Duty Input Current (A)	MC / ACB Selection (A)
A	VFD1A6MH21ANSAA	1.6	5.1	9
	VFD2A8MH21ANSAA	2.8	7.3	13
	VFD1A6MH23ANSAA	1.6	1.9	9
	VFD2A8MH23ANSAA	2.8	3.4	9
	VFD5A0MH23ANSAA	5	6	11
B	VFD5A0MH21ANSAA VFD5A0MH21AFSAA	5	11.2	18
	VFD1A6MH21AFSAA	1.6	5.1	9
	VFD2A8MH21AFSAA	2.8	7.3	13
	VFD7A5MH23ANSAA	7.5	9	18
C	VFD7A5MH21ANSAA VFD7A5MH21AFSAA	7.5	16.5	32
	VFD11AMH21ANSAA VFD11AMH21AFSAA	11	24.2	40
	VFD11AMH23ANSAA	11	13.2	22
	VFD17AMH23ANSAA	17	20.4	32
D	VFD25AMH23ANSAA	25	30	55
E	VFD33AMH23ANSAA	33	39.6	65
	VFD49AMH23ANSAA	49	58.8	105
F	VFD65AMH23ANSAA	65	78	130
G	VFD75AMH23ANSAA	75	77	130
	VFD90AMH23ANSAA	90	92	150
1	VFD120MH23ANSAA	120	117	185
	VFD146MH23ANSAA	146	143	225

460 V models

Frame	Model	Heavy Duty Output Current (A)	Heavy Duty Input Current (A)	MC / ACB Selection (A)
A	VFD1A5MH43ANSAA	1.5	2.1	7
	VFD3A0MH43ANSAA	3	4.2	7
B	VFD4A2MH43ANSAA VFD4A2MH43AFSAA	4.2	5.8	9
	VFD1A5MH43AFSAA	1.5	2.1	7
	VFD3A0MH43AFSAA	3	4.2	7
C	VFD5A7MH43ANSAA VFD5A7MH43AFSAA	5.7	6.3	12
	VFD7A3MH43ANSAA VFD7A3MH43AFSAA	7.3	8.1	18
	VFD9A0MH43ANSAA VFD9A0MH43AFSAA	9	9.9	18
D	VFD13AMH43ANSAA VFD13AMH43AFSAA	13	14.3	32
	VFD17AMH43ANSAA VFD17AMH43AFSAA	17.5	19.3	40
E	VFD25AMH43ANSAA VFD25AMH43AFSAA	25	27.5	50
	VFD32AMH43ANSAA VFD32AMH43AFSAA	32	35.2	65
F	VFD38AMH43ANSAA VFD38AMH43AFSAA	38	41.8	65
	VFD45AMH43ANSAA VFD43AMH43AFSAA	45	49.5	75
G	VFD60AMH43ANSAA VFD60AMH43AFSAA	60	63	100
H	VFD75AMH43ANSAA VFD75AMH43AFSAA	75	66	130
	VFD91AMH43ANSAA VFD91AMH43AFSAA	91	80	150
1	VFD112MH43ANSAA VFD112MH43AFSAA	112	110	185
	VFD150MH43ANSAA VFD150MH43AFSAA	150	147	265

Table 7-7

Non-fuse Circuit Breaker

- Comply with the UL standard: Per UL 508
- The rated current of the breaker shall be 1.6-2.6 times of the maximum rated input current of the AC motor drive. Refer to the suggested current value as shown below.
- To compare the time-current characteristic of non-fuse circuit breaker and AC motor drive's overheating protection to make sure tripping operation not to happen.

Table 7-8

230V, single-phase	
Model	The Suggested Rated Input Current of Non- fuse Circuit Breaker (A)
VFD1A6MH21ANSXX	
VFD1A6MH21ENSXX	
VFD1A6MH21AFSXX	15
VFD2A8MH21ANSXX VFD2A8MH21ENSXX VFD2A8MH21AFSXX	
VFD5A0MH21ANSXX VFD5AOMH21ENSXX VFD5A0MH21AFSXX	20
VFD7A5MH21ANSXX VFD7A5MH21ENSXX VFD7A5MH21AFSXX	30
VFD11AMH21ANSXX VFD11AMH21ENSXX VFD11AMH21AFSXX	45

Table 7-9

230V, three-phase	
Model	The Suggested Rated Input Current of Non- fuse Circuit Breaker (A)
VFD1A6MH23ANSXX VFD1A6MH23ENSXX	15
VFD2A8MH23ANSXX VFD2A8MH23ENSXX	15
VFD5A0MH23ANSXX VFD5A0MH23ENSXX	16
VFD5A0MH23ANSNA VFD5A0MH23ENSNA	16
VFD7A5MH23ANSXX VFD7A5MH23ENSXX	25
VFD11AMH23ANSXX VFD11AMH23ENSXX	40
VFD17AMH23ANSXX VFD17AMH23ENSXX	60
VFD25AMH23ANSXX VFD25AMH23ENSXX	63
VFD33AMH23ANSXX VFD33AMH23ENSXX	90

460V, three-phase	
Model	The Suggested Rated Input Current of Non-fuse Circuit Breaker (A)
VFD1A5MH43ANSXX VFD1A5MH43ENSXX VFD1A5MH43AFSXX	15
VFD3A0MH43ANSXX VFD3A0MH43ENSXX VFD3A0MH43AFSXX	
VFD3A0MH43ANSNA VFD3A0MH43ENSNA	15
VFD4A2MH43ANSXX VFD4A2MH43ENSXX VFD4A2MH43AFSXX	15
VFD5A7MH43ANSXX VFD5A7MH43ENSXX VFD5A7MH43AFSXX	15
VFD9A0MH43ANSXX VFD9A0MH43ENSXX VFD9A0MH43AFSXX	20
VFD13AMH43ANSXX VFD13AMH43ENSXX VFD13AMH43AFSXX	30
VFD17AMH43ANSXX VFD17AMH43ENSXX VFD17AMH43AFSXX	32
VFD25AMH43ANSXX VFD25AMH43ENSXX VFD25AMH43AFSXX	60

230V, three-phase	
Model	The Suggested Rated Input Current of Non- fuse Circuit Breaker (A)
VFD49AMH23ANSXX VFD49AMH23ENSXX	125
VFD65AMH23ANSXX VFD65AMH23ENSXX	160
VFD75AMH23ANSAA	175
VFD90AMH23ANSAA	200
VFD120MH23ANSAA	225
VFD146MH23ANSAA	300

460V, three-phase	
Model	The Suggested Rated nput Current of Non-fuse Circuit Breaker (A)
VFD32AMH43ANSXX VFD32AMH43ENSXX VFD32AMH43AFSXX	80
VFD38AMH43ANSXX VFD38AMH43ENSXX VFD38AMH43AFSXX	90
VFD45AMH43ANSXX VFD45AMH43ENSXX VFD45AMH43AFSXX	100
VFD60AMH43ANSAA VFD60AMH43AFSAA	125
VFD75AMH43ANSAA VFD75AMH43AFSAA	150
VFD91AMH43ANSAA VFD91AMH43AFSAA	175
VFD112MH43ANSAA VFD112MH43AFSAA	225
VFD150MH43ANSAA VFD150MH43AFSAA	300

Table 7-11

7-3 Fuse Specification Chart

- Fuse specifications lower than the table shown below are allowed.
- For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code (NEC) and any applicable local codes. Use UL classified fuses to fulfill this requirement.
- For installation in Canada, branch circuit protection must be provided in accordance with Canadian Electrical Code and any applicable provincial codes. Use UL classified fuses to fulfill this requirement.

115V, single-phase

Model	Input Current (A)		Specification of Fuse (600 VAC)	
	Normal Duty	Heavy Duty	I (A)	P/N
VFD1A6MH11ANSXX VFD1A6MH11ENSXX	6.8	6.0	7.2	Class T JJS-10
VFD2A5MH11ANSXX VFD2A5MH11ENSXX	10.1	9.4	10.8	Class T JJS-10
VFD5A0MH11ANSXX VFD5A0MH11ENSXX	20.6	18.8	22	Class T JJS-25

Table 7-12
230V, single-phase

Model	Input Current (A)		Specification of Fuse (600 VAC)	
	Normal Duty	Heavy Duty	I (A)	Normal Duty
VFD1A6MH21ANSXX VFD1A6MH21ENSXX VFD1A6MH21AFSXX	3.8	3.4	7.2	Class T JJS-10
VFD2A8MH21ANSXX VFD2A8MH21ENSXX VFD2A8MH21AFSXX	6.7	5.9	12.8	Class T JJS-15
VFD5A0MH21ANSXX VFD5A0MH21ENSXX VFD5A0MH21AFSXX	10.9	10.5	20.8	Class T JJS-20
VFD7A5MH21ANSXX VFD7A5MH21ENSXX VFD7A5MH21AFSXX	17.9	15.8	34	Class T JJS-35
VFD11AMH21ANSXX VFD11AMH21ENSXX VFD11AMH21AFSXX	26.3	23.1	50	Class T JJS-50

Table 7-13
230V, three-phase

Model	Input Current (A)		Specification of Fuse (600 VAC)	
	Normal Duty	Heavy Duty	I (A)	Normal Duty
VFD1A6MH23ANSXX VFD1A6MH23ENSXX	2.2	1.9	7.2	Class T JJS-10
VFD2A8MH23ANSXX VFD2A8MH23ENSXX	3.8	3.4	12.8	Class T JJS-15
VFD5A0MH23ANSXX VFD5A0MH23ENSXX	6.2	6.0	20.8	Class T JJS-20
VFD5A0MH23ANSNA VFD5A0MH23ENSNA	6.2	6.0	20.8	Class T JJS-20
VFD7A5MH23ANSXX VFD7A5MH23ENSXX	9.6	9.0	32	Class T JJS-35

M Model	Input Current (A)		Specification of Fuse (600 VAC)	
	Normal Duty	Heavy Duty	I (A)	Normal Duty
VFD11AMH23ANSXX VFD11AMH23ENSXX	15.0	13.2	50	Class T JJS-50
VFD17AMH23ANSXX VFD17AMH23ENSXX	23.4	20.4	78	Class T JJS-80
VFD25AMH23ANSXX VFD25AMH23ENSXX	32.4	30.0	59.4	Class T JJS-60
VFD33AMH23ANSXX VFD33AMH23ENSXX	43.2	39.6	79.2	Class T JJS-80
VFD49AMH23ANSXX VFD49AMH23ENSXX	61.2	58.8	112.2	Class T JJS-110
VFD65AMH23ANSXX VFD65AMH23ENSXX	82.8	78.0	151.8	Class T JJS-150
VFD75AMH23ANSAA	85	77	170	Class T JJS-175
VFD90AMH23ANSAA	103	92	206	Class T JJS-200
VFD120MH23ANSAA	126	117	252	Class T JJS-250
VFD146MH23ANSAA	151	143	302	Class T JJS-300

Table 7-14
460 V , three-phase

Model	Input Current (A)		Specification of Fuse (600 V AC)	
	Normal Duty	Heavy Duty	I (A)	Normal Duty
VFD1A5MH43XNSXX VFD1A5MH43AFSXX	2.0	1.7	7.2	Class T JJS-10
VFD3A0MH43XNSXX VFD3A0MH43AFSXX	3.6	3.3	13.2	Class T JJS-15
VFD3A0MH43ANSNA VFD3A0MH43ENSNA	3.6	3.3	20.8	Class T JJS-20
VFD4A2MH43XNSXX VFD4A2MH43AFSXX	5.1	4.6	18.4	Class T JJS-20
VFD5A7MH43XNSXX VFD5A7MH43AFSXX	7.2	6.3	26	Class T JJS-25
VFD9A0MH43XNSXX VFD9A0MH43AFSXX	11.6	9.9	42	Class T JJS-45
VFD13AMH43XNSXX VFD13AMH43AFSXX	16.0	14.3	31.9	Class T JJS-30
VFD17AMH43XNSXX VFD17AMH43AFSXX	21.8	19.3	43.56	Class T JJS-45
VFD25AMH43XNSXX VFD25AMH43AFSXX	30.8	27.5	61.6	Class T JJS-60
VFD32AMH43XNSXX VFD32AMH43AFSXX	39.6	35.2	79.2	Class T JJS-80
VFD38AMH43XNSXX VFD38AMH43AFSXX	45.7	41.8	91.3	Class T JJS-90
VFD45AMH43XNSXX VFD45AMH43AFSXX	53.9	49.5	107.8	Class T JJS-110
VFD60AMH43ANSAA VFD60AMH43AFSAA	72.5	63	145	Class T JJS-150
VFD75AMH43ANSAA VFD75AMH43AFSAA	77	66	154	Class T JJS-175
VFD91AMH43ANSAA VFD91AMH43AFSAA	97	80	194	Class T JJS-200

Model	Input Current (A)		Specification of Fuse (600 VAC)	
	Normal Duty	Heavy Duty	I (A)	Normal Duty
VFD112MH43ANSAA VFD112MH43AFSAA	123	110	246	Class T JJS-250
VFD150MH43ANSAA VFD150MH43AFSAA	173	147	346	Class T JJS-300

7-4 AC / DC Reactors

AC Input Reactor

Installing an AC reactor on the input side of an AC motor drive can increase line impedance, improve the power factor, reduce input current, and reduce interference generated from the motor drive. It also reduces momentary voltage surges or abnormal current spikes. For example, when the main power capacity is higher than 500 kVA , or when using a switching capacitor bank, momentary voltage and current spikes may damage the AC motor drive's internal circuit. An AC reactor on the input side of the AC motor drive protects it by suppressing surges.

Install an AC input reactor in series with the main power to the three input phases R S T as shown below:

Fig. 7-4

AC Output Reactor

When using drives in long wiring output application, ground fault (GFF), over-current (OC) and motor over-voltage (OV) often occur. GFF and OC cause errors due to the drive's self-protective mechanism; over-voltage damages motor insulation.

The excessive length of the output wires makes the grounded stray capacitance too large, increase the three-phase output common mode current, and the reflected wave of the long wires makes the motor $\mathrm{dv} / \mathrm{dt}$ and the motor terminal voltage too high. Thus, installing a reactor on the drive's output side can increase the high-frequency impedance to reduce the $\mathrm{dv} / \mathrm{dt}$ and terminal voltage to protect the motor.

Install an AC output reactor in series with the main power to the three input phases U V W as shown below:

Fig. 7-5

DC Output Reactor

A DC reactor can also improve the power factor, reduce input current, and reduce interference generated from the motor drive. A DC reactor stabilizes the DC BUS voltage. Compared to an AC input reactor, the advantages are smaller size, lower price, and lower voltage drop (lower power dissipation).

Install the DC reactor between terminals +1 and +2 . Remove the jumper before installing the DC reactor. See the figure below.
NOTE: 115V models have no DC choke.

Fig. 7-6

Reactor Selection Table

$115 \mathrm{~V}, 50-60 \mathrm{~Hz}$ / Single-phase - Normal duty

Model	Rated Current (Arms)	$\begin{array}{\|c\|} \hline \text { Saturation } \\ \text { Current } \\ \text { (Arms) } \end{array}$	$\begin{gathered} \hline \text { Input / DC } \\ \text { Reactor } \\ (\mathrm{mH}) \\ \hline \end{gathered}$	AC Input / DC Reactor		Output Reactor (mH)	AC Output Reactor	
				Delta Part \#	Weight (kg)		Delta Part \#	Weight (kg)
VFD1A6MH11ANSAA VFD1A6MH11ENSAA	1.8	2.7	3.66	DR008D0366	0.8	2.54	DR005L0254	1.5
VFD2A5MH11ANSAA VFD2A5MH11ENSAA	2.7	4.05	2.66	DR011D0266	1.2	2.54	DR005L0254	1.5
VFD5A0MH11ANSAA VFD5A0MH11ENSAA	5.5	8.25	1.17	DR025D0117	2.8	1.59	DR008L0159	2.5

Table 7-16
$115 \mathrm{~V}, 50-60 \mathrm{~Hz}$ / Single-phase - Heavy duty

Model	Rated Current (Arms)	$\begin{gathered} \text { Saturation } \\ \text { Current } \\ \text { (Arms) } \end{gathered}$	Input / DC Reactor (mH)	AC Input / DC Reactor		Output Reactor (mH)	AC Output Reactor	
				Delta Part \#	Weight (kg)		Delta Part \#	Weight (kg)
VFD1A6MH11ANSAA VFD1A6MH11ENSAA	1.6	3.2	3.66	DR008D0366	0.8	2.54	DR005L0254	1.5
VFD2A5MH11ANSAA VFD2A5MH11ENSAA	2.5	5	2.66	DR011D0266	1.2	2.54	DR005L0254	1.5
VFD5A0MH11ANSAA VFD5A0MH11ENSAA	5	9.6	1.17	DR025D0117	2.8	2.54	DR005L0254	1.5

Table 7-17

230V, 50-60 Hz / Single-phase - Normal duty

Model	Rated Current (Arms)	Saturation Current (Arms)	Input / DC Reactor (mH)	AC Input / DC Reactor		Output Reactor (mH)	AC Output Reactor	
				Delta Part \#	Weight (kg)		Delta Part \#	Weight (kg)
VFD1A6MH21ANSAA VFD1A6MH21ENSAA VFD1A6MH21AFSAA	1.8	2.7	5.857	DR005D0585	0.8	2.54	DR005L0254	1.5
VFD2A8MH21ANSAA VFD2A8MH21ENSAA VFD2A8MH21AFSAA	3.2	4.8	3.66	DR008D0366	0.8	2.54	DR005L0254	1.5
VFD5A0MH21ANSAA VFD5A0MH21ENSAA VFD5A0MH21AFSAA	5	7.5	2.66	DR011D0266	1.2	2.54	DR005L0254	1.5
VFD7A5MH21ANSAA VFD7A5MH21ENSAA VFD7A5MH21AFSAA	8.5	12.75	1.72	DR017D0172	1.9	1.15	DR011L0115	3.0
VFD11AMH21ANSAA VFD11AMH21ENSAA VFD11AMH21AFSAA	12.5	18.75	1.17	DR025D0117	2.8	0.746	DR017LP746	3.6

Table 7-18
$230 \mathrm{~V}, 50-60 \mathrm{~Hz}$ / Single-phase - Heavy duty

Model	Rated Current (Arms)	Saturation Current (Arms)	Input / DC Reactor (mH)	AC Input / DC Reactor		Output Reactor (mH)	AC Output Reactor	
				Delta Part \#	Weight (kg)		Delta Part \#	Weight (kg)
VFD1A6MH21ANSAA VFD1A6MH21ENSAA VFD1A6MH21AFSAA	1.6	3.2	5.857	DR005D0585	0.8	2.54	DR005L0254	1.5
VFD2A8MH21ANSAA VFD2A8MH21ENSAA VFD2A8MH21AFSAA	2.8	5.6	3.66	DR008D0366	0.8	2.54	DR005L0254	1.5
VFD5A0MH21ANSAA VFD5A0MH21ENSAA VFD5A0MH21AFSAA	4.8	9.6	2.66	DR011D0266	1.2	2.54	DR005L0254	1.5
VFD7A5MH21ANSAA VFD7A5MH21ENSAA VFD7A5MH21AFSAA	7.5	15	1.72	DR017D0172	1.9	1.59	DR008L0159	2.5
VFD11AMH21ANSAA VFD11AMH21ENSAA VFD11AMH21AFSAA	11	22	1.17	DR025D0117	2.8	1.15	DR011L0115	3.0

Table 7-19
$230 \mathrm{~V}, 50-60 \mathrm{~Hz}$ / Three-phase - Normal duty

Model	Rated Current (Arms)	Saturation Current (Arms)	Input / Output Reactor (mH)	AC Input Reactor		AC Output Reactor		DC (mH)	DC Reactor Delta Part \#
				Delta Part \#	Weight (kg)	Delta Part \#	Weight (kg)		
VFD1A6MH23ANSAA VFD1A6MH23ENSAA	1.8	2.7	2.536	DR005A0254	1.2	DR005L0254	1.5	5.857	DR005D0585
VFD2A8MH23ANSAA VFD2A8MH23ENSAA	3.2	4.8	2.536	DR005A0254	1.2	DR005L0254	1.5	5.857	DR005D0585
VFD5A0MH23ANSAA VFD5A0MH23ENSAA VFD5A0MH23ANSNA VFD5A0MH23ENSNA	5	7.5	2.536	DR005A0254	1.2	DR005L0254	1.5	5.857	DR005D0585
VFD7A5MH23ANSAA VFD7A5MH23ENSAA	8	12	1.585	DR008A0159	1.7	DR008L0159	2.5	3.66	DR008D0366
VFD11AMH23ANSAA VFD11AMH23ENSAA	12.5	18.75	0.746	DR017AP746	3.2	DR017LP746	3.6	2.662	DR011D0266
VFD17AMH23ANSAA VFD17AMH23ENSAA	19.5	29.25	0.507	DR025AP507	3.8	DR025LP507	5.5	1.722	DR017D0172
VFD25AMH23ANSAA VFD25AMH23ENSAA	27	40.5	0.32	DR033AP320	4.5	DR033LP320	6.5	1.172	DR025D0117
VFD33AMH23ANSAA VFD33AMH23ENSAA	36	54	0.216	DR049AP215	6.5	DR049LP215	8.6	0.851	DR033DP851
VFD49AMH23ANSAA VFD49AMH23ENSAA	51	76.5	0.216	DR049AP215	6.5	DR049LP215	8.6	0.574	DR049DP574
VFD65AMH23ANSAA VFD65AMH23ENSAA	69	103.5	0.169	DR075AP170	10	DR075LP170	14.5.	0.432	DR065DP432

Chapter 7 Optional Accessories | MH300

Model	Rated Current (Arms)	Saturation Current (Arms)	Input / Output Reactor (mH)	AC Input Reactor		AC Output Reactor		$D C$Reactor (mH)	DC Reactor Delta Part \#
				Delta Part \#	Weight (kg)	Delta Part \#	Weight (kg)		
VFD75AMH23ANSAA VFD75AMH23AFSAA	81	121.5	0.141	DR090AP141	11.5	DR090LP141	15	0.325	DR090DP325
VFD90AMH23ANSAA VFD90AMH23AFSAA	102	153	0.106	DR105AP106	11.8	DR105LP106	11.8	N/A	N/A
VFD120MH23ANSAA VFD120MH23AFSAA	134	201	0.087	DR146AP087	22	DR146LP087	22	N/A	N/A
VFD146MH23ANSAA VFD146MH23AFSAA	160	240	0.070	DR180AP070	26	DR180LP070	26	N/A	N/A

Table 7-20
230V, $50-60 \mathrm{~Hz} /$ Three-phase - Heavy duty

Model	Rated Current (Arms)	Saturation Current (Arms)	Input / Output Reactor (mH)	AC Input Reactor		AC Output Reactor		DC Reactor (mH)	DC Reactor Delta Part \#
				Delta Part \#	Weight (kg)	Delta Part \#	Weight (kg)		
VFD1A6MH23ANSAA VFD1A6MH23ENSAA	1.6	3.2	2.536	DR005A0254	1.2	DR005L0254	1.5	5.857	DR005D0585
VFD2A8MH23ANSAA VFD2A8MH23ENSAA	2.8	5.6	2.536	DR005A0254	1.2	DR005L0254	1.5	5.857	DR005D0585
VFD5A0MH23ANSAA VFD5A0MH23ENSAA VFD5A0MH23ANSNA VFD5A0MH23ENSNA	4.8	9.6	2.536	DR005A0254	1.2	DR005L0254	1.5	5.857	DR005D0585
VFD7A5MH23ANSAA VFD7A5MH23ENSAA	7.5	15	1.585	DR008A0159	1.7	DR008L0159	2.5	3.66	DR008D0366
VFD11AMH23ANSAA VFD11AMH23ENSAA	11	22	1.152	DR011A0115	2.5	DR011L0115	3.0	2.662	DR011D0266
VFD17AMH23ANSAA VFD17AMH23ENSAA	17	34	0.746	DR017AP746	3.2	DR017LP746	3.6	1.722	DR017D0172
VFD25AMH23ANSAA VFD25AMH23ENSAA	25	50	0.507	DR025AP507	3.8	DR025LP507	5.5	1.172	DR025D0117
VFD33AMH23ANSAA VFD33AMH23ENSAA	33	66	0.32	DR033AP320	4.5	DR033LP320	6.5	0.851	DR033DP851
VFD49AMH23ANSAA VFD49AMH23ENSAA	46	92	0.216	DR049AP215	6.5	DR049LP215	8.6	0.574	DR049DP574
VFD65AMH23ANSAA VFD65AMH23ENSAA	65	130	0.163	DR065AP162	8.5	DR065LP162	12	0.432	DR065DP432
VFD75AMH23ANSAA VFD75AMH23AFSAA	75	140	0.141	DR090AP141	11.5	DR090LP141	15	0.325	DR090DP325
VFD90AMH23ANSAA VFD90AMH23AFSAA	90	180	0.106	DR105AP106	11.8	DR105LP106	11.8	N/A	N/A
$\begin{aligned} & \text { VFD120MH23ANSAA } \\ & \text { VFD120MH23AFSAA } \\ & \hline \end{aligned}$	120	240	0.087	DR146AP087	22	DR146LP087	22	N/A	N/A
VFD146MH23ANSAA VFD146MH23AFSAA	146	292	0.070	DR180AP070	26	DR180LP070	26	N/A	N/A

Table 7-21
$460 \mathrm{~V}, 50-60 \mathrm{~Hz}$ / Three-phase - Normal duty

Model	Rated Current (Arms)	Saturation Current (Arms)	Input / Output Reactor (mH)	AC Input Reactor		AC Output Reactor			DC Reactor Delta Part \#
				Delta Part \#	Weight (kg)	Delta Part \#	Weight (kg)		
VFD1A5MH43ANSAA VFD1A5MH43ENSAA VFD1A5MH43AFSAA	1.8	2.7	8.102	DR003A0810	1.5	DR003L0810	1.5	18.709	DR003D1870
VFD3A0MH43ANSAA VFD3A0MH43ENSAA VFD3A0MH43AFSAA VFD3A0MH43ANSNA VFD3A0MH43ENSNA	3	4.5	6.077	DR004A0607	1.8	DR004L0607	2.5	18.709	DR003D1870
VFD4A2MH43ANSAA VFD4A2MH43ENSAA VFD4A2MH43AFSAA	4.6	6.9	4.05	DR006A0405	2.8	DR006L0405	3.0	14.031	DR004D1403

Model	Rated Current (Arms)	Saturation Current (Arms)	Input / Output Reactor (mH)	AC Input Reactor		AC Output Reactor		DC Reactor (mH)	DC Reactor Delta Part \#
				Delta Part \#	Weight (kg)	Delta Part \#	Weight (kg)		
VFD5A7MH43ANSAA VFD5A7MH43ENSAA VFD5A7MH43AFSAA	6.5	9.75	2.7	DR009A0270	3.5	DR009L0270	3.6	9.355	DR006D0935
VFD9A0MH43ANSAA VFD9A0MH43ENSAA VFD9A0MH43AFSAA	10.5	15.75	2.315	DR010A0231	4.5	DR010L0231	5.5	5.345	DR010D0534
VFD13AMH43ANSAA VFD13AMH43ENSAA VFD13AMH43AFSAA	15.7	23.55	1.174	DR018A0117	5.3	DR018L0117	6.4	3.119	DR018D0311
VFD17AMH43ANSAA VFD17AMH43ENSAA VFD17AMH43AFSAA	20.5	30.75	0.881	DR024AP881	5.8	$\begin{gathered} \text { DR024LP88 } \\ 1 \end{gathered}$	7.2	3.119	DR018D0311
VFD25AMH43ANSAA VFD25AMH43ENSAA VFD25AMH43AFSAA	28	42	0.66	DR032AP660	9	DR032LP660	11	2.338	DR024D0233
VFD32AMH43ANSAA VFD32AMH43ENSAA VFD32AMH43AFSAA	36	54	0.639	DR038AP639	9.5	DR038LP639	12	1.754	DR032D0175
VFD38AMH43ANSAA VFD38AMH43ENSAA VFD38AMH43AFSAA	41.5	62.25	0.541	DR045AP541	10.5	DR045LP541	16	1.477	DR038D0147
VFD45AMH43ANSAA VFD45AMH43ENSAA VFD45AMH43AFSAA	49	73.5	0.405	DR060AP405	11.5	DR060LP405	18	1.247	DR045D0124
VFD60AMH43ANSAA VFD60AMH43AFSAA	69	103.5	0.334	DR073AP334	25	DR073LP334	25	0.935	DR060DP935
VFD75AMH43ANSAA VFD75AMH43AFSAA	85	127.5	0.267	DR091AP267	25	DR091LP267	25	N/A	N/A
VFD91AMH43ANSAA VFD91AMH43AFSAA	108	162	0.221	DR110AP221	28	DR110LP221	28	N/A	N/A
VFD112MH43ANSAA VFD112MH43AFSAA	128	192	0.162	DR150AP162	35	DR150LP162	35	N/A	N/A
VFD150MH43ANSAA VFD150MH43AFSAA	180	270	0.135	DR180AP135	42	DR180LP135	42	N/A	N/A

Table 7-22
$460 \mathrm{~V}, 50-60 \mathrm{~Hz}$ / Three-phase - Heavy duty

Model	Rated Current (Arms)	Saturation Current (Arms)	Input / Output Reactor (mH)	AC Input Reactor		AC Output Reactor		DC Reactor (mH)	DC Reactor Delta Part \#
				Delta Part \#	Weight (kg)	Delta Part \#	Weight (kg)		
VFD1A5MH43ANSAA VFD1A5MH43ENSAA VFD1A5MH43AFSAA	1.5	3	8.102	DR003A0810	1.5	DR003L0810	1.5	18.709	DR003D1870
VFD3AOMH43ANSAA VFD3A0MH43ENSAA VFD3A0MH43AFSAA VFD3A0MH43ANSNA VFD3A0MH43ENSNA	2.7	5.4	8.102	DR003A0810	1.5	DR003L0810	1.5	18.709	DR003D1870
VFD4A2MH43ANSAA VFD4A2MH43ENSAA VFD4A2MH43AFSAA	4.2	8.4	6.077	DR004A0607	1.8	DR004L0607	2.5	14.031	DR004D1403
VFD5A7MH43ANSAA VFD5A7MH43ENSAA VFD5A7MH43AFSAA	5.5	11	4.05	DR006A0405	2.8	DR006L0405	3.0	9.355	DR006D0935
VFD9A0MH43ANSAA VFD9A0MH43ENSAA VFD9A0MH43AFSAA	9	18	2.7	DR009A0270	3.5	DR009L0270	3.6	6.236	DR009D0623
VFD13AMH43ANSAA VFD13AMH43ENSAA VFD13AMH43AFSAA	13	26	1.174	DR018A0117	5.3	DR018L0117	6.4	4.677	DR012D0467
VFD17AMH43ANSAA VFD17AMH43ENSAA VFD17AMH43AFSAA	17	34	1.174	DR018A0117	5.3	DR018L0117	6.4	3.119	DR018D0311

Model	Rated Current (Arms)	Saturation Current (Arms)	Input / Output Reactor (mH)	AC Input Reactor		AC Output Reactor		$\begin{gathered} \text { DC } \\ \text { Reactor } \\ (\mathrm{mH}) \end{gathered}$	DC Reactor Delta Part \#
				Delta Part \#	Weight (kg)	Delta Part \#	Weight (kg)		
VFD25AMH43ANSAA VFD25AMH43ENSAA VFD25AMH43AFSAA	25	50	0.881	DR024AP881	5.8	DR024LP881	7.2	2.338	DR024D0233
VFD32AMH43ANSAA VFD32AMH43ENSAA VFD32AMH43AFSAA	32	64	0.66	DR032AP660	9	DR032LP660	11	1.754	DR032D0175
VFD38AMH43ANSAA VFD38AMH43ENSAA VFD38AMH43AFSAA	38	76	0.639	DR038AP639	9.5	DR038LP639	12	1.477	DR038D0147
VFD45AMH43ANSAA VFD45AMH43ENSAA VFD45AMH43AFSAA	45	90	0.541	DR045AP541	10.5	DR045LP541	16	1.247	DR045D0124
VFD60AMH43ANSAA VFD60AMH43AFSAA	60	120	0.334	DR073AP334	25	DR073LP334	25	0.935	DR060DP935
VFD75AMH43ANSAA VFD75AMH43AFSAA	75	150	0.267	DR091AP267	25	DR091LP267	25	N/A	N/A
VFD91AMH43ANSAA VFD91AMH43AFSAA	91	182	0.221	DR110AP221	28	DR110LP221	28	N/A	N/A
VFD112MH43ANSAA VFD112MH43AFSAA	112	224	0.162	DR150AP162	35	DR150LP162	35	N/A	N/A
VFD150MH43ANSAA VFD150MH43AFSAA	150	300	0.135	DR180AP135	42	DR180LP135	42	N/A	N/A

Table 7-23

The table below shows the THDi specification when using Delta's drives to work with AC / DC reactors.

Drive Spec.	Models without Built-in DC Reactors				Models with Built-in DC Reactors		
Reactor Spec.	No AC / DC Reactor	3% Input AC Reactor	5% Input AC Reactor	4% DC Reactor	No AC/DC Reactor	3% Input AC Reactor	5% Input AC Reactor
5 th	73.3%	38.5%	30.8%	25.5%	31.16%	27.01%	25.5%
7 th	52.74%	15.3%	9.4%	18.6%	23.18%	9.54%	8.75%
11th	7.28%	7.1%	6.13%	7.14%	8.6%	4.5%	4.2%
13th	0.4%	3.75%	3.15%	0.48%	7.9%	0.22%	0.17%
THDi	91%	43.6%	34.33%	38.2%	42.28%	30.5%	28.4%

Table 7-24

NOTE:

The THDi specification listed here assumes that there is 0.8% resistance (mains electricity) before the reactors and may be slightly different from the actual THDi, depending on the installation and environmental conditions (cables, motors).

Dimensions and Specifications of Reactors
AC Input Reactor

Torque: $6.1-8.2 \mathrm{~kg}-\mathrm{cm} /$
[5.3-7.1 lb-in] /
[0.6-0.8 Nm]
Torque: $11.2-13.3 \mathrm{~kg}-\mathrm{cm} /$

[9.7-11.5 lb-in] /
[1.1-1.3 Nm]

Fig. 7-7

Delta's Part No. - AC Input Reactor	A	B	C	D1*D2	H	G1	G2	PE D
DR005A0254	100	115	65	$6 * 9$	45	60	40	M4
DR008A0159	100	115	65	$6 * 9$	45	60	40	M4
DR011A0115	130	135	95	$6 * 12$	60	80.5	60	M4
DR017AP746	130	135	100	$6 * 12$	65	80.5	60	M4

Fig. 7-8

Delta's Part No. - AC Input Reactor	A	B	C	D1*D2	H	G1	G2	PE D
DR025AP507	130	195	100	$6 * 12$	65	80.5	60	M4
DR033AP320	130	195	100	$6 * 12$	65	80.5	60	M4
DR049AP215	160	200	125	$6 * 12$	90	107	75	M4

Table 7-26

Installing Screw M6

Torque: $15.3-45.9 \mathrm{~kg}-\mathrm{cm}$
[13.3-39.8 lb-in] /
[1.5-4.5 Nm]

Fig. 7-9

Delta's Part No. - AC Input Reactor	
DR065AP162	Dimensions

Table 7-27

Fig. 7-10

Delta's Part No. -	Dimensions
AC Input Reactor	As shown in the figure above
DR075AP170	

Fig. 7-11

Delta's Part No. - AC Input Reactor	Dimensions
DR090AP141	As shown in the figure above

Table 7-29

Fig. 7-12

Delta's Part No. -	Dimensions
AC Input Reactor	As shown in the figure above
DR105AP106	Asel\|

Torque: $58.2-64.3 \mathrm{~kg}-\mathrm{cm} /$
[50.5-55.8 lb-in.] /
[5.7-6.3 Nm]

Fig. 7-13

Delta's Part No. - AC Input Reactor	Dimensions
DR146AP087	As shown in the figure above

Terminals $4 \mathrm{~mm}^{2}$
Torque: $6.1-8.2 \mathrm{~kg}-\mathrm{cm} /$
[5.3-7.1 lb-in.] /
[0.6-0.8 Nm]

Torque: $58.2-64.3 \mathrm{~kg}-\mathrm{cm} /$
[50.5-55.8 lb-in.]/
[5.7-6.3 Nm]

Fig. 7-14

Delta's Part No. -	Dimensions
AC Input Reactor	As shown in the figure above
DR180AP070	

Torque: $11.2-13.3 \mathrm{~kg}-\mathrm{cm}$
Torque: $6.1-8.2 \mathrm{~kg}-\mathrm{cm} /$

> [5.3-7.1 lb-in.] /
[0.6-0.8 Nm]

[9.7-11.5 lb-in.]/
[.7.

Screw length must not interfere with the mounting holes
Fig. 7-15

Delta's Part No. - AC Input Reactor	A	B	C	D1*D2	H	G1	G2	PE D
DR003A0810	100	125	65	$6 * 9$	43	60	40	M4
DR004A0607	100	125	65	$6 * 9$	43	60	40	M4
DR006A0405	130	135	95	$6 * 12$	60	80.5	60	M4
DR009A0270	160	160	105	$6 * 12$	75	107	75	M4
DR010A0231	160	160	115	$6 * 12$	90	107	75	M4
DR012A0202	160	160	115	$6 * 12$	90	107	75	M4
DR018A0117	160	160	115	$6 * 12$	90	107	75	M4

Table 7-33

Tightening torque F Nm

Screw length must not interfere with the mounting holes

Fig. 7-16

Delta's Part No. AC Input Reactor	A	B	C	D1*D2	H	G1	G2	PE D	F
DR024AP881	160	175	115	6*12	90	107	75	M4	$11.2-13.3 \mathrm{~kg}-\mathrm{cm} /$ [9.7-11.5 lb-in.]/ [1.1-1.3 Nm]
DR032AP660	195	200	145	6*12	115	122	85	M6	$\begin{gathered} 29.1-32.1 \mathrm{~kg}-\mathrm{cm} / \\ {[25.3-27.9 \mathrm{lb}-\mathrm{in} .] /} \\ {[2.85-3.15 \mathrm{Nm}]} \end{gathered}$
DR038AP639	190	200	145	6*12	115	122	85	M6	
DR045AP541	190	200	145	6*12	115	122	85	M6	

Table 7-34

Fig. 7-17

Delta's Part No. -	
AC Input Reactor	Dimensions
DR060AP405	As shown in the figure above

Fig. 7-18

Delta's Part No. - AC Input Reactor	A	A1	B	B1	B2	C	C1	D	D1*D2	E	G1	G2	H
DR073AP334	228	240	215	40	170	133	75	8.5	$7 * 13$	152	176	200	97
DR091AP267	228	240	245	40	195	133	90	8.8	$7 * 13$	152	176	200	97
DR110AP221	228	240	245	40	195	138	95	8.5	$7 * 13$	152	176	200	102

Table 7-36

Fig. 7-19

Delta's Part No. - AC Input Reactor	A	A1	B	B1	B2	C	C1	D	D1*D2	F	G1	G2	H	M*T
DR150AP162	240	250	245	40	200	151	105	9	$11 * 18$	160	190	220	125	$20 * 3$
DR180AP135	240	250	245	40	200	151	105	9	$11 * 18$	160	190	220	125	$20 * 3$

Table 7-37

AC Output Reactor

Torque: $6.1-8.2 \mathrm{~kg}-\mathrm{cm} /[5.3-7.1 \mathrm{lb}-\mathrm{in}] /$
[0.6-0.8 Nm]

Torque: $10.2-12.2 \mathrm{~kg}-\mathrm{cm} /[8.9-10.6 \mathrm{lb}-\mathrm{in}] /$ [1.0-1.2 Nm]

Fig. 7-20
Unit: mm

Delta's Part No. - AC Output Reactor	A	B	C	D1*D2	H	H1	H2	PE D
DR005L0254	96	110	70	$6 * 9$	42	60	40	M4
DR008L0159	120	135	96	$6^{*} 12$	60	80.5	60	M4
DR011L0115	120	135	96	$6 * 12$	60	80.5	60	M4
DR017LP746	120	135	105	$6 * 12$	65	80.5	60	M4
DR025LP507	150	160	120	$6 * 12$	88	107	75	M4
DR033LP320	150	160	120	$6 * 12$	88	107	75	M4

Table 7-38

Fig. 7-21
Unit: mm

Delta's Part No. - AC Output Reactor	A	B	C	D1*D2	H	G	G1	Q	M	PE D
DR049LP215	180	205	175	$6 * 12$	115	85	122	16	$1.2-1.4$	M4
DR065LP162	180	215	185	$6 * 12$	115	85	122	35	$2.5-3.0$	M4

Table 7-39

Fig. 7-22
Unit: mm

Delta's Part No. - AC Output Reactor	A	A1	B	B1	B2	C	C1	D1*D2	E	G1	H	M*T
DR075LP170	240	228	215	44	170	151	100	$7 * 13$	152	176	85	$20 * 3$
DR090LP141	240	228	215	44	170	151	100	$7 * 13$	152	176	85	$20 * 3$
DR105LP106	240	228	215	44	170	165	110	$7 * 13$	152	176	97	$20 * 3$
DR146LP087	240	228	240	45	202	165	110	$7 * 13$	152	176	97	$30 * 3$
DR180LP070	250	240	250	46	205	175	110	$11^{*} 18$	160	190	124	$30 * 5$

Torque: $6.1-8.2 \mathrm{~kg}-\mathrm{cm} /[5.3-7.1 \mathrm{lb}-\mathrm{in}] /$
[0.6-0.8 Nm]

Torque: $10.2-12.2 \mathrm{~kg}-\mathrm{cm} /[8.9-10.6 \mathrm{lb}-\mathrm{in}] /$ [1.0-1.2 Nm]

Fig. 7-23
Unit: mm

Delta's Part No. - AC Output Reactor	A	B	C	D1*D2	H	G1	G2	PE
DR003L0810	96	115	65	$6 * 9$	42	60	40	M4
DR004L0607	120	135	95	$6 * 12$	60	80.5	60	M4
DR006L0405	120	135	95	$6 * 12$	60	80.5	60	M4
DR009L0270	150	160	100	$6 * 12$	74	107	75	M4
DR010L0231	150	160	115	$6 * 12$	88	107	75	M4
DR012L0202	150	160	115	$6 * 12$	88	107	75	M4
DR018L0117	150	160	115	$6 * 12$	88	107	75	M4
DR024LP881	150	160	115	$6 * 12$	88	107	75	M4
DR032LP660	180	190	145	$6 * 12$	114	122	85	M6

Table 7-41

Terminals $16 \mathrm{~mm}^{2}$
Torque: $12.2-14.3 \mathrm{~kg}-\mathrm{cm} /[10.6-12.4 \mathrm{lb}-\mathrm{in}] /$

Fig. 7-24
Unit: mm

Delta's Part No. - AC Output Reactor	A	B	C	D1*D2	H	G1	G2	PE
DR038LP639	180	205	170	$6 * 12$	115	85	122	M4
DR045LP541	235	245	150	$7 * 13$	85	$/$	176	M6

Table 7-42

Fig. 7-25
Unit: mm

Delta's Part No. - AC Output Reactor	A	A1	B	B1	B2	C	C1	D1*D2	E	G1	H	M*T
DR060LP405	240	228	215	44	170	163	110	$7 * 13$	152	176	97	$20 * 3$
DR073LP334	250	235	235	44	186	174	115	$11 * 18$	160	190	124	$20 * 3$
DR091LP267	250	240	235	44	186	174	115	$11 * 18$	160	190	124	$20 * 3$
DR110LP221	270	260	245	50	192	175	115	$10 * 18$	176	200	106	$20 * 3$

Table 7-43

Fig. 7-26
Unit: mm

Delta's Part No. - AC Output Reactor	A	A1	B	B1	B2	C	C1	D1*D2	E	G1	G2	H	M*T
DR150LP162	270	264	265	51	208	192	125	$10 * 18$	176	200	$/$	118	$30 * 3$
DR180LP135	300	295	310	55	246	195	125	$11 * 22$	200	230	190	142	$30 * 3$

Table 7-44

DC Reactor

Fig. 7-27
Unit: mm

Delta's Part No. - DC Reactor	A	B	C	D	E	R
DR005D0585	79	78	112	64 ± 2	56 ± 2	$9.5^{*} 5.5$
DR008D0366	79	78	112	64 ± 2	56 ± 2	$9.5^{*} 5.5$
DR011D0266	79	92	112	64 ± 2	69.5 ± 2	$9.5 * 5.5$
DR017D0172	79	112	112	64 ± 2	89.5 ± 2	$9.5^{*} 5.5$
DR025D0117	99	105	128	79 ± 2	82.5 ± 2	$9.5 * 5.5$
DR033DP851	117	110	156	95 ± 2	87 ± 2	$10 * 6.5$
DR049DP574	117	120	157	95 ± 2	97 ± 2	$10 * 6.5$
DR065DP432	117	140	157	95 ± 2	116.5 ± 2	$10 * 6.5$
DR075DP391	136	135	178	111 ± 2	112 ± 2	$10 * 6.5$
DR090DP325	136	135	179	111 ± 2	112 ± 2	$10 * 6.5$
DR003D1870	79	78	112	64 ± 2	56 ± 2	$9.5^{*} 5.5$

Delta's Part No. - DC Reactor	A	B	C	D	E	R
DR004D1403	79	92	112	64 ± 2	69.5 ± 2	$9.5^{*} 5.5$
DR006D0935	79	92	112	64 ± 2	69.5 ± 2	$9.5^{*} 5.5$
DR009D0623	79	112	112	64 ± 2	89.5 ± 2	$9.5^{*} 5.5$
DR010D0534	99	93	128	79 ± 2	70 ± 2	$9.5^{\star} 5.5$
DR012D0467	99	105	128	79 ± 2	82.5 ± 2	$9.5^{*} 5.5$
DR018D0311	117	110	144	95 ± 2	87 ± 2	$10^{*} 6.5$
DR024D0233	117	120	144	95 ± 2	97 ± 2	$10 * 6.5$
DR032D0175	117	140	157	95 ± 2	116.5 ± 2	$10 * 6.5$
DR038D0147	136	135	172	111 ± 2	112 ± 2	$10 * 6.5$
DR045D0124	136	135	173	111 ± 2	112 ± 2	$10 * 6.5$
DR060DP935	136	150	173	111 ± 2	127 ± 2	$10 * 6.5$

Table 7-45

Length of the Motor Cable

1. Leakage current affects the motor and remedies

Due to larger parasitic capacitances in longer motor cables, longer cables increase the leakage current. This can activate the over-current protection and display the incorrect current. In the worst case, it can damage the drive.
If more than one motor is connected to the AC motor drive, the total motor cable length is the sum of the cable length from the AC motor drive to each motor.
For 460 V models AC motor drives, when an overload relay is installed between the drive and the motor to protect the motor from overheating, the connecting cable must be shorter than 50 m .
However, the overload relay could still malfunction. To prevent this, install an AC output reactor (optional) to the drive and/or lower the carrier frequency setting (Pr.00-17).
2. Surge voltage affects the motor and remedies

When a PWM signal from an AC motor drive drives the motor, the motor terminals can easily experience surge voltages (dv/dt) due to IGBT switching and cable capacitance. When the motor cable is very long (especially for the 460 V models), surge voltages (dv/dt) may reduce motor insulation quality. To prevent this, follow the rules listed below.
a. Use a motor with enhanced insulation.
b. Connect an output reactor (optional) to the output terminals of the AC motor drive.
c. Reduce the motor cable length to the values in the table below.

The suggested motor shielded cable length in the following table complies with IEC 60034-17, which is suitable for motors with a rated voltage $\leq 500 \mathrm{~V}_{\mathrm{AC}}$ and with an insulation level of $\geq 1.35 \mathrm{kV}_{\mathrm{p}-\mathrm{p}}$

115V Single-phase Model	Rated Current in Normal Duty (Arms)	Without Output AC reactor		With Output AC Reactor	
		Shielded Cable (meter)	Non-shielded cable (meter)	Shielded Cable (meter)	Non-shielded cable (meter)
VFD1A6MH11ANSAA VFD1A6MH11ENSAA	1.8	50	75	75	115
VFD2A5MH11ANSAA VFD2A5MH11ENSAA	2.7				
VFD5A0MH11ANSAA VFD5A0MH11ENSAA	5.5				

Table 7-46

230 V Single-phase Model	Rated Current in Normal Duty (Arms)	Without Output AC reactor		With Output AC Reactor	
		Shielded Cable (meter)	Non-shielded cable (meter)	Shielded Cable (meter)	Non-shielded cable (meter)
VFD1A6MH21ANSAA VFD1A6MH21ENSAA VFD1A6MH21AFSAA	1.8	50	75	75	115
$\begin{aligned} & \text { VFD2A8MH21ANSAA } \\ & \text { VFD2A8MH21ENSAA } \\ & \text { VFD2A8MH21AFSAA } \end{aligned}$	3.2				
VFD5A0MH21ANSAA VFD5A0MH21ENSAA VFD5A0MH21AFSAA	5				
VFD7A5MH21ANSAA VFD7A5MH21ENSAA VFD7A5MH21AFSAA	8.5				
$\begin{aligned} & \text { VFD11AMH21ANSAA } \\ & \text { VFD11AMH21ENSAA } \\ & \text { VFD11AMH21AFSAA } \end{aligned}$	12.5				

Table 7-47

230V Three-phase Model	Rated Current in Normal Duty (Arms)	Without Output AC reactor		With Output AC Reactor	
		Shielded Cable (meter)	Non-shielded cable (meter)	Shielded Cable (meter)	Non-shielded cable (meter)
VFD1A6MH23ANSAA VFD1A6MH23ENSAA	1.8	50	75	75	115
VFD2A8MH23ANSAA VFD2A8MH23ENSAA	3.2				
VFD5A0MH23ANSAA VFD5A0MH23ENSAA VFD5A0MH23ANSNA VFD5A0MH23ENSNA	5				
VFD7A5MH23ANSAA VFD7A5MH23ENSAA	8				
VFD11AMH23ANSAA VFD11AMH23ENSAA	12.5				
VFD17AMH23ANSAA VFD17AMH23ENSAA	19.5				
VFD25AMH23ANSAA VFD25AMH23ENSAA	27				
VFD33AMH23ANSAA VFD33AMH23ENSAA	36	100	150	150	225
VFD49AMH23ANSAA VFD49AMH23ENSAA	51				
VFD65AMH23ANSAA VFD65AMH23ENSAA	69				
VFD75AMH23ANSAA VFD75AMH23AFSAA	81				
VFD90AMH23ANSAA VFD90AMH23AFSAA	102				

230V Three-phase Model	Rated Current in Normal Duty (Arms)	Without Output AC reactor		With Output AC Reactor	
		Shielded Cable (meter)	Non-shielded cable (meter)	Shielded Cable (meter)	Non-shielded cable (meter)
VFD120MH23ANSAA VFD120MH23AFSAA	134	100	150	150	225
VFD146MH23ANSAA VFD146MH23AFSAA	160				

Table 7-48

460V Three-phase Model	Rated Current in Normal Duty (Arms)	Without Output AC reactor		With Output AC Reactor	
		Shielded Cable (meter)	Non-shielded cable (meter)	Shielded Cable (meter)	Non-shielded cable (meter)
VFD1A5MH43ANSAA VFD1A5MH43ENSAA VFD1A5MH43AFSAA	1.8				
VFD3A0MH43ANSAA VFD3A0MH43ENSAA VFD3A0MH43AFSAA VFD3A0MH43ANSNA VFD3A0MH43ENSNA	3	35	50	50	90
VFD4A2MH43ANSAA VFD4A2MH43ENSAA VFD4A2MH43AFSAA	4.6				
$\begin{aligned} & \text { VFD5A7MH43ANSAA } \\ & \text { VFD5A7MH43ENSAA } \\ & \text { VFD5A7MH43AFSAA } \end{aligned}$	6.5				
VFD9A0MH43ANSAA VFD9A0MH43ENSAA VFD9A0MH43AFSAA	10.5	50	75	75	115
VFD13AMH43ANSAA VFD13AMH43ENSAA VFD13AMH43AFSAA	15.7				
VFD17AMH43ANSAA VFD17AMH43ENSAA VFD17AMH43AFSAA	20.5	100	150	150	225
VFD25AMH43ANSAA VFD25AMH43ENSAA VFD25AMH43AFSAA	28				
VFD32AMH43ANSAA VFD32AMH43ENSAA VFD32AMH43AFSAA	36				
VFD38AMH43ANSAA VFD38AMH43ENSAA VFD38AMH43AFSAA	41.5				
VFD45AMH43ANSAA VFD45AMH43ENSAA VFD45AMH43AFSAA	49				
VFD60AMH43ANSAA VFD60AMH43AFSAA	69				
VFD75AMH43ANSAA VFD75AMH43AFSAA	85				
VFD91AMH43ANSAA VFD91AMH43AFSAA	108				
VFD112MH43ANSAA VFD112MH43AFSAA	128				
VFD150MH43ANSAA VFD150MH43AFSAA	180				

Table 7-49

7-5 Zero-phase Reactors

You can also suppress interference by installing a zero-phase reactor at the main input or the motor output of the drive, depending on the location of the interference. Delta provides two types of zero-phase reactors to solve interference problems.
A. Casing with mechanical fixed part

This solution is for the main input / motor output side and can withstand higher loading, and be used at higher frequencies. You can get higher impedance by increasing the number of turns.

Fig. 7-28
Unit: mm

Model	A	B	C	D	E	F	G (Ø)	Purpose
RF008X00A	99	73	36.5	29	56.5	86	5.5	To use with motor cable
RF004X00A	110	87.5	43.5	36	53	96	5.5	To use with motor cable

Table 7-50

Fig. 7-29
Unit: mm

Model	A	B	C	D	E	F	G (()	Purpose
RF002X00A	200	172.5	90	78	55.5	184	5.5	To use with motor cable

Table 7-51
B. Casing without mechanical fixed part

This solution has higher performance: high initial magnetic permeability, high saturation induction density, low iron loss and perfect temperature characteristic. If the zero-phase reactor does not need to be fixed mechanically, use this solution.

Fig. 7-30
Unit: mm

Model	A	B	C	Purpose
RF008X00N	22.5	43.1	18.5	To use with motor cable
RF004X00N	36.3	53.5	23.4	To use with motor cable
RF410X00N	108.1	70	30.3	To use with motor cable

Table 7-52

Installation

During installation, pass the cable through at least one zero-phase reactor.
Use a suitable cable type (insulation class and wire section) so that the cable passes easily through the zero-phase reactor. Do not pass the grounding cable through the zero-phase reactor; only pass the motor wire through the zero-phase reactor.

With longer motor cables the zero-phase reactor can effectively reduce interference at the motor output. Install the zero-phase reactor as close to the output of the drive as possible. Figure A shows the installation diagram for a single turn zero-phase reactor. If the wire diameter allows several turns, Figure B shows the installation of a multi-turn zero-phase reactor. The more turns, the better the noise suppression effect.

Figure A: Single turn wiring diagram for a shielding wire with a zero-phase reactor

Figure B: Multi-turn zero-phase reactor

Installation notes

Install the zero-phase reactor at the output terminal of the frequency converter ($\mathrm{U}, \mathrm{V}, \mathrm{W}$). After the zero-phase reactor is installed, it reduces the electromagnetic radiation and load stress emitted by the wiring of the frequency converter. The number of zero-phase reactors required for the drive depends on the wiring length and the drive voltage.

The normal operating temperature of the zero-phase reactor should be lower than $85^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$. However, when the zero-phase reactor is saturated, its temperature may exceed $85^{\circ} \mathrm{C}$ ($176^{\circ} \mathrm{F}$). In this case, increase the number of zero-phase reactors to avoid saturation. The following are reasons that might cause saturation of the zero-phase reactors: the drive wiring is too long, the drive has several sets of loads, the wiring is in parallel, or the drive uses high capacitance wiring. If the temperature of the zero-phase reactor exceeds $85^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$ during the operation of the drive, increase the number of zero-phase reactors.

Recommended maximum wiring gauge when installing zero-phase reactor

Model	Recommended wiring gauge	
RF008X00A or RF008X00N	≤ 8 AWG	$\leq 8.37 \mathrm{~mm}^{2}$
RF004X00A or RF004X00N	≤ 4 AWG	$\leq 21.15 \mathrm{~mm}^{2}$
RF002X00A or RF410X00N	≤ 2 AWG	$\leq 33.62 \mathrm{~mm}^{2}$

Table 7-53

Zero-phase Reactor for Signal Cable

To solve interference problems between signal cables and electric devices, install a zero-phase reactor on the signal cable. Install it on the signal cable which is the source of the interference to suppress the noise for a better signal. The model names and dimensions are listed in the table below.

Fig. 7-31
Unit: mm

Model	A	B	C	Purpose
RF026X00N	10.7	17.8	8.0	To use with signal cable
RF020X00N	17.5	27.3	12.3	To use with signal cable

7-6 EMC Filter

Use EMC filters to enhance the EMC performance for the environment and machines and to comply with EMC regulations, further reducing EMC problems. If you purchase a motor drive without a built-in EMC filter, it is recommended that you select the EMC filters as shown below. For some motor drive models, you need to work with zero-phase reactors to be compliant with EMC regulations. Refer to the table and figure below for the recommended model, setting method, and maximum motor cable length of the EMC filter and zero-phase reactor.

Frame A-F

Frame	$\begin{gathered} \text { Model } \\ \text { - MH300 } \end{gathered}$	Input Current (A)	Model -EMC Filter	Model -Zero-phase reactor	Conducted emission						Radiated emission		
					C1-motor cable length-30m			C2-motor cable length-100m			C2-motor cable length-100m		
					Position to place zero-phase reactor								
				DELTA	*1	*2	*3	*1	*2	*3	*1	*2	*3
A	VFD1A6MH11ANSAA	6.8	EMF11AM21A	RF008X00A or RF008X00N					NA				
	VFD2A5MH11ANSAA	10.1	EMF11AM21A	RF008X00A or RF008X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD1A6MH21ANSAA	5.8	EMF11AM21A	RF008X00A or RF008X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD2A8MH21ANSAA	8.3	EMF10AM23A	RF008X00A or RF008X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD1A6MH23ANSAA	2.2	EMF10AM23A	RF008X00A or RF008X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD2A8MH23ANSAA	3.8	EMF10AM23A	RF008X00A or RF008X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD5A0MH23ANSAA	6.2	EMF10AM23A	RF008X00A or RF008X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD1A5MH43ANSAA	2.5	EMF6A0M43A	RF008X00A or RF008X00N			\checkmark		NA				\checkmark
	VFD3A0MH43ANSAA	4.6	EMF6A0M43A	RF008X00A or RF008X00N			\checkmark		NA				\checkmark
B	VFD5A0MH21ANSAA	11.7	EMF11AM21A	RF008X00A or RF008X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD7A5MH23ANSAA	9.6	EMF10AM23A	RF008X00A or RF008X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD4A2MH43ANSAA	6.4	EMF6A0M43A	RF008X00A or RF008X00N			\checkmark		NA				\checkmark
C	VFD5A0MH11ANSAA	20.6	EMF27AM21B	RF008X00A or RF008X00N					NA				
	VFD7A5MH21ANSAA	18.5	EMF27AM21B	RF008X00A or RF008X00N			\checkmark		NA				\checkmark
	VFD11AMH21ANSAA	27.5	EMF27AM21B	RF008X00A or RF008X00N			\checkmark		NA				\checkmark
	VFD11AMH23ANSAA	15	EMF24AM23B	RF008X00A or RF008X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD17AMH23ANSAA	23.4	EMF24AM23B	RF008X00A or RF008X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD5A7MH43ANSAA	7.2	EMF12AM43B	RF008X00A or RF008X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD9A0MH43ANSAA	11.6	EMF12AM43B	RF008X00A or RF008X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
D	VFD25AMH23ANSAA	32.4	EMF33AM23B	RF004X00A or RF004X00N	\checkmark	\checkmark			NA		\checkmark	\checkmark	
	VFD13AMH43ANSAA	16.0	EMF23AM43B	RF004X00A or RF004X00N	\checkmark	\checkmark	\checkmark		NA		\checkmark	\checkmark	\checkmark
	VFD17AMH43ANSAA	21.8	EMF23AM43B	RF004X00A or RF004X00N	\checkmark	\checkmark	\checkmark		NA		\checkmark	\checkmark	\checkmark
E	VFD33AMH23ANSAA	43.2	B84143D0050R127	RF004X00A or RF004X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD49AMH23ANSAA	61.2	B84143D0075R127	RF004X00A or RF004X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD25AMH43ANSAA	30.8	B84143D0050R127	RF004X00A or RF004X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD32AMH43ANSAA	39.6	B84143D0050R127	RF004X00A or RF004X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
F	VFD65AMH23ANSAA	82.8	B84143D0090R127	RF004X00A or RF004X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD38AMH43ANSAA	45.7	B84143D0050R127	RF004X00A or RF004X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark
	VFD45AMH43ANSAA	53.9	B84143D0075R127	RF004X00A or RF004X00N		\checkmark	\checkmark		NA			\checkmark	\checkmark

Table 7-55

Frame G

Frame	Model - MH300	Input Current (A)	Model -EMC Filter	Model -Zero-phase reactor	Conducted emission									Radiated emission C2-motor cable length-100m		
					$\begin{gathered} \hline \text { C1-motor } \\ \text { cable } \\ \text { length-10 } \mathrm{m} \end{gathered}$			$\begin{gathered} \text { C2-motor } \\ \text { cable length- } \\ 30 \mathrm{~m} \end{gathered}$			$\begin{gathered} \text { C3-motor } \\ \text { cable } \\ \text { length- } 100 \mathrm{~m} \end{gathered}$					
					Position to place zero-phase reactor											
				DELTA	*1	*2	* 3	*1	*2	*3	*1	*2	*3	*1	*2	*3
G	VFD75AMH23ANSAA	85	B84143A0120R105	$\begin{aligned} & \text { RF008X00A or } \\ & \text { RF004X00N } \\ & \hline \end{aligned}$		\checkmark	\checkmark			\checkmark					\checkmark	\checkmark
	VFD90AMH23ANSAA	103	B84143A0120R105	$\begin{aligned} & \text { RF008X00A or } \\ & \text { RF004X00N } \end{aligned}$		\checkmark	\checkmark			\checkmark					\checkmark	\checkmark
	VFD60AMH43ANSAA	72.5	B84143A0120R105	$\begin{aligned} & \text { RF008X00A or } \\ & \text { RF004X00N } \\ & \hline \end{aligned}$	\checkmark		\checkmark			\checkmark						

Table 7-56
Frame H-I

Frame	$\begin{gathered} \text { Model } \\ \text { - MH300 } \end{gathered}$	Input Current (A)	Model -EMC Filter	Model -Zero-phase reactor	Conducted emission									Radiated emission C2-motor cable length-100m		
					$\begin{array}{\|c} \hline \text { C1-motor } \\ \text { cable } \\ \text { length-10 } \mathrm{m} \\ \hline \end{array}$			C2-motorcable length-20 m			$\begin{gathered} \text { C3-motor } \\ \text { cable } \\ \text { length- } 100 \mathrm{~m} \\ \hline \end{gathered}$					
					Position to place zero-phase reactor											
				DELTA	*1	*2	*3	*1	*2	*3	*1	*2	*3	*1	*2	*3
H	VFD75AMH43ANSAA	77	B84143D0150R127	$\begin{aligned} & \text { RF002X00A or } \\ & \text { RF410X00N } \end{aligned}$	\checkmark		\checkmark			\checkmark					\checkmark	\checkmark
	VFD91AMH43ANSAA	97	B84143D0150R127	$\begin{aligned} & \text { RF002X00A or } \\ & \text { RF410X00N } \\ & \hline \end{aligned}$	\checkmark		\checkmark			\checkmark					\checkmark	\checkmark
1	VFD120MH23ANSAA	126	B84143D0200R127	$\begin{aligned} & \text { RF002X00A or } \\ & \text { RF410X00N } \\ & \hline \end{aligned}$	\checkmark	\checkmark	\checkmark								\checkmark	\checkmark
	VFD146MH23ANSAA	151	B84143D0200R127	$\begin{aligned} & \text { RF002X00A or } \\ & \text { RF410X00N } \end{aligned}$	\checkmark	\checkmark	\checkmark								\checkmark	\checkmark
	VFD112MH43ANSAA	123	B84143D0200R127	$\begin{aligned} & \text { RF002X00A or } \\ & \text { RF410X00N } \end{aligned}$		\checkmark										
	VFD150MH43ANSAA	173	B84143D0200R127	$\begin{aligned} & \text { RF002X00A or } \\ & \text { RF410X00N } \\ & \hline \end{aligned}$		\checkmark										

Table 7-57
Zero-phase reactor installation position diagram:

*1 Install at the cable between the power supply and the EMC filter
*2 Install at the cable between the EMC filter and the drive
*3 Install at the cable between the drive and the motor

Dimension

EMF11AM21A, EMF10AM23A, EMF6A0M43A

Screw	Torque
$M 5$ * 2	$16-20 \mathrm{~kg}-\mathrm{cm} /(13.9-17.3 \mathrm{lb}-\mathrm{in}) /.(1.56-1.96 \mathrm{Nm})$
$M 4$ * 2	$14-16 \mathrm{~kg}-\mathrm{cm} /(12.2-13.8 \mathrm{lb}-\mathrm{in}) /.(1.38-1.56 \mathrm{Nm})$

Table 7-58

Fig. 7-32
Unit: mm [inch]
EMF27AM21B, EMF24AM23B, EMF33AM23B, EMF12AM43B, EMF23AM43B

Screw	Torque
M5 * 4	$16-20 \mathrm{~kg}-\mathrm{cm} /(13.9-17.3 \mathrm{lb}-\mathrm{in}) /.(1.56-1.96 \mathrm{Nm})$

Table 7-59

Fig. 7-33
Unit: mm [inch]

Fig. 7-34
Unit: mm

TDK B84143D0075R127 (75A), TDK B84143D0090R127 (90A)

Fig. 7-35
Unit: mm

Fig. 7-36
Unit: mm
TDK B84143D0120R127 (120A), B84143D0150R127 (150A)

Fig. 7-37
Unit: mm

Fig. 7-38
Unit: mm
can choose the corresponding shielded cable length according to the required noise emission and electromagnetic interference class.

Drives with Built-in EMC		Rated Current (HD)	$\begin{gathered} \text { Comply with EMC } \\ \text { (IEC 61800-3) Class C3 } \end{gathered}$		$\begin{gathered} \text { Comply with EMC } \\ \text { (IEC 61800-3) Class C2 } \end{gathered}$	
Frame	Models		Shielded cable length	Fc	Shielded cable length	Fc
B	VFD1A5MH43AFSAA	1.5	30 m	4 kHz	20 m	4 kHz
	VFD3A0MH43AFSAA	3				
	VFD4A2MH43AFSAA	4.2				
	VFD1A6MH21AFSAA	1.6				
	VFD2A8MH21AFSAA	2.8				
	VFD5A0MH21AFSAA	5				
C	VFD5A7MH43AFSAA	5.7				
	VFD9A0MH43AFSAA	9				
	VFD7A5MH21AFSAA	7.5				
	VFD11AMH21AFSAA	11				
D	VFD13AMH43AFSAA	13				
	VFD17AMH43AFSAA	17.5				
E	VFD25AMH43AFSAA	25				
	VFD32AMH43AFSAA	32				
F	VFD38AMH43AFSAA	38				
	VFD45AMH43AFSAA	45				
G	VFD60AMH43AFSAA	60				
H	VFD75AMH43AFSAA	75	N/A	N/A	10 m	4 kHz
	VFD91AMH43AFSAA	91				
1	VFD112MH43AFSAA	112				
	VFD150MH43AFSAA	150				

Table 7-60

7-7 EMC Shield Plate

EMC Shield Plate (for using with shielded cable)
Frame Model of EMC Shield Plate

Fig. 7-43

Frame | Model of EMC Shield Plate |
| :--- |
| F |
| GKM-EPF |
| MKM-EPG |
| M |
| MKM-EPH |

Installation

(Take Frame A model as an example)

1. As shown on the right figures, fix the iron plate on the $A C$ motor drive.

Frame	Screw	Torque
A	M3.5	$6-8 \mathrm{~kg}-\mathrm{cm} /[5.2-6.9 \mathrm{lb}-\mathrm{in}] /.[0.59-0.78 \mathrm{Nm}]$
B	M4	$6-8 \mathrm{~kg}-\mathrm{cm} /[5.2-6.9 \mathrm{lb}-\mathrm{in}$.$] / [0.59-0.78 Nm]$
C	M4	$6-8 \mathrm{~kg}-\mathrm{cm} /[5.2-6.9 \mathrm{lb}-\mathrm{in}$.$] / [0.59-0.78 Nm]$
D	M3	$4-6 \mathrm{~kg}-\mathrm{cm} /[3.5-5.2 \mathrm{lb}-\mathrm{in}] /.[0.39-0.59 \mathrm{Nm}]$
E	M3	$4-6 \mathrm{~kg}-\mathrm{cm} /[3.5-5.2 \mathrm{lb}-\mathrm{in}$.$] / [0.39-0.59 Nm]$
F	M4	$6-8 \mathrm{~kg}-\mathrm{cm} /[5.2-6.9 \mathrm{lb}-\mathrm{in}$.$] / [0.59-0.78 Nm]$
G	M5	$10-12 \mathrm{~kg}-\mathrm{cm} /(8.7-10.4 \mathrm{lb}-\mathrm{in}) /(0.98-1.18 \mathrm{Nm})$
H	M4 x 2	$14-16 \mathrm{~kg}-\mathrm{cm} /(12.1-13.9 \mathrm{lb}-\mathrm{in}) /(1.38-1.56 \mathrm{Nm})$
	M8 x 2	$75-85 \mathrm{~kg}-\mathrm{cm} /(65.0-73.7 \mathrm{lb}-\mathrm{in}) /(7.35-8.33 \mathrm{Nm})$
1	M4 x 3	$14-16 \mathrm{~kg}-\mathrm{cm} /(12.1-13.9 \mathrm{lb}-\mathrm{in}) /(1.38-1.56 \mathrm{Nm})$
	M8 x 2	175-185kg-cm / (151.9-160.6lb-in) / (17.16-18.14Nm)

Fig. 7-48
Table 7-61
2. After selecting a suitable R-clip according to the wire gauge used, fix the R -clip on the shield plate.

Screw	Torque
M 4	$6-8 \mathrm{~kg}-\mathrm{cm} /(5.2-6.9 \mathrm{lb}-\mathrm{in}) /.(0.59-0.78 \mathrm{Nm})$

Table 7-62

Fig. 7-49

Dimensions of EMC Shield Plate

Fig. 7-50

Model	Dimensions of Shield Plate mm (inch)	
	a	b
MKM-EPA	$69.3(2.73)$	$80.0(3.15)$
MKM-EPB	$67.7(2.67)$	$79.7(3.14)$
MKM-EPC	$78.0(3.07)$	$91.0(3.58)$
MKM-EPD	$103.4(4.07)$	$97.0(3.82)$
MKM-EPE	$124.3(4.89)$	$77.4(3.05)$
MKM-EPF	$168.0(6.61)$	$80.0(3.15)$
MKM-EPG	$243.5(9.59)$	$154.9(6.10)$
MKM-EPH	$262.0(10.31)$	$201.9(7.95)$
MKM-EPI	$304.0(11.97)$	$260.7(10.26)$

Table 7-63

Recommended wire mounting method

Frame	Model of EMC Shield Plate	Reference Figure	
A	MKM-EPA		Fig. 7-51
B	MKM-EPB		Fig. 7-52
C	MKM-EPC		Fig. 7-53
D	MKM-EPD		Fig. 7-54
E	MKM-EPE		Fig. 7-55
F	MKM-EPF		Fig. 7-56

Frame	Model of EMC Shield Plate	Reference Figure
G	MKM-EPG	Fig. 7-57
H	MKM-EPH	Fig. 7-58
1	MKM-EPI	

7-8 Capacitive Filter

Capacitor Filter is a simple filter accessory, installed to provide simple filtering and eliminating interference.

Installation diagram

Fig. 7-60

Capacitive filter and drive wiring figure

Fig. 7-61

Specifications

Model	Capacitance	Temperature range
CXY101-43A	Cx: $1 \mu \mathrm{~F} \pm 20 \%$	$-40-+85^{\circ} \mathrm{C}$

Dimensions

Unit: mm [inch]

Fig. 7-62

7-9 The Assembly of NEMA KIT

NEMA KIT is in compliance with protection level NEMA 1 / UL Type 1

Frame A (A1, A2, A3, A4)

NEMA KIT model: MKMH-CBA

Fig. 7-63

Frame B

NEMA KIT model: MKMH-CBB

Unit: mm [inch]

Fig. 7-64

Frame C
NEMA KIT model: MKMH-CBC

Unit: mm [inch]

$\$ 22.5[0.89)$
$\phi 27.8$ [$\varnothing 1.09$]

Fig. 7-65

Frame D

NEMA KIT model: MKMH-CBD

Fig. 7-66

Frame E
NEMA KIT model: MKMH-CBE

Fig. 7-67

Frame F

NEMA KIT model: MKMH-CBF

Fig. 7-68

Frame G

NEMA KIT model: MKMH-CBG
Unit: mm [inch]

Fig. 7-69

Frame H

NEMA KIT model: MKMH-CBH

Fig. 7-70

Frame I

NEMA KIT model: MKMH-CBI
Unit: mm [inch]

Fig. 7-71

Installation

Recommended screw torque: M3: 4-6 kg-cm / (3.5-5.2 lb-in.) / (0.39-0.59 Nm)
M3.5: $4-6 \mathrm{~kg}-\mathrm{cm} /(3.5-5.2 \mathrm{lb}-\mathrm{in}) /.(0.39-0.59 \mathrm{Nm})$
M4: 6-8 kg-cm / (5.2-6.9 lb-in.) / (0.59-0.78 Nm)
Frame A

Fig. 7-72
2)

Fig. 7-73
4)

Fig. 7-75
5)

Fig. 7-76

Frame B-F

Fig. 7-77

Fig. 7-79
2)

Fig. 7-78
4)

Fig. 7-80
5)

Fig. 7-81

Frame G
Recommended screw torque: M5: 10-12 kg-cm / (8.7-10.4 lb-in.) / (0.98-1.18 Nm)

Frame H-I

1) Fix the NEMA KIT on the drive

Frame H

M4*2: 14-16 kg-cm / (12.1-13.9 lb-in.) /
(1.38-1.56 Nm)

M8*2: 75-85 kg-cm / ($65.0-73.7 \mathrm{lb}-\mathrm{in}.) /$
(7.35-8.33 Nm)

Frame I
M4*3: $14-16 \mathrm{~kg}-\mathrm{cm} /(12.1-13.9 \mathrm{lb}-\mathrm{in}$.
(1.38-1.56 Nm)

M8*2: 175-185 kg-cm / (151.9-160.6 lb-in.) /
(17.16-18.14 Nm)

Fig. 7-86
2) Put the front cover of the drive back.

Fig. 7-87
3) Fix the NEMA KIT cover.

M5*2: 24-26 kg-cm / (20.8-22.6 lb-in.) / (2.35-2.55 Nm)

Fig. 7-88

7-10 The Assembly of Fan Kit

Fan Removal

Frame A-F

1. As shown in the figure on the right, press the tabs on both sides of the fan to remove it.

Fig. 7-92
2. Disconnect the power cable when removing the fan.

Fig. 7-93

Frame G

1. As shown in the figure on the right, pry open the cover by using slotted screwdriver.

Fig. 7-94
2. Remove the screws which are at the bottom.

Fig. 7-95
3. You have to remove the fan cables before taking out the fans. When installing the fans, you should let the labels of fans face inside. Torque: $10-12 \mathrm{~kg}-\mathrm{cm} /(8.7-10.4 \mathrm{lb}-\mathrm{in}$. (1.0-1.2 Nm)

Fig. 7-96

Frame H-I

1. As shown in the figure on the right, remove four screws.
Torque: $24-26 \mathrm{~kg}-\mathrm{cm} /(20.8-22.6 \mathrm{lb}-\mathrm{in}$. (2.35-2.55 Nm)

Fig. 7-97
2. Remove the fan module by rotating it.

Fig. 7-98
3. Press the clip of fan connector, and then remove the fan connector.

Fig. 7-99

7-11 Keypad Panel Mounting

KPMH-LC01

Method 1: Direct installation on a plate
Unit: mm [inch]

Torque:
$8-9 \mathrm{~kg}-\mathrm{cm} /$ (6.94-7.81 lb-in.)/ (0.78-0.88 Nm)

Fig. 7-100

Method 2: Mounting through a plate
Unit: mm [inch]

Fig. 7-101

NOTE:

1. Thickness $=1.2$ [0.05] or $2.0[0.08]$
2. The extension cable models and cable length specifications are in the following table.

Unit: mm (inch)

Models	Extension Cable Length
CBC-K3FT	$900(35.43)$
CBC-K5FT	$1500(59.05)$
CBC-K7FT	$2100[82.68]$
CBC-K10FT	$3000[118.11]$
CBC-K16FT	$4900[192.91]$

7-12 DIN-Rail Mounting

MKM-DRB

Applicable for Frame A and B

Screw	Torque
	$8-10 \mathrm{~kg}-\mathrm{cm}$
$\mathrm{M} 4 \times 2 \mathrm{pcs}$	$(6.9-8.7 \mathrm{lb}-\mathrm{in})$.
	$(0.7-98 \mathrm{Nm})$

Table 7-66

Fig. 7-102

MKM-DRC

Applicable for Frame C

Screw	Torque
M5 $\times 4 \mathrm{pcs}$	$10-12 \mathrm{~kg}-\mathrm{cm}$
	$(8.7-10.4 \mathrm{lb}-\mathrm{in})$.
	$(0.98-1.18 \mathrm{Nmp}$

Fig. 7-103

Installation

Model	Screw	Torque
MKM-DRB	M4 \times P0.7 $\times 2 \mathrm{pcs}$	$14-16 \mathrm{~kg}-\mathrm{cm}$
		$(12.2-13.8 \mathrm{lb}-\mathrm{in})$.
		$(1.38-1.56 \mathrm{Nm})$
MKM-DRC	M5 $\times \mathrm{P} 0.8 \times 4 \mathrm{pcs}$	$18-20 \mathrm{~kg}-\mathrm{cm}$
		$(15.7-17.3 \mathrm{lb}-\mathrm{in})$.
	$(1.77-1.96 \mathrm{Nm})$	

Table 7-68

MKM-DRB: for Frame A and B MKM-DRC: for Frame C

Fig. 7-104

7-13 Mounting Adapter Plate

This mounting adapter accessory is to change the wiring method for the MS300 / MH300 series to provide flexible installation. It changes the wiring from the main input/motor output at the bottom to the main input from the top and the motor output from the bottom. However, when you use the mounting adapter plate to change the drive from the VFD-E / VFD-EL series to the MS300 / MH300 series, you can still use the original wiring method. The following table shows the correspondences.

Models Series	MS300 / MH300	VFD-E	VFD-EL
MKM-MAPB	Frame A-B	Frame A	Frame A
MKM-MAPC	Frame C	Frame B	Frame B

Table 7-69

MKM-MAPB

Applicable for frame A and B
Unit: mm [inch]

Fig. 7-105

MKM-MAPC

Applicable for frame C
Unit: mm [inch]

Fig. 7-106

Installation

Frame A and B

Screw	Torque
M4	$14-16 \mathrm{~kg}-\mathrm{cm} /(12.4-13.9 \mathrm{lb}-\mathrm{in}) /.(1.37-1.57 \mathrm{Nm})$
M5	$16-20 \mathrm{~kg}-\mathrm{cm} /(13.9-17.4 \mathrm{lb}-\mathrm{in}) /.(1.57-1.96 \mathrm{Nm})$

Table 7-70

Fig. 7-107

Frame C

Screw	Torque
M4	$14-16 \mathrm{~kg}-\mathrm{cm} /(12.4-13.9 \mathrm{lb}-\mathrm{in}) /.(1.37-1.57 \mathrm{Nm})$
M5	$16-20 \mathrm{~kg}-\mathrm{cm} /(13.9-17.4 \mathrm{lb}-\mathrm{in}) /.(1.57-1.96 \mathrm{Nm})$

Table 7-71

Fig. 7-108

7-14 Digital Keypad - KPC-CC01

7-14-1 Digital Keypad KPC-CC01

The default communication protocol for MH300 is ASCII 9600, 7, N, 2, but the communication protocol for KPC-CC01 is RTU 19200, 8, N, 2. Therefore, you must set MH300 communication parameters so as to connect with the digital keypad KPC-CC01. The setting steps are as follows:

1. Set Pr.09-00 communication address $=1$
2. Set Pr.09-01 COM1 transmission speed (Baud rate) $=19.2 \mathrm{Kbps}$
3. Set Pr.09-04 COM1 communication protocol $=13: 8 \mathrm{~N} 2$ (RTU)

Communication Interface
RJ45 (socket), RS-485 interface
Communication protocol:
RTU19200, 8, N, 2
Installation Method

1. The embedded type can be installed flat on the surface of the control box. The front cover is waterproof.
2. Buy a MKC-KPPK model for wall mounting or embedded mounting. Its protection level is IP66.
3. The maximum RJ45 extension lead is 5 m (16ft).
4. This keypad can only be used on Delta's motor drive C2000, CH2000, CP2000, MS300, MH300, ME300 series, and so on.

Keypad Function Description

Key	Descriptions
RUN	Start Operation Key 1. Only valid when the source of operation command is the keypad. 2. Operates the AC motor drive by the function setting. The RUN LED will be ON. 3. Can be pressed repeatedly at the stop process.
	Stop Command Key. 1. This key has the highest priority when the command is from the keypad. 2. When it receives the STOP command, regardless of whether the AC motor drive is in operation or stop status, the AC motor drive executes the "STOP" command. RESET
3. Use the RESET key to reset the drive after a fault occurs. 4. If you cannot reset after the error: a. The condition which triggers the fault is not cleared. After you clear the condition, you can then reset the fault. b. The drive is in fault status when powered on. After you clear the condition, restart and then you can reset the fault.	
FWD	Operation Direction Key 1. Only controls the operation direction, NOT the drive activation. FWD: forward, REV: reverse.
2. Refer to the LED descriptions for more details.	

Key	Descriptions
ESC	ESC Key Leaves the current menu and returns to the previous menu; also functions as a return key or cancel key in a sub-menu.
MENU	Returns to the main menu. Menu commands: 1. Parameter Setup 7. Language Setup 13. Start-up Menu 2. Quick Start 8. Time Setup 14. Main Page 3. Application Selection List 9. Keypad Locked 15. PC Link 4. Changed List 10. PLC Function 16. Start Wizard 5. Copy Parameter 11. Copy PLC 6. Fault Record 12. Display Setup
	Direction: Left / Right / Up / Down 1. In the numeric value setting mode, moves the cursor and changes the numeric value. 2. In the menu / text selection mode, selects an item.
F1 F2 F3 F4	Function Key 1. The functions keys have defaults and can also be use-defined. The defaults for F1 and F4 work with the function list below. For example, F1 is the JOG function, and F4 is a speed setting key for adding / deleting user-defined parameters. 2. Other functions must be defined using TPEditor. Download TPEditor software at Delta website. Select TPEditor version 1.60 or later. Refer to the installation instruction for TPEditor in Section 7-14-3.
HAND	HAND Key 1. Use this key to select HAND mode. In this mode, the drive's parameter settings for frequency command source is Pr.00-30, and that for operation command source is Pr.00-31. 2. Press the HAND key at STOP, then the setting switches to the HAND frequency source and HAND operation source. 3. Press HAND key at RUN, and it stops the AC motor drive first (displays AHSP warning), and switches to HAND frequency source and HAND operation source. 4. Successful mode switching for the KPC-CC01 displays HAND mode on the screen.
AUT0	AUTO Key 1. The default of the drive is AUTO mode. 2. Use this key to select AUTO mode. In this mode, the drive's parameter settings for frequency command source is Pr.00-20, and that for operation command is Pr.00-21. 3. Press the AUTO key at STOP, then the setting switches to the AUTO frequency source and AUTO operation source. 4. Press AUTO key at RUN, and it stops the AC motor drive first (displays AHSP warning), and switches to AUTO frequency source and AUTO operation source. 5. Successful mode switching for the KPC-CC01 displays AUTO mode on the screen

Table 7-72

NOTE:

The defaults for the frequency command and operation command source of HAND / AUTO mode are both from the keypad.

LED Function Descriptions

LED	Descriptions	
STOP RESET	Steady ON: STOP indicator for the AC motor drive. Blinking: the drive is in standby. Steady OFF: the drive does not execute the "STOP" command.	
FWD REV	Operation Direction LED 1. Green light: the drive is running forward. 2. Red light: the drive is running backward. 3. Flashing light: the drive is changing direction. Operation Direction LED under Torque Mode 1. Green light: when the torque command ≥ 0, and the motor is running forward. 2. Red light: when the torque command <0, and the motor is running backward. 3. Flashing light: when the torque command <0, and the motor is running forward.	
CANopen-RUN	RUN LED:	
	LED status	Condition
	OFF	CANopen at initial state No LED
	Flashing	CANopen at pre-operation state
	Single flash	CANopen at stopped state
	ON	CANopen at operational state $\text { ERR } \longrightarrow \mathbb{C A N} \text { RUN }$
CANopen-ERR	ERR LED:	
	LED status	Condition
	OFF	No failure
	Single flash	At least one packet of CANopen is in failure
	Double flash	Node guarding failure or heartbeat message failure
	Triple flash	Synchronization failure
	ON	Bus off ERR CAN \longrightarrow RUN

7-14-2 Functions of Digital Keypad KPC-CC01

POWERON

Start-up

Skip to main page after 3 sec .

1) The default Start-up page is Delta Logo. (Default 1 and 2)
2) User can customize their start-up page through the edited function. (Need to purchase the optional accessories.)

MENU

MENU

१1:Pr Setup
2:Quick Start
3:App Sel List
\longrightarrow The top line of LCD displays the status of drive. After you select the main menu, the start-up screen displays in the user-defined format. The page on the left shows the Delta default setting.
\longrightarrow The bottom line of LCD displays time and JOG.

1: Parameter Setup
2: Quick Start
3: Application Selection List
4: Changed List
5: Copy Parameter

6: Fault Record
7: Language Setup
8: Time Setup
9: Keypad Locked
10: PLC Function

11: Copy PLC
12: Display Setup
13: Start-up Menu
14: Main Page
15: PC Link
16: Start Wizard

NOTE:

1. Start-up screen can only display pictures, not animation.
2. When powered ON, it displays the start-up screen then the main screen. The main screen displays Delta's default setting F/H/A/U. You can set the display order with Pr.00-03 (Start-up display). When you select the U screen, use the left / right keys to switch between the items, and set the display order for the U screen with Pr.00-04 (User display).

Display Icon

- : present setting
∇ : Scroll down the page for more options
Press $\stackrel{\Delta}{v}$ for more options
- : show complete sentence

Press < $>$ for complete information

Display item

MENU

1: Parameter Setup	6: Fault Record
2: Quick Start	7: Language Setup
3: Application Selection List	8: Time Setup
4: Changed List	9: Keypad Locked
5: Copy Parameter	10: PLC Function

11: Copy PLC
12: Display Setup
13: Start-up Menu
14: Main Page
15: PC Link
16: Start Wizard

1. Parameter Setup

Prsetup	For example: Setup source for the master frequency command.	
- 00:SYSTEM PARAM 01:BASIC PARAME 02:DIGITAL IN/		In the Group 00 Motor Drive Parameter, use Up / Down keys to select parameter 20: Auto Frequency Command.
	00- SYSTEM PARAME 20: Source of F 21: Source of OP 22: Stop Methods	Press ENTER to go to this parameter's setting menu.
parameter group. Once you select a parameter	$\frac{00-20}{2}$	Use the Up / Down keys to choose a setting. For example: choose 2 Analogue Input, and then press ENTER key.
group, press to go into that group.	$\begin{aligned} & \frac{00-20}{} \text { END } \\ & \text { Analog Input } \end{aligned}$	After you press ENTER, END is displayed which means that the parameter setting is done.
	$\frac{00-20 \quad \text { Pr. lock }}{2}$Analog Input 0-8ADO	NOTE: When parameter lock / password protection function is enabled, it displays "Pr. lock" on the upper right corner of the keypad. The parameter cannot be written or is protected by the password under this circumstances.

2. Quick Start

Quick Start	Description:	
マ 1: V/F Mode	1. VF Mode	
2: VFPG Mode	V/F Mode : P00-07	1. Parameter protection password input
3: SVC Mode	01:Password De ${ }^{\text {² }}$	(Pr.00-07)
	02:Password Inp 03:Control Meth	2. Parameter protection password setting (Pr.00-08)
Press ENitr to select.		3. Speed control mode (Pr.00-11)
Quick Start:	01: Password Decoder	4. Load selection (Pr.00-16)
1. VIF Mode		5. Carrier frequency (Pr.00-17)
2. SVC Mode	00-07	6. Master frequency command sourceSource selection of the PID target(AUTO)(Pr.00-20)
3. My Mode	0	
	Password Decoder 0~65535	7. Operation command source (AUTO) (Pr.00-21)
		8. Stop method (Pr.00-22)
		9. Digital keypad STOP function (Pr.00-32) 10. Max. operation frequency (Pr.01-00)
		11. Output frequency of motor 1 (Pr.01-01)
		12. Output voltage of motor 1 (Pr.01-02)
		13. Mid-point frequency 1 of motor 1 (Pr.01-03)
		14. Min-point voltage 1 of motor 1 (Pr.01-04)
		15. Mid-point frequency 2 of motor 1 (Pr.01-05)
		16. Mid-point voltage 2 of motor 1 (Pr.01-06)
		17. Min. output frequency of motor 1 (Pr.01-07)
		18. Min. output voltage of motor 1 (Pr.01-08)
		19. Output frequency upper limit (Pr.01-10)
		20. Output frequency lower limit (Pr.01-11)
		21. Acceleration time 1 (Pr.01-12)
		22. Deceleration time 1 (Pr.01-13)
		23. Over-voltage stall prevention (Pr.06-01)
		24. Derating protection (Pr.06-55)

	2. SVC Mode 01: Password Decoder	25. Software brake chopper action level (Pr.07-00) 26. Speed tracking during start-up (Pr.0712) 27. Emergency stop (EF) \& force to stop selection (Pr.07-20) 28. Torque command filter time (Pr.07-24) 29. Slip compensation filter time (Pr.07-25) 30. Torque compensation gain (Pr.07-26) 31. Slip compensation gain (Pr.07-27) Items 1. Parameter protection password input (Pr.00-07) 2. Parameter protection password setting (Pr.00-08) 3. Speed control mode (Pr.00-11) 4. Load selection (Pr.00-16) 5. Carrier frequency (Pr.00-17) 6. Master frequency command source (AUTO) / Source selection of the PID target (Pr.00-20) 7. Operation command source (AUTO) (Pr.00-21) 8. Stop method (Pr.00-22) 9. Digital keypad STOP function (Pr.00-32) 10. Max. operation frequency (Pr.01-00) 11. Output frequency of motor 1 (Pr.01-01) 12. Output voltage of motor 1 (Pr.01-02) 13. Min. output frequency of motor 1 (Pr.01-07) 14. Min. output voltage of motor 1 (Pr.01-08) 15. Output frequency upper limit (Pr.01-10) 16. Output frequency lower limit (Pr.01-11) 17. Acceleration time 1 (Pr.01-12) 18. Deceleration time 1 (Pr.01-13) 19. Full-load current for induction motor 1 (Pr.05-01) 20. Rated power for induction motor 1 (Pr.05-02) 21. Rated speed for induction motor 1 (Pr.05-03) 22. Number of poles for induction motor 1 (Pr.05-04) 23. No-load current for induction motor 1 (Pr.05-05) 24. Over-voltage stall prevention (Pr.06-01) 25. Over-current stall prevention during acceleration (Pr.06-03) 26. Derating protection (Pr.06-55) 27. Software brake chopper action level (Pr.07-00) 28. Emergency stop (EF) \& force to stop selection (Pr.07-20) 29. Torque command filter time (Pr.07-24) 30. Slip compensation filter time (Pr.07-25) 31. Slip compensation gain (Pr.07-27)

3. Application Selection List

App Sel List
No Function
List PrNum $=000$
ENTER or ESC

This function enables you to select application and its parameters sets.
Example:
In the menu content, select 3: Application Selection List

> MENU

1:Pr Setup
2:Quick Start

- 3 :App Sel List

Press ENTER to go into the Application Selection List

Press ENTER to enter the application selection screen, and the selected application industry is "Fan".

Choose 0: Normal duty or 1: Heavy duty according to your needs, then press ENTER.
4. Changed List

5. Copy Parameter

Copy Pr	Four groups of parameters are available to copy	
002:FileName01	Example: parameter saved in the motor drive.	
003:FileName02	Copy pr	
Press ${ }^{\text {ENTER }}$ to go to 001- 004 content storage	-001:Manual_001 002: 003:	1. Go to Copy Parameter 2. Select the parameter group to copy and press ENTER.
	001>	
	1: keypad->VFD	1. Select 1: keypad \rightarrow VFD
	2: VFD->Keypad	2. Press ENTER to go to the "keypad \rightarrow VFD" screen.
	001> P08-09	
	keypad->VFD	Begin copying parameters until it is done.
	68\%	
	Copy pr	
	- 001:Manual_001 002:	After copying is done, the keypad automatically returns to this screen.
	Example: parameter saved in the keypad.	
	Copy pr	
	\checkmark 001:	1. Go to Copy parameter
	002:	2. Select the parameter group to copy and press ENTER.
	003:	
	001>	
	1: keypad->VFD 2:VFD->Keypad	Press ENTER to go to the "VFD \rightarrow keypad" screen.

6. Fault Record

Fault record	Able to store 6 error codes (Keypad V1.02 and previous versions) Able to store 30 error codes (Keypad V1.20 and later version) 1:oL	The most recent error record shows as the first record. Choose an error record to
see details such as date, time, frequency, current, voltage, and DC bus voltage)		

7．Language Setup

Language
1：English
2：繁體中文
3：简体中文

Use the Up／Down keys to select the language，and then press ENTER．

The language setting option is displayed in the language of your choice． Language setting options：
1．English
5．Русский
9．Polski
2．繁體中文
6．Español
10．Deutsch
3．简体中文
7．Português
11．Italiano
4．Türkçe
8．Français
12．Svenska

8．Time Setup

	Time Setup	Press the Up／Down keys to set the Year
Time setup	$2014 / 01 / 01$	
2009＇／01／01	$00 \text { :óo : } 00$	
Use the Left／Right keys to select Year，Month，Day， Hour，Minute or Second to change．	Time Setup	
	$\begin{aligned} & 2014 / 01 / 01 \\ & 00: 00: 00 \end{aligned}$	Press the Up／Down keys to set the Month
	Time Setup	
	$\begin{aligned} & 2014 / 01 / 01 \\ & 00: 00: 00 \end{aligned}$	Press the Up／Down keys to set the Day
	Time Setup	
	2014／01／01 21：00：00	Press the Up／Down keys to set the Hour

	Time Setup	
	$\begin{aligned} & 2014 / 01 / 01 \\ & 21: 12: 00 \end{aligned}$	Press the Up / Down keys to set the Minute
	Time Setup	
	$\begin{aligned} & 2014 / 01 / 01 \\ & 21: 12: 14 \end{aligned}$	Press the Up / Down keys to set the Second
	Time Setup	
	END	Press ENTER to confirm the Time Setup.
	NOTE:	
	Limitation: The about 6 minutes saved for 7 day	rocess for the keypad super capacitor finishes in e digital keypad is removed, the time setting is days, you must reset the time.

9. Keypad Locked

Keypad Lock	Lock the keypad
Press ENTER to Lock Key	Use this function to lock the keypad. The main screen does not display "keypad locked" when the keypad is locked; however, it displays the message "Press ESC 3 sec to UnLock Key" when you press any key.
$\text { Press }{ }^{\text {ENTER }} \text { to lock }$	AUTO AF 60.00 Hz H 0.00 Hz u 540.0 Vdc Jog $14: 35.58$ When the keypad is locked, the main screen does not indicate the lock status.
	Keypad Lock
	Press ESC 3 sec to UnLock Key Press any key on the keypad; a message displays as shown on the left.
	 If you do not press the ESC key, the keypad automatically returns to this screen.
	Keypad Lock
	Press ESC 3 sec to UnLock Key Press any key on the keypad, a message displays as shown on the left.
	AUTO QF 60.00 Hz H 0.00 Hz u 540.0 Vdc Jog $14: 35.58$ Press ESC for 3 seconds to unlock the keypad; the keypad returns to this screen. All keys on the keypad is functional.
	All keys on the keypad is functional. Turning the power off and on does not lock the keypad.

10. PLC Function

PLC	When activating and stopping the PLC function (choosing 2: PLC Run or 3: PLC Stop), the PLC status displays on main screen (Delta default setting).	
1.Disable 2.PLC Run 3.PLC Stop	PLC 1.Disable 2.PLC Run 3.PLC Stop	Choose option 2: PLC Run to enable the PLC function.
Press the Up /Down keys to select a PLC function, and then press ENTER.	PLCIRUN AUTO ثF 60.00 Hz H 0.00 Hz u 540.0 Vdc JOG $14: 35: 58$	The default on the main screen displays the PLC / RUN status message.
	PLC 1.Disable 2.PLC Run 3.PLC Stop	Choose option 3: PLC Stop to disable the PLC function.
		The default on the main screen displays the PLC / STOP status message.
	PLCISTOP AUTO Warning PLFF Function defect	If the PLC program is not available in the control board, the PLFF warning displays when you choose option 2 or 3. In this case, choose option 1: Disable to clear PLFF warning.

11. Copy PLC

Copy PLC	Four groups of parameters are available to copy. The steps are shown in the example below.	
- 001:Manual_001		
002:FileName01	Example: PLC program saved in the motor drive.	
003:FileName02	Copy PLC	
	1 001:Manual_001 002: 003:	1. Go to Copy PLC 2. Select the PLC program to copy and press ENTER.
	001>	
	$\begin{aligned} & \text { 1: keypad->VFD } \\ & \text { 2: VFD->Keypad } \end{aligned}$	1. Select 1: Keypad \rightarrow VFD 2. Press ENTER to go to the "Keypad \rightarrow VFD" screen.
	001> 4170	
	keypad->VFD	Begin copying the PLC program until it is done.
	34\%	

12. Display setup

13. Start-up

14. Main page

	1. Default page
\checkmark 1.Default 2. User Define	aUTO $\Delta \mathrm{F}$ 60.00 Hz H 0.00 Hz u 540.0 Vdc 14:25:56
Default screen and editable screen are available. Press ENTER to select.	F 60.00 Hz >>> H >>> A >>> U (options rotate) 2. User Define: an optional accessory is required (TPEditor \& USB / RS-485 Communication Interface-IFD6530) to design your own main screen. If the editor accessory is not installed, the User Define option displays a blank screen. USB/RS-485 Communication Interface-IFD6530 Refer to Chapter 07 Optional Accessories for more details. TPEditor Download TPEditor software at Delta website. Select TPEditor version 1.60 or later. Refer to the installation instruction for TPEditor in Section 7-14-3.

15. PC Link

16. TPEditor: This function enables you to connect the keypad to a computer then download and edit user-defined screens.

Press ENTER to go to Waiting to connect to PC screen.

In TPEditor, from the Communication menu, choose Write to HMI.

In the Confirm message box, click YES.

The software starts downloading screens to edit to the KPC-CC01.

Download completed
2. VFDSoft: this function enables you to link to the VFDSoft then upload the parameters 1-4 you have saved in the KPC-CC01.

NOTE:

If the Operation System (OS) of your computer is Windows 10, right-click the VFDSoft icon to enter the Property. Then, click the Compatibility tab and select the Run this program as an administrator checkbox. (as shown in the red frames in the figure below)

In Parameter Manager, from the Table menu, choose Read from KPC-CC01.

Choose the correct communication port and click OK.

Before using the user-defined start-up screen and user-defined main screen, you must preset the start-up screen and the main screen as user- defined. If you do not download the user-defined screen to the KPC-CC01, the start-up screen and the main screen are blank.
16. Start Wizard (applicable for MH300 firmware V1.04 and later)
16.1 New drive start-up setting process

When a new drive is powered on, it directly enters the Start Wizard. There are three modes in the start-up setting process: Start Wizard, Exit Wizard and Test Mode.
(1) Start Wizard:

- In Start Wizard, you can set drive's parameters such as Calendar, Maximum operation frequency and Maximum voltage...; refer to Table 1 for setting items and orders.
- The drive exits Start Wizard when you finish the complete setting process, and will not enter this process when rebooting the power.
(2) Exit Wizard:
- Exit the Start Wizard mode. The drive does not go to Start Wizard when rebooting the power.
(3) Test Mode:
- This function is hidden to avoid misuse. Refer to the following flow chart to enter Test Mode.
- When the drive is in Test mode, it temporarily disables the Start Wizard and Exit Wizard mode.
- The Test Mode is designed for distributors / suppliers / clients to manage and operate the drive before shipping it out.
- If you enter Test Mode without exiting the Start Wizard process, the drive will begin with the new drive start-up process upon next power on.

Setting Order	Description	Parameter
1	Calendar	N / A
2	Output frequency of motor 1	$01-01$
3	Output voltage of motor 1	$01-02$
4	Full-load current for induction motor 1 (A)	$05-01$
5	Number of poles for induction motor 1	$05-04$
6	Rated speed for induction motor 1 (rpm)	$05-03$
7	Minimum output frequency of motor 1	$01-07$
8	Maximum operation frequency	$01-00$
9	Master frequency command source (AUTO) / Source selection of the PID target	$00-20$
10	Operation command source (AUTO)	$00-21$
11	V/F curve selection	$01-43$
12	Acceleration time 1	$01-12$
13	Deceleration time 1	$01-13$

Table 7-75 Start Wizard setting items

Flow chart for the above setting process:

16.2 Re-start Start Wizard

NOTE:

The "16: Start Wizard" on the menu is to set whether the screen shows start wizard when powering on the drive.

Other displays

When a fault occurs, the screen display shows the fault or warning:

1. Press the STOP / RESET key to reset the fault code. If there is no response, contact your local distributor or return the unit to the factory. To view the fault DC bus voltage, output current and output voltage, press MENU and then choose 6: Fault Record.
2. After resetting, if the screen returns to the main page and shows no fault after you press ESC, the fault is cleared.
3. When the fault or warning message appears, the LED backlight blinks until you clear the fault or warning.

Optional accessory: RJ45 Extension Lead for Digital Keypad

Part No.	Description					
CBC-K3FT	RJ45 extension lead, 3 feet (approximately 0.9 m)					
CBC-K5FT	RJ45 extension lead, 5 feet (approximately 1.5 m)					
CBC-K7FT	RJ45 extension lead, 7 feet (approximately 2.1 m)					
CBC-K10FT	RJ45 extension lead, 10 feet (approximately 3 m)					
CBC-K16FT	RJ45 extension lead, 16 feet (approximately 4.9 m)					
Table 7-76						

NOTE:

When you need communication cables, buy non-shielded, 24 AWG, four-wire twisted pair, 100 ohms communication cables.

7-14-3 TPEditor Installation Instruction

TPEditor can edit up to 256 HMI (Human-Machine Interface) pages with a total storage capacity of 256 KB . Each page can include 50 normal objects and 10 communication objects.

1) TPEditor: Setup \& Basic Functions
1. Run TPEditor version 1.60 or later by double-clicking the program icon.

문

TPEditor 1.60
2. On the File menu, click New. In the New project dialog box, for Set Device Type, select DELTA VFD-C Inverter. For TP Type, select VFD-C KeyPad. For File Name, enter TPEO and then click OK.

Mew Project	
HMI \Longrightarrow PLC	
Set Devioe Type	
DELTA VFD-C Inverter	\checkmark
TP Type	
VFD-C KeyPad	\checkmark
File Name	
TPED	
OK	Canol

3. The editor displays the Design window. On the Edit menu, click Add a New Page. You can also right-click on the TP page in the upper right corner of the Design window and click Add to add one more page(s) to edit.

4. Edit the start-up screen.
5. Add static text. Open a blank page (step 3), then on the toolbar click A to display the Static Text Setting dialog box, and then enter the static text.

6. Add a static bitmap. Open a blank page (step 3), then on the toolbar, click . Double-click the blank page to display the Static Bitmap Setting dialog box where you can choose the bitmap.

You can only use images in the BMP format. Click the image and then click Open to show the image in the page.
7. Add a geometric bitmap. There are 11 kinds of geometric bitmaps to choose. Open a new blank page (step 3), then on the toolbar click the geometric bitmap icon that you need \square $\square \square O O$ OQ © © In the page, drag the geometric bitmap and enlarge it to the size that you need.
8. When you finish editing the start-up screen, on the Communication menu, click Input User Defined Keypad Starting Screen.

9. Download the new setting: On the Tool menu, click Communication. Set up the communication port and speed for the IFD6530. There are three speeds available: 9600 bps, 19200 bps, and 38400 bps
10. On the Communication menu, click Input User Defined Keypad Starting Screen.

| Communication Setting |
| :--- | :--- |
| TP Station Address 1
 PCCOM Port COM3
 Baud Rate 960
 OK Cancel |

11. The Editor displays a message asking you to confirm the new setting. Before you click OK, on the keypad, go to MENU, select PC LINK, press ENTER and then wait for few seconds. Then click YES in the confirmation dialog box to start downloading.

2) Edit the Main Page and Download to the Keypad
1. In the Editor, add a page to edit. On the Edit menu, click Add a New Page. You can also right-click on the TP page in the upper right corner of the Design window and click Add to add one more pages to edit. This keypad currently supports up to 256 pages.

2. In the bottom right-hand corner of the Editor, click the page number to edit, or on the View menu, click HMI Page to start editing the main page. As shown in the picture above, the following objects are available. From left to right they are: Static Text, ASCII Display, Static Bitmap, Scale, Bar Graph, Button, Clock Display, Multi-state bit map, Units, Numeric Input, the 11 geometric bitmaps, and lines of different widths. Use the same steps to add Static Text, Static Bitmap, and geometric bitmaps as for the start-up page.
3. Add a numeric/ASCII display. On the toolbar, click the Numeric/ASCII button. In the page, double-click the object to specify the Refer Device, Frame Setting, Font Setting and Alignment.

Click [...]. In the Refer Device dialog box, choose the VFD communication port that you need. If you want to read the output frequency (H), set the Absolute Addr. to 2202. For other values, refer to the ACMD Modbus Comm Address List (see Pr.09-04 in Chapter 12 Group 09 Communication Parameters).

4. Scale Setting. On the toolbar, click $\frac{\overline{T-1} 2}{2}$ to add a scale. You can also edit the Scale Setting in the Property Window on the right-hand side of your computer screen.

Scale Setting			
Scale Position	Top	\square	Font Setting
Scale Side	Normal Direction	\square	$5 \mathrm{x} 8 \quad \square$
Value Length	16 Bit $\quad \square$	Main Scale	5
Max Value	100	SubScale	2
Min Value	0	OK	Cancel

a. Scale Position: specifies where to place the scale.
b. Scale Side: specifies whether the scale is numbered from smaller numbers to larger numbers or from larger to smaller.
c. Font Setting: specifies the font.
d. Value Length: specifies 16 bits or 32 bits.
e. Main Scale \& Sub-Scale: divides the whole scale into equal parts; enter the numbers for the main scale and sub-scale.
f. Max Value \& Min Value: specifies the numbers on the two ends of the scale. They can be negative numbers, but the maximum and minimum values are limited by the Value Length setting. For example, when Value Length is hexadecimal (16 bits), the maximum and the minimum value cannot be entered as -40000 .

Clicking OK creates a scale as in the picture below.

5. Bar Graph setting. On the toolbar, click to add a bar graph.

a. Refer Device: specifies the VFD communication port.
b. Direction Setting: specifies the direction: From Bottom to Top, From Top to Bottom, From Left to Right or From Right to Left.
c. Max Value and Min Value: specifies the maximum value and minimum value. A value smaller than or equal to the minimum value causes the bar graph to be blank (0). A value is bigger or equal to the maximum value causes the bar graph is full (100\%). A value between the minimum and maximum values causes the bar graph to be filled proportionally.
6. Button 8 : on the toolbar, click 8 . Currently this function only allows the keypad to switch pages; other functions are not yet available (including text input and insert image). In the blank page, doubleclick 8 to open the Button Setting dialog box.

Button Type: specifies the button's functions.
Page Jump and Constant Setting are the only functions currently supported.

A. Page Jump Setting

- Page Jump Setting: in the Button Type list, choose Page Jump to show the Page Jump Setting.
- Function Key: specifies the functions for the following keys on the KPC-CC01 keypad: F1, F2, F3, F4, Up, Down, Left and Right. Note that the Up and Down keys are locked by TPEditor. You cannot program these two keys. If you want to program Up and Down keys, on the Tool menu, click Function Key Setting, and then click Re-Define Up/Down Key.

- Button Text: specifies the text that appears on a button. For example, when you enter Next Page for the button text, that text appears on the button.

B. Constant setting

This function specifies the memory address' values for the VFD or PLC. When you press the Function Key, it writes a value to the memory address specified by the value for Constant Setting. You can use this function to initialize a variable.

Button Setting						
Button Type	Constant Setting		$\begin{aligned} & \text { Constant Setting } \\ & 10 \end{aligned}$		Frame Seting Single Frame Font Setting 5×8 Text Alignment Bitmap Aligmment	
Wrie-in	\$211A	...\|				
Γ Read		\cdots			Middle \quad -	Middle
V Function Key	F3				Middle \quad -	Middle \quad -
Value Length	16 Bit	\square	Γ call \quad -		Graph Input	Bitruap Read Bitrapp Clear
Value Type	Unsigned	\checkmark	Before Writing C After Writing	Reset C Set	[None]	
Cument State	0	\checkmark				
Tomal States		- \ddagger	User Level$0 \quad \square$			
Bution Text					OK	Cancel

7. Clock Display Setting: on the toolbar, click
. You can display the time, day, or date on the keypad. Open a new page and click once in that window to add a clock display.

Choose to display Time, Day, or Date on the keypad. To adjust time, go to \#8 on the keypad's menu.
You can also specify the Frame Setting, Font Setting, and Alignment.

Clock Display Setting			
	Frame Seting	No Frame	\checkmark
	Font Setting	Align Left	\checkmark
Time Association © TP Time	Alignment	5×8	\checkmark
	- Time	\bigcirc Day	
\bigcirc PLC Time	OK	Canoel	

8. Multi-state bitmap: on the toolbar, clickOpen a new page and click once in that window to add a Multi-state bitmap. This object reads a bit's property value from the PLC. It defines the image or text that appears when this bit is 0 or 1 . Set the initial status (Current State) to be 0 or 1 to define the displayed image or text.

9. Unit Measurement: on the toolbar, click

Open a new blank page, and double-click on that window to display the Units Setting dialog box.
Choose the Metrology Type and the Unit Name. For Metrology, the choices are Length, Square Measure, Volume/Solid Measure, Weight, Speed, Time, and Temperature. The unit name changes automatically when you change metrology type.

10. Numeric Input Setting: on the toolbar, click

This object enables you to provide parameters or communication ports (0x22xx) and to input numbers.
Open a new file and double click on that window to display the Numeric Input Setting dialog box.

a. Refer Device: specifies the Write and the Read values. Enter the numbers to display and the corresponding parameter and communication port numbers. For example, enter 012C to Read and Write Parameter Pr.01-44.
b. OutLine Setting: specifies the Frame Setting, Font Setting, Hori. Alignment, and Vert. Alignment for the outline.
c. Function Key: specifies the function key to program on the keypad in the Function Key box. The corresponding key on the keypad starts to blink. Press ENTER to confirm the setting.
d. Value Type and Value Length: specify the range of the Min Value and Max Value for the Limit Setting. Note that the corresponding supporting values for MH300 must be 16 bits. 32-bit values are not supported.
e. Value Setting: automatically set by the keypad itself.
f. Limit Setting: specifies the range for the numeric input here.

For example, if you set Function Key to F1, Min Value to 0 and Max Value to 4, when you press F1 on the keypad, then you can press Up/Down on the keypad to increase or decrease the value. Press ENTER on the keypad to confirm your setting. You can also view the parameter table 01-44 to verify if you correctly entered the value.
11. Download TP Page: Press Up / Down on the keypad to select \#13 PC Link

Then press ENTER on the keypad. The screen displays "Waiting". In TPEditor, choose a page that you have created, and then on the Communication menu click Write to TP to start downloading the page to the keypad.

When you see "Completed" on the keypad screen, the download is finished. You can then press ESC on the keypad to go back to the menu screen.

7-14-4 Digital Keypad KPC-CC01 Fault Codes and Descriptions

Fault Codes

LCD Display *	Fault Name	Description	Corrective Actions
Fault Auto FrEr kpd Flash Read Er	Flash memory read error (FrEr)	Keypad flash memory read error	Error in the keypad's flash memory. 1. Press RESET to clear the errors. 2. Check for any problem on Flash IC. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your authorized local dealer for assistance.
Fault FsEr kpd Flash Save Er	Flash memory save error (FsEr)	Keypad flash memory save error	Error in the keypad's flash memory. 1. Press RESET to clear the errors. 2. Check for any problem on Flash IC. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your authorized local dealer for assistance.
	Flash memory parameter error (FPEr)	Keypad flash memory parameter error	Error in the default parameters. It might be caused by a firmware update. 1. Press RESET to clear the errors. 2. Check for any problem on Flash IC. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your authorized local dealer for assistance.
AUTO Fault VFDr Read VFD Info Er	Reading AC motor drive data error (VFDr)	Keypad error when reading AC motor drive data	Keypad cannot read any data sent from the VFD. 1. Verify that the keypad is properly connected to the motor drive by a communication cable such as RJ45. 2. Press RESET to clear the errors. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your authorized local dealer for assistance.
AUTO Fault CPUEr CPU Error	CPU error (CPUEr)	Keypad CPU error	A serious error in the keypad's CPU. 1. Check for any problem on CPU clock. 2. Check for any problem on Flash IC. 3. Check for any problem on RTC IC. 4. Verify that the communication quality of the RS-485 cable is good. 5. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your authorized local dealer for assistance.

Table 7-77

Warning Codes

LCD Display *	Warning Name	Description	Corrective Actions
Warning CE1 Comm. Error 1	Communication error 1 (CE1)	RS-485 Modbus illegal function code	Motor drive does not accept the communication command sent from the keypad. 1. Verify that the keypad is properly connected to the motor drive by a communication cable such as RJ45. 2. Press RESET on the keypad to clear errors. If none of the above solutions works, contact your local authorized dealer for assistance.
Warning Auto CK1 Comm Command Er	Communication command error 1 (CK1)	Keypad communication data, illegal function code (Keypad autodetect this error and display it)	Keypad does not accept the motor drive's communication command. 1. Remove the keypad and reconnect it. 2. Verify if the Baud rate $=19200$ bps, and the Format = RTU8, N, 2 3. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ45. If none of the above solution works, contact your local authorized dealer.
Warning CE2 Comm. Error 2	Communication error 2 (CE2)	RS-485 Modbus illegal data address	Motor drive does not accept the keypad's communication address. 1. Verify that the keypad is properly connected to the motor drive by a communication cable such as RJ45. 2. Press RESET to clear the errors. If none of the above solutions works, contact your local authorized dealer for assistance.
Warning Auto CK2 Comm Address Er	Communication address error (CK2)	Keypad communication data, illegal data address (Keypad auto-detect this error and display it)	Keypad does not accept the motor drive's communication command. 1. Remove the keypad and reconnect it. 2. Verify if the Baud rate $=19200$ bps, and the Format = RTU8, N, 2 3. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ45. If none of the above solution works, contact your local authorized dealer.
Warning CE3 Comm. Error 3	Communication error 3 (CE3)	RS-485 Modbus illegal data value	Motor drive does not accept the communication data sent from the keypad. 1. Verify that the keypad is properly connected to the motor drive by a communication cable such as RJ45. 2. Press RESET to clear the errors. If none of the above solutions works, contact your local authorized dealer for assistance.
Warning AUTO CK3 Comm Data Error	Communication data error (CK3)	Keypad communication data, illegal data value (Keypad auto-detect this error and display it)	Keypad does not accept the motor drive's communication command. 1. Remove the keypad and reconnect it. 2. Verify if the Baud rate $=19200$ bps, and the Format = RTU8, N, 2 3. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ45. If none of the above solution works, contact your local authorized dealer.

LCD Display *	Warning Name	Description	Corrective Actions
Warning CE4 Comm. Error 4	Communication error 4 (CE4)	RS-485 Modbus data is written to read-only address	Motor drive cannot process the communication command sent from the keypad. 1. Verify that the keypad is properly connected to the motor drive by a communication cable such as RJ45. 2. Press RESET to clear the errors. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your local authorized dealer for assistance.
Warning AUTO CK4 Comm Slave Error	Communication slave error (CK4)	Keypad communication data is written to read-only address (Keypad autodetect this error and display it)	Keypad does not accept the motor drive's communication command. 1. Remove the keypad and reconnect it. 2. Verify if the Baud rate $=19200$ bps, and the Format = RTU8, N, 2 3. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ45. If none of the above solution works, contact your local authorized dealer.
Warning CE10 Comito Comror 10	Communication error 10 (CE10)	RS-485 Modbus transmission timeOut	Motor drive does not respond to the communication command sent from the keypad. 1. Verify that the keypad is properly connected to the motor drive by a communication cable such as RJ45. 2. Press RESET to clear the errors. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your local authorized dealer for assistance.
Warning AUTO CK10 KpdComm Time Out	Keypad communication time out (CK10)	Keypad communication data, transmission time-out (Keypad auto-detect this error and display it).	Keypad does not accept the motor drive's communication command. 1. Remove the keypad and reconnect it. 2. Verify if the Baud rate $=19200$ bps, and the Format = RTU8, N, 2 3. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ45. If none of the above solution works, contact your local authorized dealer.
Warning AUTO TPNO TP No Object	Keypad communication time out (CK10)	Object not supported by TPEditor	Keypad's TPEditor uses an unsupported object. 1. Verify that the TPEditor is not using an unsupported object or setting. Delete unsupported objects and unsupported settings. 2. Re-edit the object in the TPEditor, and then download it to the keypad. 3. Verify that the motor drive supports the TP functions. If the drive does not support TP function, the main page displays Default. If none of the above solutions works, contact your local authorized dealer for assistance.

Table 7-78

NOTE:

The warning code CExx only occurs when the communication problem is between the drive and the keypad. It has nothing to do with the drive and other devices. Note the warning code description to find the cause of the error if

CExx appears.

File Copy Setting Fault Description:

These faults occur when KPC-CC01 cannot perform the command after clicking the ENTER key in the copy function.

LCD Display *	Fault Name	Description	Corrective Actions
001> P00-00 ERR1 Read Only	Read only (ERR1)	Parameter and file are read-only	The parameter / file is read-only and cannot be written to. 1. Verify the specification in the user manual. If this solution does not work, contact your local authorized dealer for assistance.
001> P00-00 ERR2 Write Fail	Write in error (ERR2)	Fail to write parameter and file	An error occurred while writing to a parameter / file. 1. Check for any problem on the Flash IC. 2. Shut down the system, wait for ten minutes, and then restart the system. If this solution does not work, contact your local authorized dealer for assistance.
001> P00-00 ERR3 VFD Running	Drive operating (ERR3)	AC motor drive is in operating status	A setting cannot be changed while the motor drive is in operation. 1. Verify that the drive is not in operation. If this solution does not work, contact your local authorized dealer for assistance.
001> P00-00 ERR4 Pr Lock	Parameter locked (ERR4)	AC motor drive parameter is locked	A setting cannot be changed because a parameter is locked. 1. Check if the parameter is locked. If it is locked, unlock it and try to set the parameter again. If this solution does not work, contact your local authorized dealer for assistance.
001> P00-00 ERR5 Pr Changing	Parameter changing (ERR5)	AC motor drive parameter is changing	A setting cannot be changed because a parameter is being modified. 1. Check if the parameter is being modified. If it is not being modified, try to change that parameter again. If this solution does not work, contact your local authorized dealer for assistance.
001> P00-00 ERR6 Fault Code	Fault code (ERR6)	Fault code is not cleared	A setting cannot be changed because an error has occurred in the motor drive. 1. Check if any error occurred in the motor drive. If there is no error, try to change the setting again. If this solution does not work, contact your local authorized dealer for assistance.
001> P00-00 ERR7 Warning Code	Warning code (ERR7)	Warning code is not cleared	A setting cannot be changed because of a warning message given to the motor drive. 1. Check if there is a warning message given to the motor drive. If this solution does not work, contact your local authorized dealer for assistance.

LCD Display *	Fault Name	Description	Corrective Actions
001> P00-00	File type mismatch (ERR8)	File type mismatch	Data to be copied are not the correct type, so the setting cannot be changed. 1. Check if the products' serial numbers to be copied are in the same category. If they are in the same category, try to copy the setting again. If this solution does not work, contact your local authorized dealer for assistance.
$\begin{gathered} \text { ERR8 } \\ \text { Type Mismatch } \end{gathered}$			
	Password locked (ERR9)	File is locked with password	A setting cannot be changed because some data are locked. 1. Check if the data are unlocked or able to be unlocked. If the data are unlocked, try to change the setting again. 2. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your local authorized dealer for assistance.
001> P00-00			
ERR9 Password Lock			
	Password fail (ERR10)	File password mismatch	A setting cannot be changed because the password is incorrect. 1. Check if the password is correct. If the password is correct, try to change the setting again. 2. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your local authorized dealer for assistance.
001> P00-00			
ERR10 Password Fail			
001> P00-00	Version fail (ERR11)	File version mismatch	A setting cannot be changed because the version of the data is incorrect. 1. Check if the version of the data matches the motor drive. If it matches, try to change the setting again. If none of the above solutions works, contact your local authorized dealer for assistance.
ERR11 Version Fail			
001> P00-00	VFD Time out (ERR12)	AC motor drive copy function time-out	A setting cannot be changed because the data copying time-out expired. 1. Try copying the data again. 2. Check if copying data is authorized. If it is authorized, try to copy the data again. 3. Shut down the system, wait for ten minutes, and then restart the system. If none of the above solutions works, contact your local authorized dealer for assistance.
ERR12 VFD Time Out			

Table 7-79

7-14-5 Unsupported Functions when using TPEditor with the KPC-CC01

1. Local Page Setting and Global Setting functions are not supported.

2. In the Communication menu, Read from TP function is not supported.

3. In the RTC Display Setting, you cannot change the Refer Device.

[This page intentionally left blank]

Chapter 8 Option Cards

8-1 Option Card Installation
8-2 EMM-PG01L -- PG Card (Line Driver)
8-3 EMM-PG01O -- PG Card (Open Collector)
8-4 EMM-PG01R -- PG Card (Resolver / Encoder Signal Input)
8-5 EMM-D33A -- Extension for 3-point Digital Input / 3-point Digital Output
8-6 EMM-A22A -- Extension for 2 Sets of Analog Input / 2 Sets of Analog Output
8-7 EMM-R2CA -- Relay Output Extension (2-point N.C. Output Terminal)
8-8 EMM-R3AA -- Relay Output Extension (3-point N.O. Output Terminal)
8-9 EMM-BPS02 -- +24V Power Extension Card
8-10 CMM-DN02 -- Communication Extension Card, DeviceNet
8-11 CMM-EIP02 -- Communication Extension Card, (Single-port) EtherNet/IP, Modbus-TCP
8-12 CMM-EIP03 -- Communication Extension Card, (Dual-port) EtherNet/IP, Modbus-TCP
8-13 CMM-PD02 -- Communication Extension Card, Profibus DP
8-14 CMM-EC02 -- Communication Extension Card, EtherCAT
8-15 Delta Standard Fieldbus Cables

Chapter 8 Option Cards | MH300

- The option cards in this chapter are optional accessories. Select the applicable option cards for your motor drive, or contact your local distributor for suggestions. The option cards can significantly improve the efficiency of the motor drive.
- To prevent damage to the motor drive during installation, remove the digital keypad and the cover before wiring.
- The option cards do not support hot swapping. Power off the motor drive before you install or remove the option cards.

8-1 Option Card Installation

The mounting position and connection method corresponding to each option card is listed as the table below. For detailed information, refer to following sections.

Option Card	Model	Function	Mounting Position 1			Mounting Position 2		
			Installation Method	Connection Method	Subsection	Installation Method	Connection Method	Subsection
$\begin{aligned} & \text { PG } \\ & \text { Card } \end{aligned}$	EMM-PG01L	ABZ (Line Driver)	Frontmounted	Connector	8-1-1	Not applicable		N/A
	EMM-PG010	ABZ (Open Collector)						
	EMM-PG01R	Resolver						
I/O Card	EMM-D33A	Digital Card - 3in 3out						
	EMM-A22A	Analog Card - 2in 2out						
Relay Card	EMM-R2CA	Relay (2 sets of C contact)						
	EMM-R3AA	Relay (3 sets of A contact)						
Power Adapter	EMM-BPS02	DC 24 V Power Supply Card	Backmounted	Connector	8-1-2	Frontmounted	Flat Cables	8-1-4
Communication Card	CMM-DN02	DeviceNet	Backmounted	Flat Cables	8-1-3			
	CMM-EIP02	EtherNet/IP						
	CMM-EIP03	EtherNet/IP						
	CMM-PD02	Profibus DP						
	CMM-EC02	EtherCAT						

NOTE:

1. Front-mounted: The terminal block and the connector face upward.
2. Back-mounted: The terminal block and the connector face downward.
3. When installing two cards, the installation should be in the sequence of PG / I/O / Relay card \rightarrow Power adapter \rightarrow Communication card
4. Refer to the following pages for the cable connection. (Fig.8-2 and Table 8-3)

Mounting Position of Option Cards

Frame A-D
Mounting position 1, 2 (Option card installing kit)

Figure 8-1

Frame E-I
Mounting position 1, 2

Figure 8-2

NOTE: Position 2 is only applicable for the installation of communication cards and power extension card.

The Wiring of Communication Card

MH300 Control Board Connector

Option Card Connector

Figure 8-4

Figure 8-3

NOTE: Do not misuse the cables for the communication cards and for the power card. You must read the descriptions on the cables before wiring.

- Communication Card Cables

To correctly use the communication cards, you must purchase the communication card along with the connection cables. Check your communication card models first. Then, select your applicable connection cables according to the mounting positions by different frames. Two cable length are available for your choice. See the table below to select your applicable communication card cables.

Communication Card	CMM-DN02, CMM-EIP02, CMM-EIP03, CMM-PD02, CMM-COPO2		CMM-EC02 *	
Frame	Mounting Position 1	Mounting Position 2	Mounting Position 1	Mounting Position 2
	Model of Cable	Model of Cable	Model of Cable	Model of Cable
A	CBM-CL01A	CBM-CC01A	CBM-CL01A	CBM-CL01A
B		CBM-CC02A		CBM-CL02A
C	CBM-CLO2A		CBM-CL02A	
D				
E		CBM-CL02A		
F				
G				
H				
1				

Table 8-2
NOTE: An option card mounting box is included upon purchasing the communication card CMMEC02, you need to purchase it with CBM-CL01A or CBM-CL02A.

CBM-CL01A
CBM-CC01A

Figure 8-5

CBM-CL02A
CBM-CC02A

Figure 8-6

NOTE: There is a mounting box included for the model named with CBM-CCxxA.

- Power Card Cables

An option card mounting box, a connector and cables with two different lengths are included when you purchase the power card EMM-BPS02 (DC 24 V backup power supply card), so you do not need to purchase it with the connection cables. "BPS use only" and "\# S" or "\# L" are marked on the EMM-BPS02 power card cable. See the table below to select your applicable power card cables according to different mounting positions.

Power Card	EMM-BPS02	
Frame	Mounting Position 1	Mounting Position 2
	Model of Cable	Model of Cable
A		\# S
B		
C		
D		
E	Connector	
F		
G		
H		
I		

Table 8-3
\# S

Figure 8-7
\# L

Figure 8-8

8-1-1 PG / I/O / RELAY Card - Mounting Position 1

Installation method: Front-mounting the option card, by inserting to a connector on the control board.

1. As shown in the Figure 8-9, switch off the power of the motor drive, and then remove the front cover.
2. Mounting the connector: as shown in the Figure 8-10, aim the option card at the connector on the control board and then insert it to the connector.
3. Assembling support frame: as shown in the Figure 8-11, aim the two clips at the two slots on the motor drive and then press downward to have the two clips engage the slots.
4. Assembling the option card: As shown in the figure 8-12, have the terminal block of the option facing up, aim the two holes of the option card to the position column and press downard so that the three clips are engage the option card.
5. As shown in the Figure 8-13, make sure that three clips are properly engage the option card and then fasten the screw [Suggested torque value: $4-6 \mathrm{~kg}-\mathrm{cm} /(3.5-5.2 \mathrm{lb}-\mathrm{in}) /.(0.39-0.59 \mathrm{Nm})$].
6. As shown in the Figure 8-14, assembly is completed.

Figure 8-9

Figure 8-10

Figure 8-12

Figure 8-11

Figure 8-13

Figure 8-14

8-1-2 Power Adapter - Mounting position 1

Installation method: Back-mounting the option card, by inserting to a connector on the control board.

1. As shown in the Figure 8-15, shut down the power of the motor drive, and then remove the front cover.
2. Mounting the connector: as shown in the Figure $8-16$, aim the option card at the connector on the control board and then insert it to the connector.
3. Assembling support frame: as shown in the Figure 8-17, aim the two clips at the two slots on the motor drive and then press downward to have the two clips engage the slots.
4. Assembling the option card: As shown in the Figure 8-18, have the terminal block of the option facing up, aim the two holes of the option card to the position column and press downward so that the three clips are engage the option card.
5. As shown in the Figure 8-19, make sure that three clips are properly engage the option card and then fasten the screw [Suggested torque value: $4-6 \mathrm{~kg}-\mathrm{cm} /(3.5-5.2 \mathrm{lb}-\mathrm{in}) /.(0.39-0.59 \mathrm{Nm})$].
6. As shown in the Figure 8-20, assembly is completed.

Figure 8-18

Figure 8-19

Figure 8-20

8-1-3 Communication Card - Mounting position 1

Installation method: Back-mounting the option card, by inserting to a flat Cables on the control board.

1. As shown in the Figure 8-21, shut down the power of the motor drive, and then remove the front cover.
2. Assembling connection cables: Connect the connector at one end of the connection cable to the control board connector. For information on connection method, refer to Section 8-1 (see Table 8-2 and Figure 8-3).
3. Assembling support frame: as shown in the Figure 8-22, aim the two clips at the two slots on the motor drive and then press downward to have the two clips engage the slots.
4. Assembling connection cables: Connect the connector at the other end of the connection cable to the connector of communication cards.
5. Assembling the option card: As shown in the Figure 8-23, have the terminal block of the adapter/ option facing up, aim the two holes of the option card to the position column and press downward so that the three clips are engage the option card.
6. As shown in the Figure 8-24, make sure that three clips are properly engage the adapter/ option card and then fasten the screw [Suggested torque value: $4-6 \mathrm{~kg}-\mathrm{cm} /(3.5-5.2 \mathrm{lb}-\mathrm{in}) /.(0.39-0.59 \mathrm{Nm})$].
7. As shown in the Figure 8-25, assembly is completed.

Figure 8-21

Figure 8-22

Figure 8-23

Figure 8-24

Figure 8-25

8-1-4 Communication Card \& Power Adapter - Mounting position 2

Installation method: Front-mounting the option card, by inserting to a flat Cables on the control board.
Frame A-D

1. As shown in the Figure 8-26, shut down the power of the motor drive and then remove the front cover.
2. Assembling option cards: Detach the upper cover of the installation box for option card by slipping and place the terminal block and connector of the option card upward. Fix the front end of the option card to the slots, and then press another side, as shown in the Figure 8-27.
3. Make sure that two clips at the backside are properly engage the option card, and then fasten the screws [Suggested torque value: $4-6 \mathrm{~kg}-\mathrm{cm} /(3.5-5.2 \mathrm{lb}-\mathrm{in}) /.(0.39-0.59 \mathrm{Nm})$], as shown in the Figure 8-28.
4. Assembling connection cables: Connect the connector at one end of the connection cable to the control board connector. For information on connection method, refer to Section 8-1 (see Table 8-2 and Figure 8-3).
5. Install the upper cover.
6. Assembling connection cables: Connect the connector at the other end of the connection cable to the connector of option cards.
7. Attach the upper cover to the installation box for option card, as shown in the Figure 8-29.
8. Assembling the installation box for option card: Aim the four clips of the installation box for option card at the slots on the upper cover of the motor drive, and then press downward to have the four clips engage the slots, as shown in the Figure 8-30.
9. As shown in the Figure $8-31$, assembly is completed.

Figure 8-26

Figure 8-29

Figure 8-27

Figure 8-30

Figure 8-28

Figure 8-31

Frame E-I

1. As shown in the Figure 8-32, shut down the power of the motor drive and then remove the front cover.
2. Assembling connection cables: Connect the connector at one end of the connection cable to the control board connector. For information on connection method, refer to Section 8-1 (see Table 8-2 and Figure $8-3$). Wire them as Figure $8-33$ shows and make sure the core place in the groove.
3. Assembling option cards: Place the terminal block and connector of the option card upward. Fix the front end of the option card to the slots, and then press another side, as shown in the Figure 8-34.
4. Make sure that clips are properly engage the option card, and then fasten the screws [Suggested torque value: $4-6 \mathrm{~kg}-\mathrm{cm} /(3.5-5.2 \mathrm{lb}-\mathrm{in}) /.(0.39-0.59 \mathrm{Nm})$], as shown in the Figure 8-35.
5. Assembling connection cables: Connect the connector at the other end of the connection cable to the connector of option cards, as shown in the Figure 8-36.
6. As shown in the Figure 8-37, assembly is completed.

Figure 8-32

Figure 8-33

Figure 8-34

Figure 8-35

Figure 8-36

Figure 8-37

NOTE:

- You must ground the option cards listed below when wiring. The ground terminal is included with option card as shown in Figure 8-38

1. CMM-PDO2
2. EMM-PG01L
3. CMM-DNO2
4. EMM-PG01O
5. CMM-EIP02
6. EMM-PG01R
7. CMM-EIP03
8. EMM-A22A
9. CMM-EC02
10. EMM-D33A
11. EMM-BPSO2

Point A

Point B

Figure 8-38

- Installation of the ground terminal:

The B side of the ground terminal connects to the ground terminal block on the communication card at No. 6 of the CMM-EIP02 shown in Figure 8-39. See each section in Chapter 8 for the ground terminal blocks of the other option cards. The A side of the ground terminal connects to the PE on the drive as the red circles show in Figure 8-40 and 8-43.

Figure 8-39

Frame A-C

Figure 8-40
Torque ($\pm 10 \%$)
Frame A: $9 \mathrm{~kg}-\mathrm{cm} /(7.8 \mathrm{lb}-\mathrm{in}) /.(0.88 \mathrm{Nm})$
Frame B: $15 \mathrm{~kg}-\mathrm{cm} /(13.0 \mathrm{lb}-\mathrm{in}) /.(1.47 \mathrm{Nm})$
Frame C: $20 \mathrm{~kg}-\mathrm{cm} /(17.4 \mathrm{lb}-\mathrm{in}) /.(1.96 \mathrm{Nm})$

Frame D-F

Figure 8-41
Torque ($\pm 10 \%$)
Frame D: $20 \mathrm{~kg}-\mathrm{cm} /(17.4 \mathrm{lb}-\mathrm{in}) /.(1.96 \mathrm{Nm})$
Frame E: $25 \mathrm{~kg}-\mathrm{cm} /(21.7 \mathrm{lb}-\mathrm{in}) /.(2.45 \mathrm{Nm})$
Frame F: $20 \mathrm{~kg}-\mathrm{cm} /(17.4 \mathrm{lb}-\mathrm{in}) /.(1.96 \mathrm{Nm})$

Frame G

Figure 8-42
Torque ($\pm 10 \%$)
Frame G: 14-16 kg-cm / (12.15-13.89 lb-in.) /
(1.37-1.57 Nm)

Frame H-I

Figure 8-43
Torque ($\pm 10 \%$)
Frame H-I: 4-6 kg-cm / (3.47-5.21 lb-in.) / (0.39-0.59 Nm)

8-2 EMM-PG01L -- PG Card (Line Driver)

8-2-1 Product Profile

Figure 8-44

Figure 8-45
Wire: $0.25-0.75 \mathrm{~mm}^{2} /(24-18$ AWG)
Stripping length: 9 mm

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Terminal block
5. Ground terminal block

8-2-2 Terminal Descriptions
To use with Pr.10-00-Pr.10-02, Pr.10-16-Pr.10-18.

Terminals		Descriptions
PG1	VP	Power output voltage: $+5 \mathrm{~V} \pm 5 \%$ or $+12 \mathrm{~V} \pm 5 \%$ (Use SSW320 to switch +5 V or +12 V , the default is +5 V) Maximum output current: $200 \mathrm{~mA}(+5 \mathrm{~V})$
	DCM	Common for power and signal
	$\begin{aligned} & \mathrm{A} 1, \overline{\mathrm{~A} 1}, \\ & \mathrm{~B} 1, \overline{\mathrm{~B} 1}, \\ & \mathrm{Z} 1, \overline{\mathrm{Z1}} \end{aligned}$	Encoder input signal (Applicable for Line Driver or Open Collector) Open Collector input voltage $+5-24 \mathrm{~V}$ (see NOTE) Supports 1-phase and 2-phase input Maximum input signal: 300 kHz
PG2	$\begin{aligned} & \mathrm{A} 2, \overline{\mathrm{~A} 2}, \\ & \mathrm{~B} 2, \overline{\mathrm{~B} 2} \end{aligned}$	Pulse input signal (Applicable for Line Driver or Open Collector) Open Collector input voltage $+5-24 \mathrm{~V}$ (see NOTE) Supports 1-phase and 2-phase input Maximum input signal: 300 kHz
PG OUT	$\begin{gathered} \mathrm{AO}, \overline{\mathrm{AO}}, \\ \mathrm{BO}, \overline{\mathrm{BO}}, \\ \mathrm{ZO}, \overline{\mathrm{ZO}}, \\ \mathrm{SG} \end{gathered}$	PG feedback signal output, supports frequency elimination: 1-255 times. Maximum output voltage of the Line driver: $5 \mathrm{~V}_{\mathrm{DC}}$ Maximum output current: 15 mA Maximum output frequency: 300 kHz SG, the referenced electric potential for PG card output signal, serves as the ground for host controller or PLC to make the output signal become the common point. Do not use common grounding with SG and DCM as it may influence the signal quality.
Ground	PE	Grounding terminal. To decrease noise, properly ground this terminal.

NOTE: Open Collector application: input current $5-15 \mathrm{~mA}$ to each set and each set needs one pull-up resistor. If the input voltage of the open collector is 24 V , power for the encoder must be connected externally.
Refer to diagram 2 of PG1 (Figure 8-47).

5 V	Recommended pull-up resistor: above $100-220 \Omega, 1 / 2 \mathrm{~W}$
12 V	Recommended pull-up resistor: above $510 \Omega-1.35 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$
24 V	Recommended pull-up resistor: above $1.8 \mathrm{k}-3.3 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$

- PG1 Wiring Diagram

Figure 8-46 and Figure 8-47 show the wiring diagrams for using open collector encoder.
(1)

Figure 8-46
(2)

Figure 8-47

- PG2 Wiring Diagram

Figure 8-48

8-2-3 EMM-PG01L Wiring Diagram

- Use a shielded cable to prevent interference.

Do not run control wires parallel to any high voltage AC power line ($200 \mathrm{~V}_{\mathrm{AC}}$ and above).

- Recommended wire size: 0.0509-1.31 mm ${ }^{2}$ / (30-16 AWG).
- Cable length: less than 100 m

Figure 8-49

8-3 EMM-PG01O -- PG Card (Open Collector)

8-3-1 Product Profile

Figure 8-50

4

Figure 8-51
Wire: $0.25-0.75 \mathrm{~mm}^{2} /$ ($24-18$ AWG)
Stripping length: 9 mm

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Terminal block
5. Ground terminal block

8-3-2 Terminal Descriptions

To use with Pr. 10-00-Pr. 10-02, Pr.10-16-Pr.10-18.

Terminals		Descriptions
PG1	VP	Power output voltage: $+5 \mathrm{~V} \pm 5 \%$ or $+12 \mathrm{~V} \pm 5 \%$ (Use SSW320 to switch +5 V or +12 V , the default is +5 V) Maximum output current: 200 mA (+5V)
	DCM	Common for power and signal
	A1, $\overline{\mathrm{A} 1}$, B1, $\overline{B 1}$, Z1, $\overline{\mathrm{Z} 1}$	Encoder input signal (Applicable for Line Driver or Open Collector) Open Collector input voltage $+5-24 \mathrm{~V}$ (see NOTE) Supports 1-phase and 2-phase input Maximum input signal: 300 kHz
PG2	$\begin{aligned} & \mathrm{A} 2, \overline{\mathrm{~A} 2}, \\ & \mathrm{~B} 2, \overline{\mathrm{~B} 2} \end{aligned}$	Pulse input signal (Applicable for Line Driver or Open Collector) Open Collector input voltage $+5-24 \mathrm{~V}$ (see NOTE) Supports 1-phase and 2-phase input Maximum input signal: 300 kHz
PG OUT	V+, V+	Needs an external power source for the PG OUT circuit. Input voltage: +7- +24 V
	V-	The negative side for external power supply
	$\overline{\mathrm{AO}}$, $\overline{\mathrm{BO}}$, $\overline{Z O}$	PG feedback signal output: Supports frequency elimination: 1-255 times. Open collector's output signal: add a pull-up resistor on each PG out external power (see NOTE) Maximum input frequency: 300 kHz

Table 8-6
NOTE: Open Collector application: input current 5-15 mA to each set and each set needs one pull-up resistor. If the input voltage of the open collector is 24 V , power for the encoder must be connected externally. Refer to diagram 2 of PG1 (Figure 8-53).

5 V	Recommended pull-up resistor: above100-220 $\Omega, 1 / 2 \mathrm{~W}$
12 V	Recommended pull-up resistor : above $510 \Omega-1.35 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$
24 V	Recommended pull-up resistor : above1.8 $\mathrm{k}-3.3 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$

Table 8-7

- PG1 Wiring Diagram
(1)

Figure 8-52
(2)

Figure 8-53
(3)

> PG card

Open Collector Encoder

Figure 8-54

- PG2 Wiring Diagram

Figure 8-55

Chapter 8 Option Cards | MH300

8-3-3 EMM-PG01O Wiring Diagram

- Use a shielded cable to prevent interference.

Do not run control wires parallel to any high voltage $A C$ power line ($200 \mathrm{~V}_{\mathrm{AC}}$ and above).

- Recommended wire size: 0.0509-1.31 mm² / (30-16 AWG)
- Cable length: less than 30 m

Figure 8-56

8-4 EMM-PG01R

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Terminal block
5. Ground terminal block
Figure 8-58
Wire: $0.25-0.75 \mathrm{~mm}^{2}$ / (24-18 AWG)
Figure 8-57
Stripping length: 9 mm

8-4-2 Terminal Descriptions

To use with Pr.10-00-Pr.10-02 and Pr.10-30. And Pr.10-30 is using for resolver pole pair.
(When using EMM-PG01R, set Pr. 10-00 $=3$ and set Pr.10-01 = 1024.)

Terminals		Descriptions
PG1	R1- R2	Resolver Output Power 7 Vrms, 10 kHz
	$\begin{aligned} & \mathrm{S} 1, \mathrm{~S} 3, \\ & \mathrm{~S} 2, \mathrm{~S} 4 \end{aligned}$	Resolver input signal (S2, S4 = Sin; S1, S3 = Cos) $3.5 \pm 0.175 \mathrm{Vrms}, 10 \mathrm{kHz}$
PG2	$\begin{aligned} & \mathrm{A} 2, \overline{\mathrm{~A} 2}, \\ & \mathrm{~B} 2, \overline{\mathrm{~B} 2} \end{aligned}$	Pulse input signal (Applicable for Line Driver or Open Collector) Open Collector input voltage: $+5-24 \mathrm{~V}$ (see NOTE 1) Support 1-phase and 2-phase input. Maximum output frequency: 300 kHz
PG OUT	$\begin{gathered} \mathrm{AO}, \overline{\mathrm{AO}}, \\ \mathrm{BO}, \overline{\mathrm{BO}}, \\ \mathrm{zO}, \overline{\mathrm{ZO}}, \\ \mathrm{DCM} \end{gathered}$	PG Card output signal: supports frequency elimination: 1-255 times Maximum output voltage of Line driver: $5 \mathrm{~V} D$ Maximum output current: 50 mA Maximum output frequency: 300 kHz DCM, the referenced electric potential for PG card output signal, serves as the ground for host controller or PLC to make the output signal become the common point.

Table 8-8

NOTE:

1. Open Collector application: Input current $5-15 \mathrm{~mA}$ to each set and each set needs one pull-up resistor.

5 V	Recommended pull-up resistor above: $100-220 \Omega, 1 / 2 \mathrm{~W}$
12 V	Recommended pull-up resistor above: $510 \Omega-1.35 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$
24 V	Recommended pull-up resistor above: $1.8 \mathrm{k}-3.3 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$

Table 8-9

- PG2 Wiring Diagram

Figure 8-59
2. DOS (Degradation of Signal):

If the amplitude of the sine wave input of the S1- / S3 and S2- / S4 is lower than or higher than the encoder IC's specification, a red light turns on. The possible reasons for this problem are:
a. The turns ratio of the resolver encoder is not 1:0.5, which makes the sine wave input of the S1- / S3 and S2- / S4 be not equal to $3.5 \pm 0.175 \mathrm{Vrms}$.
b. While the motor is running, the motor creates common mode noise that makes the accumulated voltage greater than $3.5 \pm 0.175 \mathrm{Vrms}$.
3. LOT (Loss of Tracking):

Compare the angle of the S1- / S3 and S2- / S4 sine wave input to the R1-R2 cosine wave. If their difference is more than 5 degrees, a red light turns on. The possible reasons for this problem are:
a. The output frequency of the PG card is incorrect.
b. The specification of Resolver's encoder is not 10 kHz .
c. The motor creates common mode noise while it is running. While the motor is rotating, it causes a big difference between the main winding's cosine wave angle and the sine wave angle of the second and third windings.

8-4-3 EMM-PG01R Wiring Diagram

- Use a shielded cable to prevent interference.

Do not run control wires parallel to any high voltage AC power line ($200 \mathrm{~V}_{\mathrm{AC}}$ and above).

- Recommended wire size: 0.0509-1.31 mm² / (30-16 AWG)
- Cable length: less than 30 m

Figure 8-60

8-5-1 Product Profile

Figure 8-61

Figure 8-62

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Terminal block
5. Ground terminal block

Wire: $0.25-0.75 \mathrm{~mm}^{2} /(24-18$ AWG)
Stripping length: 9 mm

8-6 EMM-A22A

8-6-1 Product Profile

Figure 8-63

4

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Terminal block
5. Switch (SSW1SSW4)

Figure 8-64
Wire: $0.25-0.75 \mathrm{~mm}^{2} /$ (24-18 AWG)
Stripping length: 9 mm

Analog I/O Extension Card	Terminals	Descriptions
	ACM	Common output signal and input signal terminals.
	Al10, Al11	Refer to Pr.14-00-Pr.14-01 to program the multi-function. Two sets of AI ports: SSW3, SSW4 switch for AVI or ACI. (Default is AVI) AVI: input 0-10 V ACI: input 0-20 mA
	AO10-AO11	Refer to Pr.14-12-Pr.14-13 to program the multi-function. Two sets of AO ports: SSW1, SSW2 switch for AVO or ACO. (Default is AVO) AVO: output 0-10 V ACO: output 0-20 mA
	PE	Grounding terminal. To decrease noise, properly ground this terminal.

8-7 EMM-R2CA -- Relay Output Extension (2-point N.C. Output Terminal)

8-7-1 Product Profile

Figure 8-66
Wire: $0.25-1.5 \mathrm{~mm}^{2} /(24-16$ AWG)
Stripping length: 6 mm
Torque: $5 \mathrm{~kg}-\mathrm{cm} /(4.3 \mathrm{lb}-\mathrm{in}) /.(0.49 \mathrm{Nm})$

	Terminals	Descriptions
Relay Extension Card	RA10-RA11 RB10-RB11 RC10-RC11	Refer to Pr.02-36-Pr.02-37 to program the multi-function Resistive load: $5 \mathrm{~A}(\mathrm{~N} . \mathrm{O} .) / 240 \mathrm{~V}_{\mathrm{AC}}$ Function: outputs the monitor signals, such as drive in operation, frequency reached, or overload indication.

8-8 EMM-R3AA -- Relay Output Extension (3-point N.O. Output Terminal)

8-8-1 Product Profile

Figure 8-67

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Terminal block

Figure 8-68
Wire: $0.25-1.5 \mathrm{~mm}^{2} /(24-16$ AWG)
Stripping length: 6 mm
Torque: $5 \mathrm{~kg}-\mathrm{cm} /(4.3 \mathrm{lb}-\mathrm{in}) /.(0.49 \mathrm{Nm})$

| Terminals Descriptions
 Relay Refer to Pr.02-36-Pr.02-38 to program the multi-function.
 Extension
 Card
 RA10-RA12 Resistive load:
 6 A (N.O.) / 250 VAC
 Function: outputs the monitor signals, such as drive in operation,
 frequency reached, or overload indication. |
| :---: | :---: | :--- |

Table 8-13

8-9 EMM-BPS02 -- +24V Power Extension Card

8-9-1 Product Profile

Figure 8-69

Figure 8-70
Wire: $0.25-0.5 \mathrm{~mm}^{2} /(24-20$ AWG)
Stripping length: 7-8 mm
Torque: $2 \mathrm{~kg}-\mathrm{cm} /(1.7 \mathrm{lb}-\mathrm{in}) /.(0.2 \mathrm{Nm})$

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port (Refer to subsection 8-1-2 for installation)
4. AC motor drive connection port (Refer to subsection 8-1-4 for installation)
5. +24 V terminal block

Extra 24V Power Card	Terminal	Description
	24 V GND	Input power: $24 \mathrm{~V} \pm 5 \%$ Maximum input current: 0.5 A

Table 8-14

8-9-2 Features

1. Provides external power supply.
2. Supports external $24 V_{D C}$ input.
3. Supports reading and writing parameters and status monitoring of the drive.

8-9-3 Specifications

When the drive is only powered by the EMM-BPS02, communication remains normal, including support for all communication cards and the following functions:

- Reading and writing parameters
- Display with keypad
- Keypad buttons (except the RUN button)
- Analog input with +10 V terminal to supply power
- Multi-input (MI1-MI7) with +24 V terminal or external power supply
- Relay output
- Pulse sequence (MI6, MI7) frequency command

The following functions are not supported:

- DFM digital frequency signal output
- AFM multi-function analog voltage output
- PLC functions

8-9-4 The Cable Connection of +24 V Power Card

Figure 8-72

Figure 8-73

Operating procedures (refer to the mark (1) (2) (3) in the Figure 8-72)
(1) Choose the power supply or the host to connect the positive and negative electrodes to +24 V power card.
(2) Connect the ground terminal of +24 V power card and the ground terminal of the drive.
(3) Connect one side of the cable to the connection port of the drive and another side to the +24 V power card's.

8-10 CMM-DN02

8-10-1 Product Profile

Figure 8-74

Figure 8-75
Wire: $0.25-0.5 \mathrm{~mm}^{2} /(24-20$ AWG)
Stripping length: 7-8 mm
Torque: $2 \mathrm{~kg}-\mathrm{cm} /(1.7 \mathrm{lb}-\mathrm{in}) /.(0.2 \mathrm{Nm})$

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Communication Port
5. Indicator light: NET1 (MS), NET2 (NS)
6. Indicator light:

POWER
7. Ground terminal block

8-10-2 Features

1. Based on the high-speed communication interface of Delta's HSSP protocol, the AC motor drive can be controlled in real-time.
2. Supports Group 2 only connection and polling I/O data exchange.
3. For I/O mapping, supports a maximum of 32 words input and 32 words output.
4. Supports EDS file configuration in DeviceNet configuration software.
5. Supports all baud rates on DeviceNet bus: $125 \mathrm{kbps}, 250 \mathrm{kbps}, 500 \mathrm{kbps}$ and extendable baud rate mode.
6. Node address and baud rate can be set in the AC motor drive.
7. Power is supplied from the AC motor drive.

8-10-3 Specifications

DeviceNet Connector

Interface	5-PIN open pluggable connector. PIN interval: 5.08 mm
Transmission method	CAN
Transmission cable	Shielded twisted-pair cable (with 2 power cables)
Transmission speed	$125 \mathrm{kbps}, 250 \mathrm{kbps}, 500 \mathrm{kbps}$ and extendable baud rate mode
Network protocol	DeviceNet protocol

Table 8-15
AC Motor Drive Connection Port

Interface	24 PIN communication terminal
Transmission method	SPI communication
Terminal function	1. Communication module communicates with AC motor drive through this port. 2. AC motor drive provides power supply to communication module through this port.
Communication protocol	Delta HSSP protocol

Electrical Specification

Power supply voltage	15 V VC (supplied by AC motor drive)
Insulation voltage	500 V DC
Communication wire power consumption	0.85 W
Power consumption	1 W
Weight	23 g

Table 8-17
Environment

Noise immunity	ESD (IEC 61800-5-1, IEC 61000-4-2)
	EFT (IEC 61800-5-1, IEC 61000-4-4)
	Surge Test (IEC 61800-5-1, IEC 61000-4-5) Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)
Operation / Storage	Operation: $-10-50^{\circ} \mathrm{C}$ (temperature), 90\% (humidity) Storage: $-25-70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity)
Shock / Vibration resistance	International standards: IEC 61800-5-1, IEC 60068-2-6 / IEC 61800-5-1, IEC 60068-2-27

Table 8-18
DeviceNet Connector

PIN	Signal	Color	Definition
1	V+	Red	24 VDC
2	H	White	Signal+
3	S	-	Ground
4	L	Blue	Signal-
5	V-	Black	0 V

Figure 8-76

Table 8-19
8-10-4 Communication Parameter Settings when Connecting AC Motor Drive to DeviceNet
When you connect the AC motor drive to DeviceNet, set up the communication parameters based on the table below.

Parameter	Function	Setting value	Description
$00-20$	Master frequency command source	8	The frequency command is controlled by the communication card.
$00-21$	Operation command source	5	The operation command is controlled by the communication card.
$09-70$	Communication card address	1 (default)	The setting range is $0-63$.
$09-71$	Communication card speed	2 (default)	500 Kbps

Chapter 8 Option Cards | MH300

8-10-5 LED Indicator Light \& Troubleshooting

There are three LED indicator lights on CMM-DN02. POWER LED displays the status of the working power. MS LED and NS LED are dual-color LEDs, displaying the connection status and error messages of the communication module.
POWER LED

LED status	Indication	Corrective Action
ON	Working power is in normal status	No action is required
OFF	No power	Check if the connection between the CMM-DN02 and the AC motor drive is normal.

Table 8-21
NS LED

LED status	Indication	Corrective Action
OFF	No power supply or CMM-DN02 does not pass the MAC ID test.	1. Check the power to input CMM-DN02 and see if the connection is normal. 2. Make sure there is at least one node on the bus. 3. Check if the baud rate of CMM-DN02 is the same as that of the other nodes.
Green light flashes	CMM-DN02 is on-line but does not connect to the master.	1. Configure CMM-DN02 to the scan list of the master. 2. Re-download the configured data to the master.
Green light is ON	CMM-DN02 is on-line and normally connects to the master.	No action is required.
Red light flashes	CMM-DN02 is on-line, but I/O connection is timed-out.	1. Check if the network connection is normal. 2. Check if the master operates normally.
Red light is ON	1. Broken communication. 2. MAC ID test failure. 3. No network power supply. 4. CMM-DNO2 is off-line.	1. Make sure all MAC IDs on the network are unique. 2. Check if the network installation is normal. 3. Check if the baud rate of CMM-DN02 is the same as that of the other nodes. 4. Check if the node address of CMM-DN02 is illegal. 5. Check if the network power supply is normal.

Table 8-20

MS LED

LED status	Indication	Corrective Action
OFF	No power supply or device is off- line	Check the power supply of CMM-DNO2 and see if the connection is normal.
Green light flashes	Waiting for I/O data	Switch the master PLC to RUN status.
Green light is ON	I/O data is normal	No action is required.
Red light flashes	Mapping error	1. Reset CMM-DNO2 2. Re-power the AC motor drive
Red light is ON	Hardware error	1. See the fault codes displayed on the keypad and find the causes. 2. Return the unit to the factory for repair if necessary.
Orange light flashes	CMM-DNO2 is connecting with the AC motor drive.	If the flashing lasts for a long period of time, turn off the power to check if the CMM-DNO2 and the AC motor drive install correctly and are normally connected to each other.

8-11 CMM-EIP02

8-11-1 Product Profile

Figure 8-77

Figure 8-78
Wire: $0.25-0.5 \mathrm{~mm}^{2} /(24-20$ AWG)
Stripping length: 7-8 mm
Torque: $2 \mathrm{~kg}-\mathrm{cm} /(1.7 \mathrm{lb}-\mathrm{in}) /.(0.2 \mathrm{Nm})$

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Communication Port
5. Indicator lights:

NET1 (NS), NET2 (MS)
6. Indicator light:

POWER
7. Indicator light: LINK
8. Ground terminal block

8-11-2 Features

1. Supports Modbus TCP and EtherNet/IP protocol
2. 32 / 32 words read / write parameters correspondence
3. User-defined corresponding parameters
4. MDI / MDI-X auto-detect
5. E-mail alarm
6. IP Filter simple firewall function

8-11-3 Specifications

Network Interface

Interface	RJ45 with Auto MDI / MDIX
Number of ports	1 Port
Transmission method	IEEE 802.3, IEEE 802.3u
Transmission cable	Category 5e shielding 100 M
Transmission speed	$10 / 100$ Mbps Auto-Detect
Network protocol	ICMP, IP, TCP, UDP, DHCP, HTTP, SMTP, Modbus TCP, EtherNet/IP, Delta Configuration

Table 8-22
Electrical Specification

Weight	25 g
Insulation voltage	500 VDC
Power consumption	0.8 W
Power supply voltage	15 VDC

Environment

Noise immunity	ESD (IEC 61800-5-1, IEC 61000-4-2) EFT (IEC 61800-5-1, IEC 61000-4-4) Surge Test (IEC 61800-5-1, IEC 61000-4-5) Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)
Operation / Storage	Operation: $-10-50^{\circ} \mathrm{C}$ (temperature), 90% (humidity) Storage: - $25-70^{\circ} \mathrm{C}$ (temperature), 95% (humidity)
Shock / Vibration resistance	International standards: IEC 61800-5-1, IEC 60068-2-6 / IEC 61800-5-1, IEC 60068-2-27

Table 8-24

8-11-4 Installation

Connecting the CMM-EIP01 to the Network

1. Switch off the power supply.
2. Open the front cover of the drive.
3. Connect the CAT-5e network cable to the RJ45 port on the CMM-EIP02 (as shown in the right figure).

Figure 8-79

RJ45 PIN Definition

PIN	Signal	Definition
1	Tx+	Data transmit positive
2	Tx-	Data transmit negative
3	Rx+	Data receive positive
4	--	N/C
5	--	N/C
6	Rx-	Data receive negative
7	--	N/C
8	--	N/C

Table 8-25

8-11-5 Communication Parameter Settings when MH300 Connects to EtherNet

When you connect the MH300 to EtherNet, set up the communication parameters based on the table below. The EtherNet master reads and writes the frequency command words and operation command words for the MH300 after you set the communication parameters.

Parameter	Function	Current Set Value	Definition of Parameter Values
$00-20$	Frequency command source	8	The frequency command is controlled by the communication card.
$00-21$	Operation command source	5	The operation command is controlled by the communication card.
$09-30$	Decoding method for communication	0	The decoding method for Delta AC motor drive
$09-75$	IP setting	0	Static IP(0) / Dynamic distribution IP(1)
$09-76$	IP address 1	192	IP address 192.168.1.5
$09-77$	IP address 2	168	IP address 192.168.1.5

Parameter	Function	Current Set Value	Definition of Parameter Values
$09-78$	IP address 3	1	IP address 192.168.1.5
$09-79$	IP address 4	5	IP address 192.168.1.5
$09-80$	Netmask 1	255	Netmask 255.255.255.0
$09-81$	Netmask 2	255	Netmask 255.255.255.0
$09-82$	Netmask 3	255	Netmask 255.255.255.0
$09-83$	Netmask 4	0	Netmask 255.255.255.0
$09-84$	Default gateway 1	192	Default gateway 192.168.1.1
$09-85$	Default gateway 2	168	Default gateway 192.168.1.1
$09-86$	Default gateway 3	1	Default gateway 192.168.1.1
$09-87$	Default gateway 4	1	Default gateway 192.168.1.1

Table 8-26

8-11-6 LED Indicator Light \& Troubleshooting

There are four LED indicator lights on CMM-EIP02: POWER LED displays the status of the working power, LINK LED displays the connection status of the communication, NET1 displays the network status, NET2 displays the module status.

LED Indicators

LED Indicators	Status		Indication	Corrective Action
NET1 (NS)	The red and green lights flash alternately	Self-test of network status	No action is required	

Table 8-27

Troubleshooting

Abnormality	Cause	Corrective Action
Cannot find communication card	The CMM-EIP02 does not connect to the network	Make sure the CMM-EIP02 correctly connects to the network.
	The PC and the CMM-EIP02 are in different networks and blocked by network firewall	Search by IP or set up relevant settings using the AC motor drive keypad.
	The CMM-EIP02 does not connect to the network	Make sure the CMM-EIP02 connects to the network.
	Incorrect communication setting in DCISoft	Make sure the communication setting in DCISoft is set to EtherNet.
	The PC and the CMM-EIP02 are in different networks and blocked by network firewall	Set up with the AC motor drive keypad.
Able to open the CMC-EIP02 setup page but fails to use webpage monitoring	Incorrect network setting in the CMM-EIP02	Check if the network setting for the CMM-EIP02 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting at home, please refer to the network setting instruction provided by your supplier ISP.
	Incorrect network setting in the CMM-EIP02	Check if the network setting for the CMM-EIP01 is correct.
	Incorrect mail server setting	Confirm the IP address for the SMTP-Server.

Table 8-28

8-12 CMM-EIP03

8-12-1 Product Profile

Figure 8-81

Figure 8-82
Wire: $0.25-0.5 \mathrm{~mm}^{2} /(24-20$ AWG)
Stripping length: $7-8 \mathrm{~mm}$
Torque: $2 \mathrm{~kg}-\mathrm{cm} /(1.7 \mathrm{lb}-\mathrm{in}) /.(0.2 \mathrm{Nm})$

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Communication Port: P1 (PORT 1), P2 (PORT 2)
5. Indicator lights: NS, MS
6. Indicator light of POWER
7. Indicator light of LINK: P1 (PORT 1), P2 (PORT 2)
8. Ground terminal block

8-12-2 Features

1. Supports Modbus TCP and EtherNet/IP protocol
2. 32 / 32 words read / write parameters correspondence
3. User-defined corresponding parameters
4. MDI / MDI-X auto-detect
5. E-mail alarm
6. IP Filter simple firewall function

8-12-3 Specifications

Network Interface

Interface	RJ45 with Auto MDI / MDIX
Number of ports	2 Ports
Transmission method	IEEE 802.3, IEEE 802.3u
Transmission cable	Category 5e shielding 100 M
Transmission speed	$10 / 100$ Mbps Auto-Detect
Network protocol	ICMP, IP, TCP, UDP, DHCP, HTTP, SMTP, Modbus TCP, EtherNet/IP, Delta Configuration

Table 8-29
Electrical Specification

Weight	30 g
Insulation voltage	500 VDC
Power consumption	1.3 W
Power supply voltage	15 VDC

Table 8-30

Chapter 8 Option Cards | MH300
Environment

Noise immunity	ESD (IEC 61800-5-1, IEC 61000-4-2)
	EFT (IEC 61800-5-1, IEC 61000-4-4)
Surge Test (IEC 61800-5-1, IEC 61000-4-5)	
Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)	

Table 8-31

8-12-4 Installation

Connecting the CMM-EIP03 to the Network

1. Switch OFF the power supply.
2. Open the front cover of the drive.
3. Connect the CAT-5e network cable to the RJ45 port on the CMM-EIP03 (as shown in the right figure).

Figure 8-83

RJ45 PIN Definition

PIN	Signal	Definition
1	Tx+	Data transmit positive
2	Tx-	Data transmit negative
3	Rx+	Data receive positive
4	--	N/C
5	--	N/C
6	Rx-	Data receive negative
7	--	N/C
8	--	N/C

Figure 8-84

Table 8-32

8-12-5 Communication Parameter Settings when MH300 Connects to EtherNet
When you connect the MH300 to EtherNet, set up the communication parameters based on the table below. The EtherNet master reads and writes the frequency command words and operation command words for the MH300 after you set the communication parameters.

Parameter	Function	Current Set Value	Definition of Parameter Values
$00-20$	Frequency command source	8	The frequency command is controlled by the communication card.
$00-21$	Operation command source	5	The operation command is controlled by the communication card.
$09-30$	Decoding method for communication	0	The decoding method for Delta AC motor drive
$09-75$	IP setting	0	Static IP(0) / Dynamic distribution IP(1)
$09-76$	IP address 1	192	IP address 192.168.1.5
$09-77$	IP address 2	168	IP address 192.168.1.5

Parameter	Function	Current Set Value	Definition of Parameter Values
$09-78$	IP address 3	1	IP address 192.168.1.5
$09-79$	IP address 4	5	IP address 192.168.1.5
$09-80$	Netmask 1	255	Netmask 255.255.255.0
$09-81$	Netmask 2	255	Netmask 255.255.255.0
$09-82$	Netmask 3	255	Netmask 255.255.255.0
$09-83$	Netmask 4	0	Netmask 255.255.255.0
$09-84$	Default gateway 1	192	Default gateway 192.168.1.1
$09-85$	Default gateway 2	168	Default gateway 192.168.1.1
$09-86$	Default gateway 3	1	Default gateway 192.168.1.1
$09-87$	Default gateway 4	1	Default gateway 192.168.1.1

Table 8-33

8-12-6 LED Indicator Light \& Troubleshooting

There are four LED indicator lights on CMM-EIP03: POWER LED displays the status of the working power, LINK LED displays the connection status of the communication, NET1 displays the network status, NET2 displays the module status.

LED Indicators

LED Indicators	Status		Indication	Corrective Action
NS	The red and green lights flash alternately		Self-test of network status	No action is required
	OFF		Network not connected	Check if the network cable is connected
	Red	ON	Duplicate IP	Check if the IP setting is wrong
		Flashes	Communication time out / disconnected / IP changed	Check if the communication setting is wrong
	Green	ON	A CIP connection is established	No action is required
		Flashes	A CIP connection is not established after power-on	No action is required
MS	The red and green lights flash alternately		Self-test of product status	No action is required
	OFF		No power supply	Check the power supply
	Red	ON	An error cannot be restored occurs	Hardware malfunction, contact with the dealer
		Flashes	An error can be restored occurs	Check if any parameter setting is wrong
	Green	ON	The parameter setting finished	No action is required
		Flashes	No parameter setting	Follow manual instructions to set parameters
POWER	Orange	ON	Power supply in normal status	No action is required
	OFF		No power supply	Check the power supply
LINK	Orange	On	Network connection in normal status	No action is required
		Flashes	Sending / receiving network packet	No action is required
	OFF		Network not connected	Check if the network cable is connected

Table 8-34

Troubleshooting

Abnormality	Cause	Corrective Action
Cannot find communication card	The CMM-EIP03 does not connect to the network	Make sure the CMM-EIP03 correctly connects to the network.
	The PC and the CMM-EIP03 are in different networks and blocked by network firewall	Search by IP or set up relevant settings using the AC motor drive keypad.
	The CMM-EIP03 does not connect to the network	Make sure the CMM-EIP03 connects to the network.
	Incorrect communication setting in DCISoft	Make sure the communication setting in DCISoft is set to EtherNet.
	The PC and the CMM-EIP03 are in different networks and blocked by network firewall	Set up with the AC motor drive keypad.
Able to open the CMC-EIP03 setup page but fails to use webpage monitoring	Incorrect network setting in the CMM-EIP03	Check if the network setting for the CMM-EIP03 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting at home, please refer to the network setting instruction provided by your supplier ISP.

Table 8-35

8-13 CMM-PD02

8-13-1 Product Profile

Figure 8-85

Figure 8-86
Wire: $0.25-0.5 \mathrm{~mm}^{2} /$ (24-20 AWG)
Stripping length: $7-8 \mathrm{~mm}$
Torque: $2 \mathrm{~kg}-\mathrm{cm} /(1.7 \mathrm{lb}-\mathrm{in}) /.(0.2 \mathrm{Nm})$

8-13-2 Features

1. Supports PZD control data exchange.
2. Supports PKW polling AC motor drive parameters.
3. Supports user diagnosis function.
4. Auto-detects baud rates; supports maximum of 12 Mbps

8-13-3 Specifications

PROFIBUS DP Connector

Interface	DB9 connector
Transmission	High-speed RS-485
Transmission cable	Shielded twisted pair cable
Electrical isolation	$500 \mathrm{~V}_{\mathrm{DC}}$

Table 8-36
Communication

Message type	Cyclic data exchange
Module name	CMM-PD02
GSD document	DELA08DB.GSD
Product ID	08DB (hex)
Serial transmission speed supported (auto-detection)	9.6 kbps; 19.2 kbps; 93.75 kbps; 187.5 kbps; 125 kbps; 250 kbps; 500 kbps; 1.5 Mbps; 3 Mbps ; 6 Mbps ; 12 Mbps (bits per second)

Table 8-37
Electrical Specification

Power supply	$15 \mathrm{~V}_{\mathrm{DC}}$ (supplied by AC motor drive)
Insulation voltage	$500 \mathrm{~V}_{\mathrm{DC}}$
Power consumption	1 W
Weight	28 g

Environment

Noise immunity	ESD (IEC 61800-5-1, IEC 6100-4-2) EFT (IEC 61800-5-1, IEC 6100-4-4) Surge Test (IEC 61800-5-1, IEC 6100-4-5) Conducted Susceptibility Test (IEC 61800-5-1, IEC 6100-4-6)
Operation / Storage	Operation: -10-50 C (temperature), 90\% (humidity) Storage: -25-70 C (temperature), 95\% (humidity)
Shock / Vibration resistance	International standards: IEC 61131-2, IEC 68-2-6 (TEST Fc) / IEC 61131-2 \& IEC 68-2-27(TEST Ea)

Table 8-39

8-13-4 Installation

PROFIBUS DP Connector pin assignment

PIN	PIN name	Definition
1	-	Not defined
2	-	Not defined
3	Rxd / Txd-P	Sending / receiving data P(B)
4	-	Not defined
5	DGND	Data reference ground
6	VP	Power voltage - positive
7	-	Not defined
8	Rxd / Txd-N	Sending / receiving data N(A)
9	-	Not defined

Figure 8-87

Table 8-40

8-13-5 LED Indicator Light \& Troubleshooting

There are two LED indicators on the CMM-PD02: POWER LED and NET LED. POWER LED displays the status of the working power. NET LED displays the connection status of the communication.

POWER LED

LED status	Indication	Corrective Action
Green light is ON	Working power in normal status.	No action is required
OFF	No power	Check if the connection between the CMM-PD02 and the AC motor drive is normal.

Table 8-41
NET LED

LED status	Indication	Corrective Action
Green light is ON	Normal status	No action is required
Red light is ON	The CMM-PD02 does not connect to PROFIBUS DP bus.	Connect the CMM-PD02 to the PROFIBUS DP bus.
Red light flashes	Invalid PROFIBUS communication address	Set the PROFIBUS address of the CMM-PD02 between 1-125 (decimal)
Orange light flashes	The CMM-PD02 fails to communicate with AC motor drive.	Switch off the power and check whether the CMM- PD02 is been installed correctly and connected normally to the AC motor drive.

8-14 CMM-EC02

8-14-1 Product Profile

Figure 8-88

Figure 8-89
Wire: $0.25-0.5 \mathrm{~mm}^{2} /(24-20$ AWG) Stripping length: 7-8 mm
Torque: $2 \mathrm{~kg}-\mathrm{cm} /(1.7 \mathrm{lb}-\mathrm{in}) /.(0.2 \mathrm{Nm})$

1. Screw fixing hole
2. Positioning hole
3. AC motor drive connection port
4. Communication Port
5. Indicator lights
6. Ground terminal block

8-14-2 Features

1. Supports speed mode
2. Supports standard CANopen CiA 402 decoding (CoE)
3. Supports reading and writing parameters
4. Supports stop during disconnection

8-14-3 Specifications

Network Interface

Interface	RJ45
Number of ports	2 ports
Transmission method	IEEE 802.3 , IEEE 802.3u
Transmission cable	Category 5e shielding 100M
Transmission speed	100 Mbps

Table 8-43
Electrical Specification

Power supply voltage	15 VDC
Power consumption	0.8 W
Insulation voltage	500 VDC
Weight	27 g

Table 8-44
Environment

	ESD (IEC 61800-5-1, IEC 6100-4-2)
Noise immunity	EFT (IEC 61800-5-1, IEC 6100-4-4)
Surge Test (IEC 61800-5-1, IEC 6100-4-5)	
Conducted Susceptibility Test (IEC 61800-5-1, IEC 6100-4-6)	
Operation / Storage	Operation: -10-50 C (temperature), 90\% (humidity) Storage: $-25-70^{\circ} \mathrm{C}$ (temperature), 95\% (humidity)
Shock / Vibration	International standards:
resistance	IEC 61800-5-1, IEC 60068-2-6 / IEC 61800-5-1, IEC 60068-2-27

Chapter 8 Option Cards | MH300

8-14-4 RJ45 PIN Definition

PIN	Signal	Definition
1	Tx +	Data transmit positive
2	$\mathrm{Tx}-$	Data transmit negative
3	$\mathrm{Rx}+$	Data receive positive
4	--	N / C
5	--	N / C
6	$\mathrm{Rx}-$	Data receive negative
7	--	N / C
8	--	N / C

12345678

Figure 8-90

Table 8-46

8-14-5 Communication Parameter Settings when MH300 Connects to EtherCAT

When operating MH300 with a CMM-EC02 card, you should set the control source and operation source to be controlled by the communication card. Follow the table below to set up the corresponding parameters.

Parameter	Setting Value / Display	Description
$00-20$	8	The frequency command is controlled by the communication card.
$00-21$	5	The control command is controlled by the communication card.
$09-30$	1	Communication decoding method: EtherCAT only supports decoding method 2 (60xx).
$09-60$	6	Communication card identification: When the drive connects with CMM-EC02, the display shows 6 (EtherCAT Slave).

Table 8-47
8-14-5 LED Indicator Light

LED	Status		Indication
RUN	Green	ON	Normal operation
		Flashes	Pre-operation (The light stays ON for 200 ms and then goes OFF for 200 ms alternately)
			Operate in safe mode (The light stays ON for 200 ms and then goes OFF for 1000 ms alternately)
		OFF	Initial state
ERROR	Red	Flashes	Basic configuration error (The light stays ON for 200 ms and then goes OFF for 200 ms alternately)
			Status switching error (The light stays ON for 200 ms and then goes OFF for 1000 ms alternately)
			Time out (The light stays ON for 200 ms twice, and then goes OFF for 200 ms alternately)
		OFF	No errors
LINK-IN	Green	ON	Network connection is in normal status
		Flashes	Network is in operation
		OFF	Doesn't connect to network

LED	Status		Indication
LINK-OUT	Green	ON	Network connection is in normal status
		Flashes	Network is in operation
		Doesn't connect to network	

Table 8-48

8-14-6 Network Connection

Pay attention to the connection method for EtherCAT because its packet delivery is directional. When front-mounting the communication card, the delivery direction for CMM-EC02 is from left (IN) to right (OUT). The diagram below shows the correct wiring for front-mounting CMM-EC01.

Front-mounting the communication card:

Figure 8-91

After finishing assembling the hardware, supply power to the drive. Then, Pr.09-60 on the drive should display "EtherCAT", with a current value of 6 . If not, make sure your version of the drive is correct (MH300 needs firmware version 1.02 or later) and verify if the communication card is correctly connected.

8-15 Delta Standard Fieldbus Cables

Delta Cables	Part Number	Description	Length
CANopen Cable / RJ45 extension cable for keypad	UC-CMC003-01A	CANopen cable, RJ45 connector	0.3 m
	UC-CMC005-01A	CANopen cable, RJ45 connector	0.5 m
	UC-CMC010-01A	CANopen cable, RJ45 connector	1 m
	UC-CMC015-01A	CANopen cable, RJ45 connector	1.5 m
	UC-CMC020-01A	CANopen cable, RJ45 connector	2 m
	UC-CMC030-01A	CANopen cable, RJ45 connector	3 m
	UC-CMC050-01A	CANopen cable, RJ45 connector	5 m
	UC-CMC100-01A	CANopen cable, RJ45 connector	10 m
	UC-CMC200-01A	CANopen cable, RJ45 connector	20 m
DeviceNet Cable	UC-DN01Z-01A	DeviceNet cable	305 m
	UC-DN01Z-02A	DeviceNet cable	305 m
EtherNet / EtherCAT Cable	UC-EMC003-02A	Ethernet / EtherCAT cable, Shielding	0.3 m
	UC-EMC005-02A	Ethernet / EtherCAT cable, Shielding	0.5 m
	UC-EMC010-02A	Ethernet / EtherCAT cable, Shielding	1 m
	UC-EMC020-02A	Ethernet / EtherCAT cable, Shielding	2 m
	UC-EMC050-02A	Ethernet / EtherCAT cable, Shielding	5 m
	UC-EMC100-02A	Ethernet / EtherCAT cable, Shielding	10 m
	UC-EMC200-02A	Ethernet / EtherCAT cable, Shielding	20 m
PROFIBUS Cable	UC-PF01Z-01A	PROFIBUS DP cable	305 m

Table 8-49

Chapter 9 Specification

9-1 115V Models
9-2 230V Models
9-3 460V Models
9-4 General Specifications
9-5 Environment for Operation, Storage and Transportation
9-6 Derating Curve

9－1 115V Models

115V，single－phase

Frame			A			C		
Model VFD＿＿＿＿＿＿＿＿SAA			1A6MH11＿＿		2A5MH11＿＿		5A0MH11＿＿	
			AN	EN	AN	EN	AN	EN
Applicable Motor Output（kW）			0.2		0.4		0.75	
Applicable Motor Output（HP）			1／4		1／2		1	
	Heavy duty	Rated Output Capacity（kVA）	0.6		1.0		1.9	
		Rated Output Current（A）	1.6		2.5		5.0	
		Carrier Frequency（kHz）${ }^{*}$	2－15（Default：4）					
	Normal Duty	Rated Output Capacity（kVA）	0.7		1.0		2.1	
		Rated Output Current（A）${ }^{\text {＊}}$	1.8		2.7		5.5	
		Carrier Frequency（kHz）	2－15（Default：4）					
	Rated Input Current（A）	Heavy Duty	6.0		9.4		18.8	
들		Normal Duty	6.8		10.1		20.6	
$\mathbb{\Upsilon}$	Rated Voltage／Frequency		Single－phase，100－120 $\mathrm{V}_{\text {AC }}(-15 \%-+10 \%)$ ， $50 / 60 \mathrm{~Hz}$					
$\begin{aligned} & \text { 亏⿳亠口䒑口 } \end{aligned}$	Operating Voltage Range（ V_{AC} ）		85－132					
	Frequency Range（Hz）		47－63					
Weight（kg）			0.71		0.76		1.24	
Cooling Method			Convective cooling			Fan cooling		
EMC Filter			Optional					
Ingress Protection Rating			IP20	IP40＊3	IP20	IP40＊3	IP20	IP40＊3

Table 9－1

NOTE：

1．The default is heavy duty mode．
2．The value of the carrier frequency is set in the factory．To increase the carrier frequency，decrease the current． See the derating curve diagram in Section 9－6．
3．The IP rating of the wiring area（main circuit terminals and control terminals，frame $A / B / C / D / E / F$ ）and the vent near the capacitor（frame C／D／E／F）is IP20．
4．When the load is a shock or impact load，use a higher level model．

9-2 230V Models

230V, single-phase

Frame			A				B			
Model VFD_-_-_-_-_SAA			1A6MH21__		2A8MH21__		1A6MH21AF	2A8MH21AF	5AOMH21__	
			AN	EN	AN	EN			AN	EN
Applicable Motor Output (kW)			0.2		0.4		0.2	0.4		75
Applicable Motor Output (HP)			1/4		1/2		1/4	1/2		
	Heavy Duty	Rated Output Capacity (kVA)	0.6		1.1		0.6	1.1		
"		Rated Output Current (A)	1.6		2.8		1.6	2.8		
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbb{O}} \\ & \hline \end{aligned}$		Carrier Frequency (kHz) *2	2-15 (Default: 4)							
$\underset{亏}{7}$	Normal Duty	Rated Output Capacity (kVA)	0.7		1.2		0.7	1.2		
$\frac{\ddot{7}}{7}$		Rated Output Current (A)	1.8		3.2		1.8	3.2		
		Carrier Frequency (kHz) ${ }^{*}$	2-15 (Default: 4)							
	Rated Input Current (A)	Heavy Duty	5.1		7.3		5.1	7.3		. 2
$\underset{\underline{D}}{\underline{D}}$		Normal Duty	5.8		8.3		5.8	8.3		. 7
$\stackrel{\widetilde{\sim}}{\underset{\sim}{4}}$	Rated Voltage / Frequency		Single-phase, 200-240 V ${ }_{\text {AC }}(-15 \%-+10 \%), 50 / 60 \mathrm{~Hz}$							
를	Operating Voltage Range (V_{AC})		170-265							
Frequency Range (Hz)			47-63							
Weight (kg)			0.71		0.76		1.34	1.34	1.25	
Cooling Method			Convective cooling					Fan cooling		
EMC Filter			Optional				Built-in		Optional	
Ingress Protection Rating			IP20	IP40*3	IP20	IP40*3	IP20	IP20	IP20	IP40*3

Frame			B	C						
Model VFD________ SAA			5A0MH21AF	7A5MH21_-			11AMH21_-			
			AN	EN	AF	AN	EN	AF		
Applicable Motor Output (kW)				0.75		1.5			2.2	
Applicable Motor Output (HP)			1		2			3		
	Heavy Duty	Rated Output Capacity (kVA)	1.9		2.9			4.2		
		Rated Output Current (A)	5.0		7.5			11		
		Carrier Frequency (kHz) ${ }^{*}$	2-15 (Default: 4)							
	Normal Duty	Rated Output Capacity (kVA)	2.0		3.2			4.8		
		Rated Output Current (A)	5.2		8.5			12.5		
		Carrier Frequency (kHz) ${ }^{*}$	2-15 (Default: 4)							
	Rated Input Current (A)	Heavy Duty	11.2	16.5			24.2			
$\stackrel{\text { O }}{\substack{=\\ \hline}}$		Normal Duty	11.7	18.5			27.5			
$\underset{ \pm}{\mathscr{\sim}}$	Rated Voltage / Frequency									
륻	Operating Voltage Range (V_{AC})		170-265							
	Frequency Range (Hz)		47-63							
Weight (kg)			1.34	1.24		1.84	1.24		1.84	
Cooling Method			Fan cooling							
		EMC Filter	Built-in	Optional		Built-in	Optional		Built-in	
Ingress Protection Rating			IP20		IP40*3	IP20		IP40*3	IP20	

Table 9-2

NOTE:

1. The default is heavy duty mode.
2. The value of the carrier frequency is set in the factory. To increase the carrier frequency, decrease the current.

See the derating curve diagram in Section 9-6.
3. The IP rating of the wiring area (main circuit terminals and control terminals, frame $A / B / C / D / E / F$) and the vent near the capacitor (frame C / D/E / F) is IP20.
4. When the load is a shock or impact load, use a higher level model.

230V，three－phase

Frame			A								B	
Model VFD＿＿＿－＿－＿－＿－＿A			1A6MH23＿＿2A8MH23				5A0MH23				7A5MH23	
			ANSA	ENSA	ANSA	ENSA	ANSN	ENSN	ANSA	ENSA	ANSA	ENSA
Applicable Motor Output（kW）			0.2		0.4		0.75		0.75		1.5	
Applicable Motor Output（HP）			0.25		0.5		1		1		2	
	Rated Output Capacity（kVA）		0.6		1.9		1.9		1.9		2.9	
	$\underset{\sim}{\text { 区 }}$	tput Current（A）	1.6		5.0		5.0		5.0		7.5	
	I Carrier	equency（kHz）${ }^{\text {2 }}$	2－15（Default：4）									
	$\bar{\sim}$	tput Capacity（kVA）	0.7		1.2		2.0		2.0		3.0	
	Ey Rated O	tput Current（A）	1.8		3.2		5.2		5.2		8.0	
	2 Carrier	quency（kHz）${ }^{2}$	2－15（Default：4）									
	Rated Input Current（A）	Heavy Duty	1.9		3.4		6.0		6.0		9.0	
$\stackrel{\text { O }}{=}$		Normal Duty	2.2		3.8		6.2		6.2		9.6	
$\stackrel{\widetilde{\circ}}{\stackrel{8}{4}}$	Rated Voltage／Frequency		Three－phase，200－240 V $\mathrm{AC}^{\text {（ }}$（15\％－＋10\％）， $50 / 60 \mathrm{~Hz}$									
$\begin{aligned} & \text { ⿳亠丷口犬} \\ & \underline{C} \end{aligned}$	Operating Voltage Range（ V_{AC} ）		170－265									
	Frequency Range（Hz）		47－63									
Weight（kg）			0.76		0.76		0.81		0.77		1.05	
Cooling Method			Convective cooling						Fan cooling			
EMC Filter			Optional									
Ingress Protection Rating			IP20	IP40＊3	IP20	IP40＊3	IP20	IP40＊3	IP20	IP40 ${ }^{\text {＊}}$	IP20	IP40＊3

Frame				C				$\begin{array}{\|c\|} \hline \text { D } \\ \hline \text { 25AMH23 } \end{array}$		E				F	
Model VFD＿＿＿＿＿＿＿＿SAA				11AMH23		17AMH23				33AMH23		49AMH23		65AMH23	
				AN	EN	AN4	EN	AN	EN	AN	EN	AN	EN	AN	EN
Applicable Motor Output（kW）				2.2		3.7		5.5		7.5		11		15	
Applicable Motor Output（HP）				3		5		7.5		10		15		20	
		Rated Output Capacity（kVA）		4.2		6.5		9.5		12.6		18.7		24.8	
		Rated Output Current（A）		11.0		17.0		25.0		33.0		49.0		65.0	
		Carrier Frequency（kHz）${ }^{\text {2 }}$		2－15（Default：4）											
		Rated	ut Capacity（kVA）	4.8		7.4		10.3		13.7		19.4		26.3	
		Rated	t Current（A）	12.5		19.5		27.0		36.0		51.0		69.0	
		Carrier	ency（kHz）${ }^{*}$	2－15（Default：4）											
	Rated Input Current（A）		Heavy Duty	13.2		20.4		30.0		39.6		58.8		78.0	
읃			Normal Duty	15.0		23.4		32.4		43.2		61.2		82.8	
	Rated Voltage／Frequency			three－phase，200－240 $\mathrm{V}_{\mathrm{AC}}(-15 \%-+10 \%), 50 / 60 \mathrm{~Hz}$											
를	Operating Voltage Range（ V_{AC} ）			170－265											
	Frequency Range（Hz）			47－63											
Weight（kg）				1.24		1.24		2.07		3.97		3.97		6.30	
Cooling Method				Fan cooling											
EMC Filter				Optional											
Ingress Protection Rating				IP20	IP40＊3										

Table 9－3

NOTE：

1．The default is heavy duty mode．
2．The value of the carrier frequency is set in the factory．To increase the carrier frequency，decrease the current． See the derating curve diagram in Section 9－6．
3．The IP rating of the wiring area（main circuit terminals and control terminals，frame $A / B / C / D / E / F$ ）and the vent near the capacitor（frame C／D／E／F）is IP20．
4．When the load is a shock or impact load，use a higher level model．

230V, three-phase

Frame				G				I			
Model VFD________SAA				75AMH23AN_-		90AMH23AN_-		120MH23AN_-		146MH23AN_-	
Applicable Motor Output (kW)				18.5		22		30		$37(45) * 3$	
Applicable Motor Output (HP)				25		30		40		50 (60)*3	
		Rated Output Capacity (kVA)		28.9		34.4		46.9		57.8	
		Rated Output Current (A)		75		90		120		146	
		Carrier Frequency (kHz) ${ }^{*}$		2-15 (Default: 4)							
		Rated Output Capacity (kVA)		31.6		37.6		51.3		63.3	
		Rated	tput Current (A)	81		102		134		160	
		Carrier Frequency (kHz) ${ }^{*}$		2-15 (Default: 4)							
	Rated Input Current (A)		Heavy Duty	77		92		117		143	
$\stackrel{0}{=}$			Normal Duty	85		10		12		15	
$\stackrel{\mathscr{q}}{ \pm}$	Rated Voltage / Frequency			Three-phase, 200-240 V ${ }_{\text {AC }}(-15 \%-+10 \%), 50 / 60 \mathrm{~Hz}$							
믇	Operating Voltage Range (VAC)			170-265							
	Frequency Range (Hz)			47-63							
Weight (kg)				11.8		11.8		33		33.5	
Cooling Method				Fan cooling							
EMC Filter				Optional	Built-in	Optional	Built-in	Optional	Built-in	Optional	Built-in
Ingress Protection Rating				IP20							

Table 9-4

NOTE:

1. The default is heavy duty mode.
2. The value of the carrier frequency is set in the factory. To increase the carrier frequency, decrease the current. See the derating curve diagram in Section 9-6.
3. The value in the parentheses is the applicable motor power under normal duty.
4. When the load is a shock or impact load, use a higher level model.

9-3 460V Models

460V, three-phase

Frame			A						B	
Model VFD___-_-_-_-_A			1A5MH43		3A0MH43				1A5MH43AFSA	3A0MH43AFSA
			ANSA	ENSA	ANSN	ENSN	ANSA	ENSA		
Applicable Motor Output (kW)			0.4		0.75		0.75		0.4	0.75
Applicable Motor Output (HP)			0.5		1		1		0.5	1
	Heavy Duty	Rated Output Capacity (kVA)	1.1		2.3		2.3		1.1	2.3
-		Rated Output Current (A)	1.5		3.0		3.0		1.5	3.0
๕ั		Carrier Frequency (kHz) ${ }^{\text {² }}$	2-15 (Default: 4)							
$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & \stackrel{2}{3} \\ & 0 \end{aligned}$	Normal Duty	Rated Output Capacity (kVA)	1.4		2.5		2.5		1.4	2.5
		Rated Output Current (A)	1.8		3.3		3.3		1.8	3.3
		Carrier Frequency (kHz) *2	2-15 (Default: 4)							
	Rated Input	Heavy Duty	2.1		4.2		4.2		2.1	4.2
	Current (A)	Normal Duty	2.5		4.6		4.6		2.5	4.6
	Rated Voltage / Frequency		Three-phase, 380-480 V $\mathrm{AC}^{\text {(}} \mathbf{- 1 5} \%-+10 \%$), $50 / 60 \mathrm{~Hz}$							
	Operating Voltage Range (V_{AC})		323-528							
	Frequency Range (Hz)		47-63							
Weight (kg)			0.76		0.81		0.77		1.34	1.34
Cooling Method			Convective cooling				Fan cooling			
EMC Filter			Optional						Built-in	
Ingress Protection Rating			IP20	IP40*3	IP20	IP40*3	IP20	IP40*3	IP20	

Frame			B			C						D					
Model VFD________ SAA			4A2MH43 _ -			5A7MH43_-			9A0MH43 _			13AMH43__			17AMH43		
			AN	EN	AF												
Applicable Motor Output (kW)			1.5			2.2			3.7			5.5			7.5		
Applicable Motor Output (HP)			2			3			5			7.5			10		
	Heavy Duty	Rated Output Capacity (kVA)	3.2			4.3			6.9			9.9			13.3		
		Rated Output Current (A)	4.2			5.7			9.0			13.0			17.5		
		Carrier Frequency (kHz) ${ }^{*}$	2-15 (Default: 4)														
	Normal Duty	Rated Output Capacity (kVA)	3.5			5.0			8.0			11.1			15.1		
		Rated Output Current (A)	4.6			6.5			10.5			14.5			19.8		
		Carrier Frequency (kHz) ${ }^{*}$	2-15 (Default: 4)														
	Rated Input	Heavy Duty	5.8			6.1			9.9			14.3			19.3		
	Current (A)	Normal Duty	6.4			7.2			11.6			16.0			21.8		
	Rated Voltage / Frequency		Three-phase, 380-480 V AC ($-15 \%-+10 \%$), $50 / 60 \mathrm{~Hz}$														
	Operating Voltage Range (V_{AC})		323-528														
	Frequency Range (Hz)		47-63														
		Weight (kg)	1.0		1.34		24	1.84		24	1.84	2.07		2.93	2.07		2.93
Cooling Method			Fan cooling														
EMC Filter			Optional		$\begin{array}{\|c} \mid \text { Built- } \\ \text { in } \end{array}$	Optional		$\begin{array}{\|c} \hline \text { Built- } \\ \text { in } \end{array}$	Optional		$\begin{aligned} & \text { Built- } \\ & \text { in } \end{aligned}$	Optional		Built in	Optional		$\begin{array}{\|c} \hline \text { Built- } \\ \text { in } \end{array}$
Ingress Protection Rating			IP20		${ }_{\text {IP40 }}{ }_{\text {* }}$	IP20		${ }_{\text {P43 }}$	IP20		$\underset{* 3}{ }$	IP20		$\mid \mathrm{IP} 40$	IP20		${ }_{\text {IP40 }}{ }_{\text {* }}$

Table 9-5

NOTE:

1. The default is heavy duty mode.
2. The value of the carrier frequency is set in the factory. To increase the carrier frequency, decrease the current. See the derating curve diagram in Section 9-6.
3. The IP rating of the wiring area (main circuit terminals and control terminals, frame $A / B / C / D / E / F$) and the vent near the capacitor (frame C/D/E/F) is IP20.
4. When the load is a shock or impact load, use a higher level model.

460V, three-phase

Frame				E						F					
Model VFD				25AMH43			32AMH43			38AMH43			45AMH43		
				AN	EN	AF									
Applicable Motor Output (kW)				11			15			18.5			22		
Applicable Motor Output (HP)				15			20			25			30		
	Heavy Duty	Rated	Output Capacity (kVA)	19.1			24.4			29			34.3		
		Rated	utput Current (A)	25.0			32.0			38.0			45.0		
		Carrie	Frequency (kHz) ${ }^{2}$	2-15 (Default: 4)											
	Normal Duty	Rated	Output Capacity (kVA)	21.3			27.4			31.6			37.3		
		Rated	Output Current (A)	28.0			36.0			41.5			49.0		
		Carrie	Frequency (kHz) *2	2-15 (Default: 4)											
	Rated Input Current (A)		Heavy Duty	27.5			35.2			41.8			49.5		
			Normal Duty	30.8			39.6			45.7			53.9		
	Rated Voltage / Frequency			Three-phase, 380-480 V ${ }_{\text {AC }}(-15 \%-+10 \%), 50 / 60 \mathrm{~Hz}$											
	Operating Voltage Range (VAC)			323-528											
	Frequency Range (Hz)			47-63											
Weight (kg)				3.97		5.19	3.97		5.19	6.30		8.56	6.30		8.56
Cooling Method				Fan cooling											
EMC Filter				Optional		Builtin	Option al		Builtin	Option al		Builtin	Option al		$\begin{aligned} & \text { Built- } \\ & \text { in } \end{aligned}$
Ingress Protection Rating				IP20	IP40*3	IP20		IP40*3	IP20		IP40*3	IP20		IP40*3	IP20

Frame				$\frac{G}{60 A M H 43}$		H				1			
Model VFD________ SAA						75AMH43 __		91AMH43 __		112MH43 __		150MH43	
				AN	AF								
Applicable Motor Output (kW)				30		37		45		55		75	
Applicable Motor Output (HP)				40		50		60		75		100	
	Heavy Duty	Rate	Output Capacity (kVA)	46.9		57.8		70.3		85.9		117.2	
"응		Rate	Output Current (A)	60		75		91		112		150	
๙		Carri	Frequency (kHz)*2	2-15 (Default: 4)									
$\begin{aligned} & \stackrel{\rightharpoonup}{\partial} \\ & \stackrel{2}{3} \\ & 0 \end{aligned}$	Norma Duty	Rate	Output Capacity (kVA)	51.3		63.3		76.9		94		128.2	
		Rate	Output Current (A)	69		85		108		128		180	
		Carrier Frequency (kHz) ${ }^{\text {2 }}$		2-15 (Default: 4)									
	Rated Input Current (A)		Heavy Duty	63		66		80		110		147	
			Normal Duty	72.5		77		97		123		173	
	Rated Voltage / Frequency			Three-phase, 380-480 V ${ }_{\text {AC }}(-15 \%-+10 \%), 50 / 60 \mathrm{~Hz}$									
	Operating Voltage Range (VAC)			323-528									
	Frequency Range (Hz)			47-63									
Weight (kg)				11.7	11.6	25.1	30.6	28.6	32.5	36	42.5	39	48
Cooling Method				Fan cooling									
EMC Filter				Optional	Built-in								
Ingress Protection Rating				IP20									

Table 9-6

NOTE:

1. The default is heavy duty mode.
2. The value of the carrier frequency is set in the factory. To increase the carrier frequency, decrease the current. See the derating curve diagram in Section 9-6.
3. The IP rating of the wiring area (main circuit terminals and control terminals, frame A/B/C/D/E/F) and the vent near the capacitor (frame C / D / E/F) is IP20.
4. When the load is a shock or impact load, use a higher level model.

9-4 General Specifications

	Control Method	V/F, SVC, FOC, V/F+PG, FOC+PG, TQC+PG
	Applied Motor	IM (Induction Motor), PM motor control (IPM and SPM)
	Max. Output Frequency	0.00-599.00Hz
	Starting Torque*1	$150 \% / 3 \mathrm{~Hz}$ (V/F, SVC, V/F+PG control for IM, Heavy duty) $200 \% / 0.5 \mathrm{~Hz}$ (FOC control for IM, Heavy duty) $200 \% / 0 \mathrm{~Hz}$ (FOC+PG control for IM, Heavy duty) $100 \% /(1 / 20$ of motor rated frequency) (SVC control for PM, Heavy duty) $150 \% / 0 \mathrm{~Hz}$ (FOC control for PM, Heavy duty) $200 \% / 0 \mathrm{~Hz}$ (Closed loop vector control w/ PG for PM, Heavy duty)
	Speed Control Range*1	1: 50 (V/F, SVC, V/F+PG control for IM, Heavy duty) 1: 100 (FOC control for IM, Heavy duty) 1: 1000 (FOC+PG control for IM, Heavy duty) 1: 20 (SVC control for PM, Heavy duty) 1: 100 (FOC control for PM, Heavy duty) 1: 1000 (Closed loop vector control w/ PG for PM, Heavy duty)
Control Characteristics	Overload Capability	Normal duty: 120% of rated current can endure for 1 minute during every 5 minutes 150% of rated current can endure for 3 seconds during every 30 seconds. Heavy duty: 150% of rated current can endure for 1 minute during every 5 minutes 200% of rated current can endure for 3 seconds during every 30 seconds
	Frequency Setting Signal	$\begin{aligned} & 0-10 \mathrm{~V} /+10--10 \mathrm{~V} \\ & 4-20 \mathrm{~mA} / 0-10 \mathrm{~V} \\ & 1 \text { channel pulse input (} 33 \mathrm{kHz} \text {), } 2 \text { channel pulse output (} 33 \mathrm{kHz} \text {) } \end{aligned}$
	Main Function	Multiple motor switches (maximum eight independent motor parameter settings), Fast start-up, Deceleration Energy Back (DEB) function, Wobble frequency function, Fast deceleration function, Master and Auxiliary frequency source selectable, Momentary power loss ride thru, Speed search, Over-torque detection, Torque limit, 16-step speed (max.), Accel./ decel. time switch, S-curve accel. / decel., three-wire sequence, JOG frequency, Upper / lower limits for frequency reference, DC injection braking at start and stop, PID control, Built-in PLC (5K steps), Positioning function, Tension control function, Built-in RS-485 (Modbus) and CANopen.
	Application Macro	Built-in application parameter groups (selected by industry) and user-defined application parameter groups.
Protection	Motor Protection	Over-current, Over-voltage, Over-temperature, Phase loss, Over-load
Characteristics	Stall Prevention	Stall prevention during acceleration, deceleration and running (independent settings)
	Communication Cards	DeviceNet, EtherNet/IP, Profibus DP, Modbus TCP, EtherCAT
	PG Cards	```EMM-PG01L (ABZ, Line Driver) EMM-PG01O (ABZ, Open Collector) EMM-PG01R (Resolver, applicable to permanent magnet synchronous AC motor)```
Accessory	I/O Extension Cards	EMM-D33A (Digital Card - 3-in 3-out) EMM-A22A (Analog Card - 2-in 2-out) EMM-R2CA (Relay Card, output via 2 C contacts) EMM-R3AA (Relay Card, output via 3 A contacts)
	External DC Power Supply	EMM-BPS02 (DC 24 V power supply card)
Product C	ompliance*2	UL, CE, RCM, RoHS, REACH
Safety S	Standard*2	TÜV (SIL 2)

NOTE:

1. Control accuracy may vary depending on the environment, application conditions, different motors or encoders. For details, contact our company or your local distributor.
2. For information on Certifications and Declaration of Conformity (DoC), visit Delta | Download Center (deltaww.com)

9-5 Environment for Operation, Storage and Transportation

DO NOT expose the AC motor drive to bad environmental conditions, such as dust, direct sunlight, corrosive / inflammable gasses, humidity, liquid or vibration. The salt in the air must be less than $0.01 \mathrm{mg} / \mathrm{cm}^{2}$ every year.

	Installation location	IEC60364-1/ IE	0664-1 Pollution degree 2,	door use only.
			IP20 / UL Open Type	$\begin{array}{ll} \hline-20-50^{\circ} \mathrm{C} & \\ -20-60^{\circ} \mathrm{C} & \text { (Derating required) } \end{array}$
		Operation	IP40 / NEMA 1 / UL Type 1	$-20-40^{\circ} \mathrm{C}$
	Surrounding		Installed side by side	$-20-55^{\circ} \mathrm{C}$ (Derating required)
		Storage	$-40-85^{\circ} \mathrm{C}$	
		Transportation	$-20-70^{\circ} \mathrm{C}$	
		Non-condensa	non-freezing	
		Operation	Max. 90\%	
Environment	Rated Humidity	Storage / Transportation	Max. 95\%	
		No condense w		
		Operation	86-106 kPa	
	Air Pressure	Storage / Transportation	70-106 kPa	
		IEC 60721-3-3		
		Operation	Class 3C2; Class 3S2	
	Pollution Level	Storage	Class 2C2; Class 2S2	
		Transportation	Class 1C2; Class 1S2	
		Concentrate pro	bited	
	Altitude	Operable at altit	e below 1000 m (derating if	operated over 1000 m)
Package	Storage	ISTA procedur	(according to weight) IEC	068-2-31
Drop	Transportation	ISTA procedure	(according to weight) IEC 600	-
Vibration	In Operation	1.0 mm , peak to $13.2-55 \mathrm{~Hz}$; 1.	eak value range from 2-13.2 range from $55-512 \mathrm{~Hz}$; com	Hz; 0.7-1.0 G range from plies with IEC 60068-2-6.
Vibration	Not in Operation	2.5 G peak, from 0.015" maximu	$\begin{aligned} & \mathrm{Hz}-2 \mathrm{kHz} \\ & \text { displacement } \end{aligned}$	
	In Operation	$15 \mathrm{G}, 11 \mathrm{~ms}$; co	plies with IEC / EN 60068-2-27	
Impact	Not in Operation	$30 \mathrm{G}^{* 1}$		

Table 9-8

NOTE:

1. 20 G for Frame A - D option card installing kit

9-6 Derating for Ambient Temperature and Altitude

- For more information on calculation for derating curve, refer to Pr.06-55.
- When choosing the correct model, consider factors such as ambient temperature, altitude, carrier frequency, control mode, and so on.
That is, Actual rated current for application $(A)=$ Rated output current $(A) \times$ Ambient temp. rated derating (\%) x Altitude rated derating (\%) x [Normal / Advanced control] carrier frequency rated derating (\%)

Protection Level	Operating Environment
	If the AC motor drive operates at the rated current, the ambient temperature needs to be between $-20-50^{\circ} \mathrm{C}$. If the temperature is above $50^{\circ} \mathrm{C}$, decrease 2.5% of the rated current for every $1^{\circ} \mathrm{C}$ increase in temperature. The maximum allowable temperature is $60^{\circ} \mathrm{C}$.
IP20 / UL Open Type	

Table 9-9
Ambient temperature derating curve

Fig. 9-1
IP20 / UL Open Type:
The rated output current derating (\%) in normal duty / heavy duty when carrier frequency is the default value:

Ambient temperature (Ta) / Carrier frequency (kHz)	30	35	40	45	50	55	60
Default	100	100	100	100	100	87	75

Table 9-10
IP40 / NEMA 1 / UL Type 1:
The rated output current derating (\%) in normal duty / heavy duty when carrier frequency is the default value:

Ambient temperature (Ta) / 100\% load frequercy (kHz)	30	35	40	45	50	55	60
Default	100	100	100	87	75	63	50

Table 9-11

Altitude derating curve

Condition	Operating Environment
High Altitude	If the AC motor drive is installed at an altitude of $0-1000 \mathrm{~m}$, follow normal operation restrictions. For altitudes of 1000-2000 m, decrease the drive's rated current by 1% or lower the temperature by $0.5^{\circ} \mathrm{C}$ for every 100 m increase in altitude. The maximum altitude for corner grounding is 2000 m. If installing at an altitude higher than 2000 m is required, contact Delta for more information.

Table 9-12

Fig. 9-2
The rated output current derating (\%) for different altitudes above sea level:

Altitude (m)	0	1000	1500	2000
Output Current / Rated Current (\%)	100	100	95	90

Table 9-13
For IP20 / UL Open Type

Current derating at ambient temperature				
Ambient temperature		$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$
Operating altitude (m)	0-1000	100\%		
	1001-1500	100\%		95\%
	1501-2000	100\%	95\%	90\%

Table 9-14

For IP40 / NEMA1 / UL Type 1

Current derating at ambient temperature						
Ambient temperature						
Operating altitude (m)	$0-1000$	$30^{\circ} \mathrm{C}$				$35^{\circ} \mathrm{C}$
	$1001-1500$	100%				
	$1501-2000$	100%	95%	90%		

Table 9-15

Carrier frequency derating curve

Normal duty (Pr.00-16 = 0)

- Space vector pulse width modulation (SVPWM) mode

230V models

230 V models

Fig. 9-3
In normal duty, the rated output current of SVPWM mode in different carrier frequency. (Unit: \%)

Ambient temperature (Ta) 100% load	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$50^{\circ} \mathrm{C}$	100	100	94	88	83	79	75	71	68	65	62	59	56	54
$40^{\circ} \mathrm{C}$	100	100	100	97	91	86	81	77	73	70	67	64	61	59

Table 9-16
460V models

Fig. 9-4
In normal duty, the rated output current of SVPWM mode in different carrier frequency. (Unit: \%)

Ambient Fc (kHz) temperature (Ta) 100% load	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$50^{\circ} \mathrm{C}$	100	100	100	91	82	74	67	61	55	50	46	43	40	37
$40^{\circ} \mathrm{C}$	100	100	100	100	91	83	76	69	63	57	53	49	46	43

Table 9-17

- Dual pulse-width modulation (DPWM) mode

230V models

Fig. 9-5
In normal duty, the rated output current of DPWM mode in different carrier frequency. (Unit: \%)

Ambient Fc (kHz) temperature (Ta) 100% load	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$50^{\circ} \mathrm{C}$	100	100	100	100	94	90	86	83	80	77	75	72	70	68
$40^{\circ} \mathrm{C}$	100	100	100	100	100	100	96	91	87	84	81	78	75	73

Table 9-18
460 V models

Fig. 9-6
In normal duty, the rated output current of DPWM mode in different carrier frequency. (Unit: \%)

Ambient (Ta) Fc (kHz) temperature (Ta) 100% load	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$50^{\circ} \mathrm{C}$	100	100	100	100	100	94	88	82	77	72	67	62	58	55
$40^{\circ} \mathrm{C}$	100	100	100	100	100	100	96	91	86	81	76	71	67	63

Table 9-19

Heavy duty (Pr.00-16 = 1)

- Space vector pulse width modulation (SVPWM) mode

230V models

230 V models

$--50^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$
Fig. 9-7
In heavy duty, the rated output current of SVPWM mode in different carrier frequency. (Unit: \%)

Ambient temperature (Ta) 100% load	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$50^{\circ} \mathrm{C}$	100	100	100	100	96	91	87	83	79	75	72	69	66	63
$40^{\circ} \mathrm{C}$	100	100	100	100	100	100	100	95	90	86	82	78	75	72

Table 9-20
460 V models

Fig. 9-8
In heavy duty, the rated output current of SVPWM mode in different carrier frequency. (Unit: \%)

Ambient temperature (Ta) 100% load	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$50^{\circ} \mathrm{C}$	100	100	100	100	98	89	81	74	68	62	57	53	49	46
$40^{\circ} \mathrm{C}$	100	100	100	100	100	98	90	82	75	69	64	60	56	52

Table 9-21

- Dual pulse-width modulation (DPWM) mode

230V models

Fig. 9-9
In heavy duty, the rated output current of DPWM mode in different carrier frequency. (Unit: \%)

Ambient Fc (kHz) temperature (Ta) 100% load	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$50^{\circ} \mathrm{C}$	100	100	100	100	100	100	100	96	93	90	87	84	81	79
$40^{\circ} \mathrm{C}$	100	100	100	100	100	100	100	100	100	100	100	96	93	90

Table 9-22
460 V models

Fig. 9-10
In heavy duty, the rated output current of DPWM mode in different carrier frequency. (Unit: \%)

Ambient Fc (kHz) temperature (Ta) 100% load	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$50^{\circ} \mathrm{C}$	100	100	100	100	100	100	100	98	92	86	81	76	72	68
$40^{\circ} \mathrm{C}$	100	100	100	100	100	100	100	100	100	96	90	84	79	75

Table 9-23

Chapter 9 Specification | MH300
[This page intentionally left blank]

Chapter 10 Digital Keypad

10-1 KPMH-LC01 Keypad

10-2 Descriptions of Keypad Functions
10-3 Keypad Operation Process
10-4 Reference Table for the 16-segment Digital Keypad LED Display

10-1 KPMH-LC01 Keyboard

10-2 Descriptions of Keypad Functions

Displayed items	Descriptions
	Displays the present frequency setting for the drive
	Displays the actual frequency output to the motor
	Displays the user-defined output of a physical quantity This example is for parameter Pr.00-04 $=30$
	Displays the load current
	Forward command
	Reverse command
	Executes / stops the PLC function
	Application selection function
	Parameter copy function
	Displays the count value
	Displays a parameter item
$\substack{\text { RUN } \\ \text { REV }} 1$ STM STOP	Displays the content of a parameter value
	Displays an external fault
	Displays the data that has been accepted and automatically stored in the internal memory
	Displays the data set that is not accepted or has exceeded the value
	Displays the drive is in the booting process, and the display will be cleared when the process is finished.

10-3Keypad Operation Process

A. Main Page Selection

Note 1: Press in page selection mode 15 to enter parameters setting. Note 2: When Pr.13-00 $\neq 0$, the APP page then appears .

Setting parameters

Note: In the parameter setting mode, you can press to return to the selection mode.

To shift data

START

图 +
Setting direction (When the operation source is the digital keypad.)

Setting PLC Mode

Copy Parameter (Copy parameter to keypad)

Copy Parameter

B. F Page (Frequency command setting page)

General Mode 1
(maximum operating frequency Pr.01-00 is 2 digits; for example, Pr. $01-00=60.00 \mathrm{~Hz}$)

General Mode 2
(maximum operating frequency Pr.01-00 is 3 digits; for example, Pr.01-00 $=599.0 \mathrm{~Hz}$)

C．Application Selection Page

The Application Selection page displays APP，but does not show the APP page when Pr．13－00 $=0$ The description of Pr．13－00 setting is as follows：

Pr．13－00 $=0$
The application selection is inactive and does not show on the display．

Pr．13－00＝ 1 specifies a user－defined application，and the keypad displays＂USER＂．

Pr．13－00 $=2$ specifies the Compressor application，and the keypad displays＂CoPr＂．

H0\％	Lior
呵	$\sqrt{5}$ 図

Pr．13－00 $=3$ specifies the Fan application，and the keypad displays＂FAN＂．

Pr．13－00 $=4$ specifies the Pump application，and the keypad displays＂PUMP＂．

H010	H1M	\Rightarrow Industrial application displays in sequence \Rightarrow parameters setting
根匋	［15	

Pr．13－00＝ 5 specifies the Conveyor application，and the keypad displays＂CnYr＂．

Pr．13－00 $=6$ specifies the Machine Tool application，and the keypad displays＂CNC＂．

Pr．13－00 $=7$ specifies the Packing application，and the keypad displays＂PACK＂．

```
    \(\Rightarrow \Rightarrow\) Industrial application displays in sequence \(\Rightarrow\) parameters setting
```


Pr．13－00 $=8$ specifies the Textile application，and the keypad displays＂TILE＂．

Pr.13-00 $=9$ specifies the PCB Machine application, and the keypad displays "PCB".

When Pr.13-00 is not 0 , the corresponding parameters appear in the APP page according to the setting for Pr.13-00. In each selected application, you can view the parameters by pressing the digital dial button. If Pr.13-00 = 1, you do not set any parameters. In Pr.13-01-Pr.13-50, you cannot enter the other functions of the USER page. The parameters setting in APP is the same as in the other parameters groups: rotate and then press the digital dial to select and set the parameter's value.
Follow the process below to set the user-defined application selection (Pr.13-00 = 1).

Set Pr.13-00=1 to enable the user-defined application selection.	\rightarrow	Set Pr. 13-01-Pr.13-50 userdefined parameters in sequence.		After finishing setting, press MODE to display the APP page, and then press ENTER to display the USEr page. Press digital dial again to display the user-defined parameters.
				\downarrow
To remove a user-defined parameter, return to Pr.13-01-Pr.13-50 and set the parameters as 0.00 from the last defined parameter in sequence.		To change a user-defined parameter, return to Pr.13-01-Pr.13-50 to modify the setting value.		Use digital dial to select the user-defined parameters, and press digital dial to check and set the setting.

1. Activate the application selection by setting Pr.13-00.
2. After setting Pr.13-00 $=1$, you can enter the definitions for Pr.13-01-50.
3. The default setting for Pr. 13-01-50 is P 0.00 . Press the digital dial to set the corresponding parameters for Pr.13-01-50 in sequence.
4. Setting the corresponding parameters for Pr.13-01-50 is the same as in other parameter groups: rotate and press the digital dial to select and set the parameter's value.
Note 1: you cannot set values for read-only parameters.
Note 2: you must set Pr.13-01, 02... 50 in sequence, or the display shows "Err".
5. To change the corresponding parameters, go back to Pr.13-01-13-50 to modify.
6. After setting, to remove a set parameter, set the last parameter (set to 0.00) first, or the display shows "Err".

For example, if there are 5 user-defined parameters (Pr.13-01, 13-02...13-05), to remove Pr.13-02, remove Pr.13-05, then 13-04, then 13-03 and then 13-02.
7. When finished setting, press MODE to go back to APP page, and the press the digital dial again. The Keypad displays "USER". After you press the digital dial again, the corresponding parameter that you set appears.

Follow the process below to set specific application selection (Pr.13-00 = 2-8).

| Set Pr.13-00 $=2$ 2-8
 (2-8 represent different
 industries). |
| :--- | :--- |\rightarrow| After selecting your application,
 press MODE to return to the APP
 page. Then, press digital dial to
 enter into the industry-specific
 short name page. Pressing digital
 dial again displays the application
 macro parameters for the industry. |
| :--- |\rightarrow| Rotate the digital dial to |
| :--- |
| select the defined |
| parameters, and the |
| press it to check the |
| setting. |

D. Parameter setting

D-1. Unsigned parameter
(Parameter setting range ≥ 0; e.g.: Pr.01-00)

1. Without using the left shift key: rotate the digital dial to select and adjust the parameters.
2. Using the left shift key: After you press the left shift key, and the last digit starts to blink. Press the left shift key to move the blinking cursor to the digit to adjust, and increase the value by rotating the digital dial clockwise. The value goes back to 0 after 9 . Decrease the value by rotating the digital dial counter-clockwise. The value goes to 9 after 0 .

For example: the default setting for Pr.01-00 is 60.00 . Pressing the left shift key causes the blinking cursor to move one digit to the left:

The upper setting limit for Pr.01-00 is 599.00. If you set a value greater than 599.00, "Err" appears after you press the digital dial, and then the keypad shows the upper limit (599.00) for a second to remind you of the incorrect setting. The setting remains as the original value and the cursor returns to the last digit.

D-2. Signed parameter setting status 1
(Parameter setting range can be less than 0, e.g.: 03-03)

1. Without using the left shift key: rotate the digital dial to select and adjust the parameters.
2. Using left shift key: After pressing left shift key, the last digit starts to blink. Press the left shift key to move to the digit to adjust, and increase the value by rotating the digital dial clockwise. The value goes back to 0 after 9 . Decrease the value by rotating the digital dial counter-clockwise, and the value goes to 9 after 0 .
3. Press left shift button to shift the blinking cursor one digit to the left. When you shift to the first digit and press the digital dial, the digit "0" changes to "-" (minus).

For example: the default setting for Pr.03-03 is 0.0 . If the value should be -100 , then use the left shift key to shift the blinking cursor to the hundreds digit. Rotate the digital dial clockwise to 1 , and then press left shift to move to the first digit. Rotate the digital dial from " 0 " to "-".

The upper limit for Pr.03-03 is 100.0 and lower limit is -100.0 . If the value is more than 100.0 or less than -100.0, "Err" appears after you press the digital dial, and then the keypad shows the upper limit (100.0) or lower limit (-100.0) for a second to remind you of the incorrect setting. The setting value remains as the original set value, and the cursor returns to the last digit.

D-3. Signed parameter setting status 2
(Parameter setting range can be less than 0 , and the lower limit ≤-100.00, with two decimal places, e.g. Pr.03-74)

Do not use the left shift key: rotate the digital dial to select and adjust the parameters.
Use the left shift key: After pressing left shift key, and the last digit starts to blink. Press the left shift key to move to the digit to adjust, and then increase the value by rotating the digital dial clockwise. The value goes back to 0 after 9 . Decrease the value by rotating the digital dial counterclockwise, and the value goes to 9 after 0 .

Press left shift button to shift the blinking cursor one digit to the left. When you shift to the first digit and press the digital dial, the digit " 0 " changes to "-" (minus).

Note: When the parameter value can be set to 2 decimal places, and the set value has hundred digits, then you cannot shift the blinking cursor with the left shift key.

For example: change Pr.03-74 from -100 to 100

The upper limit for Pr.03-74 is 100.00 and lower limit is -100.00 . If you set a value of more than 100.0 or less than -100.0, "Err" appears after you press the digital dial, and then the keypad shows the upper limit (100.0) or lower limit (-100.0) (only 1 decimal) for a second to remind you of the incorrect setting. The setting value remains as the original set value. The cursor returns to the last digit.

10－4 Reference Table for the $\mathbf{1 6}$－segment Digital Keypad LED Display

Number	0	\％	2	3	4	5	6	7	8	9
16－segment display	$\left[\begin{array}{l}\text {［1］} \\ \square\end{array}\right.$	1	\square	$\xrightarrow{-1}$	－1	－1	\square	\because	\square	\square
Alphabet	A	a	B	b	C	c	D	d	E	e
16－segment display	$\stackrel{\square}{7}$	－	II	\square	Γ^{-}	［－	IT	\square	［－	$\underline{\square}$
Alphabet	F	f	G	g	H	h	1	i	J	j
16－segment display	Γ^{-}	F	［－］	－	H	H	T	i	1．1	－
Alphabet	K	k	L	1	M	m	N	n	0	\bigcirc
16－segment display	－1	－	1.	－	M 1	－	M	\bigcirc	\bigcirc	\square
Alphabet	P	p	Q	q	R	r	S	s	T	t
16－segment display	F_{5}	－	［1］	\square	－i	Γ^{-}	－	－	T	L－
Alphabet	U	u	V	\checkmark	W	w	X	x	Y	y
16－segment display	！ 1.	い	｜／	\square	111	以	年	－	－1	－
Alphabet	Z	z								
16－segment display	－7	－								

[This page intentionally left blank]

Chapter 11 Summary of Parameter Settings

00 Drive Parameters
01 Basic Parameters
02 Digital Input / Output Parameters
03 Analog Input / Output Parameters
04 Multi-Step Speed Parameters
05 Motor Parameters
06 Protection Parameters (1)
07 Special Parameters
08 High-function PID Parameters
09 Communication Parameters
10 Speed Feedback Control Parameters
11 Advanced Parameters
12 Tension Control Parameters
13 Macro (User-defined)
14 Protection Parameters (2)

This chapter provides a summary of parameter (Pr.) setting ranges and defaults. You can set, change, and reset parameters through the digital keypad.

NOTE:

1. $N:$ You can set this parameter during operation.
2. See Chapter 12 for more details about parameter settings.
3. The following are abbreviations for different types of motors:

- IM: Induction motor
- PM: Permanent magnet synchronous AC motor
- IPM: Interior permanent magnet synchronous AC motor
- SPM: Surface permanent magnet synchronous AC motor

00 Drive Parameters

Pr.	Parameter Name	Setting Range	Default
00-00	AC motor drive identity code	$\begin{aligned} & \text { 102: } 110 \mathrm{~V}, 1 \text { Phase, } 0.25 \mathrm{HP} \\ & \text { 103: } 110 \mathrm{~V}, 1 \text { Phase, } 0.5 \mathrm{HP} \\ & \text { 104: } 110 \mathrm{~V}, 1 \text { Phase, } 1 \mathrm{HP} \\ & \text { 302: } 230 \mathrm{~V}, 1 \text { Phase, } 0.25 \mathrm{HP} \\ & \text { 303: } 230 \mathrm{~V}, 1 \text { Phase, } 0.5 \mathrm{HP} \\ & \text { 304: } 230 \mathrm{~V}, 1 \text { Phase, } 1 \mathrm{HP} \\ & \text { 305: } 230 \mathrm{~V}, 1 \text { Phase, } 2 \mathrm{HP} \\ & \text { 306: } 230 \mathrm{~V}, 1 \text { Phase, } 3 \mathrm{HP} \\ & \text { 202: } 230 \mathrm{~V}, 3 \text { Phase, } 0.25 \mathrm{HP} \\ & \text { 203: } 230 \mathrm{~V}, 3 \text { Phase, } 0.5 \mathrm{HP} \\ & \text { 204: } 230 \mathrm{~V}, 3 \text { Phase, } 1 \mathrm{HP} \\ & \text { 205: } 230 \mathrm{~V}, 3 \text { Phase, } 2 \mathrm{HP} \\ & \text { 206: } 230 \mathrm{~V}, 3 \text { Phase, } 3 \mathrm{HP} \\ & \text { 207: } 230 \mathrm{~V}, 3 \text { Phase, } 5 \mathrm{HP} \\ & \text { 208: } 230 \mathrm{~V}, 3 \text { Phase, } 7.5 \mathrm{HP} \\ & \text { 209: } 230 \mathrm{~V}, 3 \text { Phase, } 10 \mathrm{HP} \\ & \text { 210: } 230 \mathrm{~V}, 3 \text { Phase, } 15 \mathrm{HP} \\ & 211: 230 \mathrm{~V}, 3 \text { Phase, } 20 \mathrm{HP} \\ & 212: 230 \mathrm{~V}, 3 \text { Phase, } 25 \mathrm{HP} \\ & 213: 230 \mathrm{~V}, 3 \text { Phase, } 30 \mathrm{HP} \\ & 214: 230 \mathrm{~V}, 3 \text { Phase, } 40 \mathrm{HP} \\ & 215: 230 \mathrm{~V}, 3 \text { Phase, } 50 \mathrm{HP} \\ & 403: 460 \mathrm{~V}, 3 \text { Phase, } 0.5 \mathrm{HP} \\ & 404: 460 \mathrm{~V}, 3 \text { Phase, } 1 \mathrm{HP} \\ & 405: 460 \mathrm{~V}, 3 \text { Phase, } 2 \mathrm{HP} \\ & 406: 460 \mathrm{~V}, 3 \text { Phase, } 3 \mathrm{HP} \\ & \text { 407: } 460 \mathrm{~V}, 3 \text { Phase, } 5 \mathrm{HP} \\ & \text { 408: } 460 \mathrm{~V}, 3 \text { Phase, } 7.5 \mathrm{HP} \end{aligned}$	Read only

Pr.	Parameter Name	Setting Range	Default
		409: 460 V, 3 Phase, 10 HP 410: 460 V, 3 Phase, 15 HP 411: $460 \mathrm{~V}, 3$ Phase, 20 HP 412: 460 V, 3 Phase, 25 HP 413: 460 V, 3 Phase, 30 HP 414: 460V, 3 Phase, 40 HP 415: 460V, 3 Phase, 50 HP 416: 460V, 3 Phase, 60 HP 417: 460V, 3 Phase, 75 HP 418: 460V, 3 Phase, 100 HP	
00-01	AC motor drive rated current	Display by models	Read only
00-02	Parameter reset	0 : No function 1: Write protection for parameters 5: Reset kWh display to 0 6: Reset PLC (including CANopen Master Index) 7: Reset CANopen index (slave) 9: Reset all parameters to defaults with base frequency at 50 Hz 10: Reset all parameters to defaults with base frequency at 60 Hz 11: Reset all parameters to defaults with base frequency at 50 Hz (keep the setting values of user-defined Pr.13-01-13-50) 12: Reset all parameters to defaults with base frequency at 60 Hz (keep the setting values of user-defined Pr.13-01-13-50)	0
00-03	Start-up display selection	0 : F (frequency command) 1: H (output frequency) 2: U (multi-function display, see Pr.00-04) 3: A (output current)	0
00-04	Content of Multi-function display (user-defined)	0 : Display the output current from the drive to the motor (A) (unit: Amps) 1: Display the counter value (c) (unit: CNT) 2: Display the drive's actual output frequency (H.) (unit: Hz) 3: Display the drive's $D C$ bus voltage (V) (unit: V_{DC}) 4: Display the drive's output voltage (E) (unit: V_{AC}) 5: Display the drive's output power angle (n) (unit: deg) 6: Display the drive's output power (P) (unit: kW) 7: Display the motor speed (r) (unit: rpm)	3

Pr.	Parameter Name	Setting Range	Default
		8: Display the drive's estimated output torque\%, motor's rated torque is 100% (t (unit: \%) 9: Display PG feedback (G) (unit: PLS) (refer to Pr.10-00-10-01) 10: Display PID feedback (b) (unit: \%) 11: Display signal value of AVI analog input terminal (1.) (unit: \%) 12: Display signal value of ACl analog input terminal (2.) (unit: \%) 14: Display the drive's IGBT temperature (i.) (unit: ${ }^{\circ} \mathrm{C}$) 16: Display digital input status ON / OFF (i) 17: Display digital output status ON / OFF (o) 18: Display the current multi-step speed (S) 19: Display corresponding CPU digital input pin status (d) 20: Display corresponding CPU digital output pin status (0.) 21: Actual motor position (PG1 of PG card) (P.) (The maximum value is 32 bits to display) 22: Pulse input frequency (S.) 23: Pulse input position (q.) 24: Position command tracing error (E.) 25: Overload count (0.00-100.00\%) (o.) (unit: \%) 26: GFF ground fault (G.) (unit: \%) 27: DC bus voltage ripple (r.) (unit: $V_{D C}$) 28: Display PLC register D1043 data (C) 29: Display permanent magnet synchronous motor pole section (for EMM-PG01R) 30: Display the output of user-defined parameter (U) 31: Display Pr.00-05 user gain (K) 32: Number of actual motor revolutions during operation (PG card plugs in and Z phase signal input) (Z.) 33: Actual motor position during operation (when PG card is connected) (q) 35: Control mode (t.): $0=$ Speed control mode (SPD) 1 = Torque control mode (TQR) 36: The current operating carrier frequency of the drive (J.) (unit: Hz) 38: Display the drive status (6.) 39: Display the drive's estimated output torque, positive and negative, using $\mathrm{N}-\mathrm{m}$ as unit (0.0 : positive torque; -0.0: negative torque) (C.)	

Pr.	Parameter Name	Setting Range	Default
		40: Torque command (L.) (unit: \%) 41: kWh (J) (unit: kWh) 42: PID target value (h.) (unit: \%) 43: PID offset (o.) (unit: \%) 44: PID output frequency (b.) (unit: Hz) 46: Auxiliary frequency value (U.) (unit: Hz) 47: Master frequency value (A) (unit: Hz) 48: Frequency value after addition and subtraction of auxiliary and master frequency (L.) (unit: Hz) 51: PMSVC torque offset 52: Signal of analog extension card input terminal AI10 (4.) (unit: \%) 53: Signal of analog extension card input terminal Al11 (5.) (unit: \%) 55: Display the current reel diameter under the tension control (d) (unit: mm) 56: Display the current line speed under the tension control (L) (unit: m / minute) 57: Display the current tension setting value under the tension control (T) (unit: N)	
00-05	Coefficient gain in actual output frequency	0.00-160.00	1.00
00-06	Firmware version	Read only	Read only
00-07	Parameter protection password input	$\begin{aligned} & 0-65535 \\ & 0-4 \text { (the number of password attempts) } \end{aligned}$	0
00-08	Parameter protection password setting	$0-65535$ 0: No password protection / password entered correctly in Pr.00-07 1: Parameters have been locked	0
00-10	Control mode	0 : Speed mode 1: Position control mode 2: Torque mode	0
00-11	Speed control mode	0: IMVF (IM V/F control) 1: IMVFPG (IM V/F control + encoder) 2: IM / PM SVC (IM / PM space vector control) 3: IMFOCPG (IM FOC vector control + encoder) 4: PMFOCPG (PM FOC vector control + encoder) 5: IMFOC sensorless (IM field-oriented sensorless vector control) 7: IPM sensorless (Interior PM field-oriented sensorless vector control)	0

Pr.	Parameter Name	Setting Range	Default
00-24	Digital keypad frequency command memory	Read only	Read only
00-25	User-defined characteristics	bit 0-3: user-defined decimal places 0000h --- 0000b: no decimal place 0001h --- 0001b: one decimal place 0002h --- 0010b: two decimal places 0003h --- 0011b: three decimal places bit 4-15: user-defined unit 000xh: Hz 001xh: rpm 002xh: \% 003xh: kg 004xh: m/s 005xh: kW 006xh: HP 007xh: ppm 008xh: 1/m 009xh: kg/s 00Axh: kg/m 00Bxh: kg/h 00Cxh: lb/s 00Dxh: lb/m 00Exh: lb/h 00Fxh: ft/s 010xh: ft/m 011xh: m 012xh: ft 013xh: degC 014xh: degF 015xh: mbar 016xh: bar 017xh: Pa 018xh: kPa 019xh: mWG 01Axh: inWG 01Bxh: ftWG 01Cxh: psi 01Dxh: atm 01Exh: L/s 01Fxh: L/m	0

Pr.	Parameter Name	Setting Range	Default
		020xh: L/h 021xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM xxxxh: Hz	
00-26	Maximum user-defined value	0 : Disable 0-65535 (when Pr.00-25 set to no decimal place) $0.0-6553.5$ (when Pr.00-25 set to 1 decimal place) $0.00-655.35$ (when Pr.00-25 set to 2 decimal places) $0.000-65.535$ (when Pr.00-25 set to 3 decimal places)	0
00-27	User-defined value	Read only	Read only
00-29	LOCAL / REMOTE mode	0: Standard HOA function 1: When switching between local and remote, the drive stops. 2: When switching between local and remote, the drive runs with REMOTE settings for frequency and operation status. 3: When switching between local and remote, the drive runs with LOCAL settings for frequency and operation status. 4: When switching between local and remote, the drive runs with LOCAL settings when switched to Local and runs with REMOTE settings when switched to Remote for frequency and operation status.	0
00-30	Master frequency command source (HAND, LOCAL)	0: Inputs from digital keypad 1: Inputs from RS-485 communication 2: Inputs from external analog (refer to Pr.03-00) 3: Inputs from external UP / DOWN terminals (multi-function input terminals) 4: Pulse inputs without direction command (refer to Pr.10-16 without direction) 5: Pulse inputs with direction command (refer to Pr.10-16) 6: CANopen communication card 8: Communication card (CANopen card not included) 9: PID function NOTE: HOA (Hand-Off-Auto) function is valid only when you use with MO function setting 41 and 56 or with KPC-CC01 (optional).	0

01 Basic Parameters

	Parameter Name	Setting Range	Default
01-00	Motor 1 maximum operation frequency	$0.00-599.00 \mathrm{~Hz}$	$\begin{gathered} 60.00 / \\ 50.00 \end{gathered}$
01-01	Motor 1 rated / base frequency	$0.00-599.00 \mathrm{~Hz}$	$\begin{gathered} 60.00 / \\ 50.00 \end{gathered}$
01-02	Motor 1 rated / base voltage	115V / 230V models: 0.0-255.0 V 460 V series: $0.0-510.0 \mathrm{~V}$	$\begin{aligned} & 220.0 \\ & 440.0 \end{aligned}$
01-03	Motor 1 mid-point frequency 1	0.00-599.00 Hz	3.00
01-04	Motor 1 mid-point voltage 1	$115 \mathrm{~V} / 230 \mathrm{~V}$ models: $0.0-240.0 \mathrm{~V}$ 460V models: $0.0-480.0 \mathrm{~V}$	$\begin{aligned} & 11.0 \\ & 22.0 \end{aligned}$
01-05	Motor 1 mid-point frequency 2	$0.00-599.00 \mathrm{~Hz}$	1.50
01-06	Motor 1 mid-point voltage 2	$115 \mathrm{~V} / 230 \mathrm{~V}$ models: 0.0-240.0 V 460 V models: $0.0-480.0 \mathrm{~V}$	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$
01-07	Motor 1 minimum output frequency	$0.00-599.00 \mathrm{~Hz}$	0.50
01-08	Motor 1 minimum output voltage	$115 \mathrm{~V} / 230 \mathrm{~V}$ models: $0.0-240.0 \mathrm{~V}$ 460 V series: $0.0-480.0 \mathrm{~V}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$
01-09	Start-up frequency	$0.00-599.00 \mathrm{~Hz}$	0.50
01-10	Upper frequency limit	$0.00-599.00 \mathrm{~Hz}$	599.00
01-11	Lower frequency limit	$0.00-599.00 \mathrm{~Hz}$	0.00
01-12	Acceleration time 1	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.00-6000.00 \mathrm{sec} . \end{aligned}$	10.00
01-13	Deceleration time 1	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.00-6000.00 \mathrm{sec} . \end{aligned}$	10.00
01-14	Acceleration time 2	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.00-6000.00 \mathrm{sec} . \end{aligned}$	10.00
01-15	Deceleration time 2	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.00-6000.00 \mathrm{sec} . \end{aligned}$	10.00
01-16	Acceleration time 3	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.00-6000.00 \mathrm{sec} . \end{aligned}$	10.00
01-17	Deceleration time 3	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \operatorname{Pr} .01-45=1: 0.00-6000.00 \mathrm{sec} . \end{aligned}$	10.00
01-18	Acceleration time 4	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} \\ & \text { Pr. } 01-45=1: 0.00-6000.00 \mathrm{sec} . \end{aligned}$	10.00
01-19	Deceleration time 4	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.00-6000.00 \mathrm{sec} . \end{aligned}$	10.00

	Pr.	Parameter Name	Setting Range	Default
N	01-20	JOG acceleration time	$\begin{aligned} & \text { Pr.01-45 }=0: 0.00-600.00 \mathrm{sec} \\ & \text { Pr. } 01-45=1: 0.00-6000.00 \mathrm{sec} . \end{aligned}$	10.00
N	01-21	JOG deceleration time	$\begin{aligned} & \text { Pr.01-45 }=0: 0.00-600.00 \mathrm{sec} \\ & \text { Pr. } 01-45=1: 0.00-6000.00 \mathrm{sec} . \end{aligned}$	10.00
N	01-22	JOG frequency	$0.00-599.00 \mathrm{~Hz}$	6.00
N	01-23	First / Fourth acceleration / deceleration exchange frequency	0.00-599.00 Hz	0.00
N	01-24	S-curve acceleration begin time 1	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-25.00 \mathrm{sec} \\ & \text { Pr. } 01-45=1: 0.00-250.00 \mathrm{sec} . \end{aligned}$	0.20
N	01-25	S-curve acceleration arrival time 2	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-25.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.00-250.00 \mathrm{sec} . \end{aligned}$	0.20
N	01-26	S-curve deceleration begin time 1	$\begin{aligned} & \text { Pr. } 01-45=0: 0.00-25.00 \mathrm{sec} . \\ & \text { Pr. } 01-45=1: 0.00-250.00 \mathrm{sec} . \end{aligned}$	0.20
N	01-27	S-curve deceleration arrival time 2	$\begin{aligned} & \text { Pr.01-45 = 0: 0.00-25.00 sec. } \\ & \text { Pr.01-45 }=1: 0.00-250.00 \mathrm{sec} . \end{aligned}$	0.20
	01-28	Skip frequency 1 (upper limit)	0.00-599.00 Hz	0.00
	01-29	Skip frequency 1 (lower limit)	0.00-599.00 Hz	0.00
	01-30	Skip frequency 2 (upper limit)	0.00-599.00 Hz	0.00
	01-31	Skip frequency 2 (lower limit)	0.00-599.00 Hz	0.00
	01-32	Skip frequency 3 (upper limit)	0.00-599.00 Hz	0.00
	01-33	Skip frequency 3 (lower limit)	0.00-599.00 Hz	0.00
	01-34	Zero-speed mode	0 : Output waiting 1: Zero-speed operation 2: Minimum frequency (refer to Pr.01-07 and Pr.01-41)	0
	01-35	Motor 2 output frequency	0.00-599.00 Hz	$\begin{gathered} 60.00 / \\ 50.00 \end{gathered}$
	01-36	Motor 2 Output voltage	115 / 230 V models: 0.0-255.0 V 460 V models: $0.0-510.0 \mathrm{~V}$	$\begin{aligned} & 220.0 \\ & 440.0 \end{aligned}$
	01-37	Motor 2 Mid-point frequency 1	0.00-599.00 Hz	3.00
N	01-38	Motor 2 mid-point voltage 1	115 / 230 V models: 0.0-240.0 V 460 V models: $0.0-480.0 \mathrm{~V}$	$\begin{aligned} & 11.0 \\ & 22.0 \end{aligned}$

Chapter 11 Summary of Parameter Settings | MH300

Pr.	Parameter Name	Setting Range	Default
01-59	Motor 3 mid-point voltage 2	115 / 230 V models: $0.0-240.0 \mathrm{~V}$ 460 V models: $0.0-480.0 \mathrm{~V}$	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$
01-60	Motor 3 minimum output frequency	$0.00-599.00 \mathrm{~Hz}$	0.50
01-61	Motor 3 minimum output voltage	115 / 230 V models: $0.0-240.0 \mathrm{~V}$ 460 V models: $0.0-480.0 \mathrm{~V}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$
01-62	Motor 4 maximum operation frequency	$0.00-599.00 \mathrm{~Hz}$	$\begin{gathered} 60.00 / \\ 50.00 \end{gathered}$
01-63	Motor 4 output frequency	$0.00-599.00 \mathrm{~Hz}$	$\begin{gathered} 60.00 / \\ 50.00 \end{gathered}$
01-64	Motor 4 output voltage	115 / 230 V models: $0.0-255.0 \mathrm{~V}$ 460 V models: $0.0-510.0 \mathrm{~V}$	$\begin{aligned} & 220.0 \\ & 440.0 \end{aligned}$
01-65	Motor 4 mid-point frequency 1	$0.00-599.00 \mathrm{~Hz}$	3.00
01-66	Motor 4 mid-point voltage 1	115 / 230 V models: $0.0-240.0 \mathrm{~V}$ 460 V models: $0.0-480.0 \mathrm{~V}$	$\begin{aligned} & \hline 11.0 \\ & 22.0 \end{aligned}$
01-67	Motor 4 mid-point frequency 2	$0.00-599.00 \mathrm{~Hz}$	1.50
01-68	Motor 4 mid-point voltage 2	115 / 230 V models: $0.0-240.0 \mathrm{~V}$ 460 V models: $0.0-480.0 \mathrm{~V}$	$\begin{gathered} 5.0 \\ 10.0 \end{gathered}$
01-69	Motor 4 minimum output frequency	0.00-599.00 Hz	0.50
01-70	Motor 4 minimum output voltage	115 / 230V models: $0.0-240.0 \mathrm{~V}$ 460 V models: $0.0-480.0 \mathrm{~V}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$
01-72	V/F separated mode, Voltage Input Percentage	0.00-100.00	50.00
01-73	V/F separated mode, Voltage Input Source Selection	0: Digital Keypad 1: RS-485 communication 2: Reserved 3: AVI Analog input 4: ACI Analog input 5: Reserved 6: CANopen communicaton 7: Communication Card	0
01-74	V/F separated mode, Voltage increasing time	1.00-600.00	0.00
01-75	V/F separated mode, Voltage decreasing time	1.00-600.00	0.00

Chapter 11 Summary of Parameter Settings | MH300

Pr.	Parameter Name	Setting Range	Default
$01-76$	V/F separated mode stop method	$0:$ voltage decrease to 0 first, then frequency decrease to 0. $1:$ voltage and frequency decrease to 0 at the same time	0
$01-77$	The deceleration time of VFSM over-current stall prevention	$1.00-600.00$	0.00

02 Digital Input / Output Parameters

Pr.	Parameter Name	Setting Range	Default
02-00	Two-wire / three-wire operation control	0 : No function 1: Two-wire mode 1, power ON for operation control (M1: FWD / STOP, M2: REV / STOP) 2: Two-wire mode 2, power ON for operation control (M1: RUN / STOP, M2: FWD / REV) 3: Three-wire, power ON for operation control (M1: RUN, M2: REV / FWD, M3: STOP) 4: Two-wire mode 1, Quick Start (M1: FWD / STOP, M2: REV / STOP) 5: Two-wire mode 2, Quick Start (M1: RUN / STOP, M2: FWD / REV) 6: Three-wire, Quick Start (M1: RUN, M2: REV / FWD, M3: STOP) IMPORTANT 1. In Quick Start function, terminal output will keep in ready status, drive will response to the command immediately. 2. When using Quick Start function, the output terminals UVW are with driving voltages in order to output and respond immediately if a Start command is given. Do not touch the terminals or modify the motor wiring to prevent electric shocks.	1
02-01	Multi-function input command 1 (MI1)	0 : No function 1: Multi-step speed command 1	0
02-02	Multi-function input command 2 (MI2)	2: Multi-step speed command 2 3: Multi-step speed command 3	0
02-03	Multi-function input command 3 (MI3)	4: Multi-step speed command 4 5: Reset	1
02-04	Multi-function input command 4 (MI4)	6: JOG operation [by external control or KPC-CC01 (optional)] 7: Acceleration / deceleration speed inhibit	2
02-05	Multi-function input command 5 (MI5)	8: $1^{\text {st }}$ and $2^{\text {nd }}$ acceleration / deceleration time selection 9: $3^{\text {rd }}$ and $4^{\text {th }}$ acceleration / deceleration time selection	3
02-06	Multi-function input command 6 (MI6)	10: External fault (EF) input (Pr.07-20) 11: Base Block (B.B.) input from external	4
02-07	Multi-function input command 7 (MI7)	12: Output stops 13: Cancel the setting for auto-acceleration /	0
02-26	Input terminal of extension card (MI10)	auto-deceleration time 15: Rotating speed command from AVI	0

Pr.	Parameter Name	Setting Range	Default
02-27	Input terminal of extension card (MI11)	16: Rotating speed command from ACI 18: Forced to stop (Pr.07-20) 19: Frequency up command 20: Frequency down command 21: PID function disabled 22: Clear the counter 23: Input the counter value (MI6) 24: FWD JOG command 25: REV JOG command 26: TQC / FOC mode selection 27: ASR1 / ASR2 selection 28: Emergency stop (EF1) 29: Signal confirmation for Y-connection 30: Signal confirmation for Δ-connection 31: High torque bias (Pr.11-30) 32: Middle torque bias (Pr.11-31) 33: Low torque bias (Pr.11-32) 35: Enable single-point positioning 37: Enable pulse-train position command position control 38: Disable to write EEPROM function 39: Torque command direction 40: Force coasting to stop 41: HAND switch 42: AUTO switch 43: Enable resolution selection (Pr.02-48) 44: Negative limit switch (NL) 45: Positive limit switch (PL) 46: Homing (ORG) 48: Mechanical gear ratio switch 49: Enable Drive 50: Inputs slave dEb action 51: Selection for PLC mode bit 0 52: Selection for PLC mode bit 1 53: Trigger CANopen quick stop 56: Local / remote selection 70: Force auxiliary frequency return to 0 71: Disable PID function, force PID output return to 0 72: Disable PID function, retain the output value before disabled 73: Force PID integral gain return to 0 , disable integral	0
02-28	Input terminal of extension card (MI12)		0

		Parameter Name	Setting Range	Default
			74: Reverse PID feedback 78: Multi-step position confirmation 79: Position / speed mode switching (0: Speed mode, 1: Position mode) 80: Location command source switching (increase) (0: Internal register, 1: External pulse input) 83: Multi-motors (IM) selection bit 0 84: Multi-motors (IM) selection bit 1 86: Enable initial reel diameter 87: Initial reel diameter 1 88: Initial reel diameter 2 89: PID integration reset 90: Stop calculating the reel diameter 91: Winding mode selection 92: Enable tension control 93: Pause tension PID function 94: Enable to auto switch the reel	
	02-09	External terminal UP / DOWN key mode	0 : According to acceleration / deceleration time 1: With constant speed (Pr.02-10) 2: Pulse signal (Pr.02-10) 3: Curve 4: Steps (Pr.02-10)	0
	02-10	Acceleration / deceleration speed of external terminal UP / DOWN keys	$0.001-1.000 \mathrm{~Hz} / \mathrm{ms}$	0.001
	02-11	Multi-function input response time	0.000-30.000 sec.	0.005
	02-12	Multi-function input mode selection	0000h-FFFFh (0: N.O.; 1: N.C.)	0000
	02-13	Multi-function output 1 (RY1)	0 : No function 1: Indication during RUN	11
	02-16	Multi-function output 2 (MO1)	2: Operation speed reached 3: Desired frequency reached 1 (Pr.02-22)	0
	02-17	Multi-function output 3 (MO2)	4: Desired frequency reached 2 (Pr.02-24) 5: Zero speed (Frequency command)	0
	02-36	Output terminal of extension card (MO10) or (RY10)	6: Zero speed including STOP (Frequency command) 7: Over-torque 1 (Pr.06-06-06-08) 8: Over-torque 2 (Pr.06-09-06-11)	0

	Pr.	Parameter Name	Setting Range	Default
N	02-37	Output terminal of extension card (MO11) or (RY11)	9: Drive is ready 10: Low voltage warning (Lv) (Pr.06-00) 11: Malfunction indication 13: Over-heat warning (Pr.06-15) 14: Software brake signal indication (Pr.07-00) 15: PID feedback error (Pr.08-13, 08-14) 16: Slip error (oSL) 17: Count value reached; does not return to 0 (Pr.02-20) 18: Count value reached; returns to 0 (Pr.02-19) 19: External interrupt B.B. input (Base Block) 20: Warning output 21: Over-voltage 22: Over-current stall prevention 23: Over-voltage stall prevention 24: Operation source 25: Forward command 26: Reverse command 29: Output when frequency \geq Pr.02-34 30: Output when frequency < Pr.02-34 31: Y-connection for the motor coil 32: Δ-connection for the motor coil 33: Zero speed (actual output frequency) 34: Zero speed including STOP (actual output frequency) 35: Error output selection 1 (Pr.06-23) 36: Error output selection 2 (Pr.06-24) 37: Error output selection 3 (Pr.06-25) 38: Error output selection 4 (Pr.06-26) 39: Position reached (Pr.10-19) 40: Speed reached (including STOP) 42: Crane function 43: Motor actual speed detection 44: Low current output (use with Pr.06-71-06-73) 45: UVW output electromagnetic valve switch 46: Outputs master dEb action 49: Homing action completed 50: Output control for CANopen 51: Output control for RS-485 52: Output control for communication cards 66: SO output logic A 67: Analog input level reached	0
N	02-38	Output terminal of extension card (MO12) or (RY12)		0

Parameter Name	Setting Range	Default
	68: SO output logic B 69: Maximum reel diameter reached 70: Empty reel diameter reached 71: Broken belt detection 72: Tension PID feedback error 73: Over-torque 3 74: Over-torque 4	
Multi-function output direction	0000h-FFFFh (0: N.O.; 1: N.C.)	0000
Terminal counting value reached (returns to 0)	0-65500	0
Preliminary counting value reached (does not return to 0)	0-65500	0
Digital output gain (DFM)	1-55	1
Desired frequency reached 1	$0.00-599.00 \mathrm{~Hz}$	$\begin{gathered} 60.001 \\ 50.00 \end{gathered}$
The width of the desired frequency reached 1	$0.00-599.00 \mathrm{~Hz}$	2.00
Desired frequency reached 2	$0.00-599.00 \mathrm{~Hz}$	$\begin{gathered} 60.00 / \\ 50.00 \end{gathered}$
The width of the desired frequency reached 2	$0.00-599.00 \mathrm{~Hz}$	2.00
Output frequency setting for multi-function output terminal	$0.00-599.00 \mathrm{~Hz}$	0.00
External operation control selection after reset and reboot	0: Disable 1: Drive runs if the RUN command remains after reset or reboot.	0
Motor zero-speed level	0-65535 rpm	0
Maximum frequency of resolution switch	$0.01-599.00 \mathrm{~Hz}$ (use with MI setting as 43)	60.00
Switch delay time of maximum output frequency	0.000-65.000 sec.	0.000
Display the status of multi-function input terminal	Monitor the status of multi-function input terminals	Read only
Display the status of multi-function output terminal	Monitor the status of multi-function output terminals	Read only

		Parameter Name	Setting Range	Default
	02-52	Display the external multi-function input terminals used by PLC	Monitor the status of PLC input terminals	Read only
	02-53	Display the external multi-function output terminals used by PLC	Monitor the status of PLC output terminals	Read only
	02-54	Display the Frequency command executed by external terminal	$0.00-599.00 \mathrm{~Hz}$ (Read only)	Read only
	02-58	Multi-function output terminal (function 42): brake frequency check point	$0.00-599.00 \mathrm{~Hz}$	0.00
	02-70	IO card type	1: EMC-BPS01 (backup power supply) 10: EMM-D33A 11: EMM-A22A 12: EMM-R2CA 13: EMM-R3AA	Read only
	02-74	Internal / external multi-function input terminal selection	0000-FFFFh	0000h
	02-75	Internal multi-function output terminal selection	0000-FFFFh	0000h
	02-81	EF activates when the terminal count value reached	0 : Terminal count value reached, no EF displays (continues operating) 1: Terminal count value reached, EF is active	0
	02-82	Initial frequency command (F) mode after stop	0 : Use current frequency command 1: Use zero frequency command 2: Refer to Pr.02-83 to setup	0
	02-83	Initial frequency command (F) setting after stop	$0.00-599.0 \mathrm{~Hz}$	60.00

03 Analog Input / Output Parameters

	Parameter Name	Setting Range	Default
03-00	AVI analog input selection	0 : No function 1: Frequency command 2: Torque command (torque limit in speed mode) 3: Torque compensation command 4: PID target value 5: PID feedback signal 6: Thermistor input value (PTC) 7: Positive torque limit 8: Negative torque limit 9: Regenerative torque limit	1
03-01	ACl analog input selection	11: PT100 thermistor input value 12: Auxiliary frequency input 13: PID compensation value 14: Tension PID feedback signal 15: Line speed 16: Reel diameter 17: Tension PID target value 18: Tension setting value 19: Zero-speed tension 20: Tension taper	0
03-03	AVI analog input bias	-100.0-100.0\%	0.0
03-04	ACl analog input bias	-100.0-100.0\%	0.0
03-07	AVI positive / negative bias mode	0 : No bias 1: Lower than or equal to bias 2: Greater than or equal to bias	
03-08	ACl positive / negative bias mode	3: The absolute value of the bias voltage while serving as the center 4: Bias serves as the center	
03-10	Reverse setting when analog signal input is negative frequency	0 : Negative frequency input is not allowed. The digital keypad or external terminal controls the forward and reverse direction. 1: Negative frequency input is allowed. Positive frequency = run in forward direction; negative frequency $=$ run in reverse direction. The digital keypad or external terminal control cannot switch the running direction.	0
03-11	AVI analog input gain	-500.0-500.0\%	100.0
03-12	ACl analog input gain	-500.0-500.0\%	100.0

	Pr.	Parameter Name	Setting Range	Default
N	03-15	AVI analog input filter time	0.00-20.00 sec.	0.01
N	03-16	ACl analog input filter time	0.00-20.00 sec.	0.01
N	03-18	Analog input addition function	0: Disable (AVI, ACI) 1: Enable (analog extension card not included)	0
	03-19	Signal loss selection for analog input 4-20 mA	0: Disable 1: Continue operation at the last frequency 2: Decelerate to 0 Hz 3: Stop immediately and display "ACE"	0
N	03-20	AFM multi-function output	0 : Output frequency (Hz) 1: Frequency command (Hz) 2: Motor speed (Hz) 3: Output current (rms) 4: Output voltage 5: DC bus voltage 6: Power factor 7: Power 8: Output torque 9: AVI 10: ACI 12: Iq current command 13: Iq feedback value 14: Id current command 15: Id feedback value 16: Vq-axis voltage command 17: Vd-axis voltage command 18: Torque command 19: PG2 frequency command 20: CANopen analog output 21: RS-485 analog output 22: Communication card analog output 23: Constant voltage output	0
N	03-21	AFM analog output gain	0.0-500.0\%	100.0
N	03-22	AFM analog output in REV direction	0 : Absolute value of output voltage 1: Reverse output 0 V ; forward output $0-10 \mathrm{~V}$ 2: Reverse output 5-0 V; forward output 5-10 V	0
N	03-27	AFM output bias	-100.00-100.00\%	0.00
N	03-28	AVI terminal input selection	$\begin{aligned} & \text { 0: 0-10 V } \\ & \text { 3: }-10-10 \mathrm{~V} \text { (Pr.03-69-03-74 are valid) } \end{aligned}$	0

	Pr.	Parameter Name	Setting Range	Default
N	03-29	ACI terminal input selection	$\begin{aligned} & 0: 4-20 \mathrm{~mA} \\ & \text { 1: } 0-10 \mathrm{~V} \\ & \text { 2: } 0-20 \mathrm{~mA} \end{aligned}$	0
	03-30	PLC analog output terminal status	Monitor the status of PLC analog output terminals	Read only
N	03-31	AFM output selection	$0: 0-10 \mathrm{~V}$ output 1: 0-20 mA output 2: 4-20 mA output	0
N	03-32	AFM DC output setting level	0.00-100.00\%	0.00
N	03-35	AFM output filter time	0.00-20.00 sec.	0.01
N	03-39	VR input selection	0: Disable 1: Frequency command	1
N	03-44	Multi-function MO output by Al level source	0 : AVI 1: ACI 3: Extension card input terminal Al10 4: Extension card input terminal Al11	0
N	03-45	Al upper level 1	-100.00-100.00\%	50.00
N	03-46	Al lower level 2	-100.00-100.00\%	10.00
N	03-50	Analog input curve selection	0 : Normal curve 1: Three-point curve of AVI (\& AI10) 2: Three-point curve of $\mathrm{ACI}(\& \mathrm{Al} 11)$ 3: Three-point curve of AVI \& ACI (\& AI10 \& AI11) (AI10, Al11 are valid when extension card is installed)	0
N	03-57	ACl lowest point	$\begin{aligned} & \text { Pr. } 03-29=1,0.00-10.00 \mathrm{~V} \\ & \text { Pr. } 03-29 \neq 1,0.00-20.00 \mathrm{~mA} \end{aligned}$	4.00
N	03-58	ACI proportional lowest point	0.00-100.00\%	0.00
N	03-59	ACI mid-point	$\begin{aligned} & \text { Pr.03-29 = 1, 0.00-10.00 V } \\ & \text { Pr.03-29 } \neq 1,0.00-20.00 \mathrm{~mA} \end{aligned}$	12.00
N	03-60	ACI proportional mid-point	0.00-100.00\%	50.00
N	03-61	ACI highest point	$\begin{aligned} & \text { Pr. } 03-29=1,0.00-10.00 \mathrm{~V} \\ & \operatorname{Pr} .03-29 \neq 1,0.00-20.00 \mathrm{~mA} \end{aligned}$	20.00
N	03-62	ACI proportional highest point	0.00-100.00\%	100.00
N	03-63	AVI voltage lowest point	0.00-10.00 V	0.00
N	03-64	AVI voltage proportional lowest point	-100.00-100.00\%	0.00

	Pr.	Parameter Name	Setting Range	Default
N	03-65	AVI voltage mid-point	0.00-10.00 V	5.00
N	03-66	AVI voltage proportional mid-point	-100.00-100.00\%	50.00
N	03-67	AVI voltage highest point	0.00-10.00 V	10.00
N	03-68	AVI voltage proportional highest point	-100.00-100.00\%	100.00
N	03-69	Negative AVI voltage lowest point	$\begin{aligned} & -10.00-0.00 \mathrm{~V} \\ & \text { (valid when Pr. } 03-28 \text { sets as }-10-10 \mathrm{~V} \text {) } \end{aligned}$	0.00
N	03-70	Negative AVI voltage proportional lowest point	-100.00-100.00\% (valid when Pr.03-28 sets as $-10-10 \mathrm{~V}$)	0.00
N	03-71	Negative AVI voltage mid-point	$-10.00-0.00 \mathrm{~V}$ (valid when Pr.03-28 sets as $-10-10 \mathrm{~V}$)	-5.00
N	03-72	Negative AVI voltage proportional mid-point	-100.00-100.00\% (valid when Pr.03-28 sets as $-10-10 \mathrm{~V}$)	-50.00
N	03-73	Negative AVI voltage highest point	$-10.00-0.00 \mathrm{~V}$ (valid when Pr.03-28 sets as $-10-10 \mathrm{~V}$)	-10.00
N	03-74	Negative AVI voltage proportional highest point	-100.00-100.00\% (valid when Pr. $03-28$ sets as $-10-10 \mathrm{~V}$)	-100.00

04 Multi-step Speed Parameters

	Pr.	Parameter Name	Setting Range	Default
N	04-00	$1^{\text {st }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-01	$2^{\text {nd }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-02	$3{ }^{\text {rd }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-03	$4^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-04	$5^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-05	$6^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-06	$7^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-07	$8^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-08	$9^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-09	$10^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-10	$11^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-11	$12^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-12	$13^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-13	$14^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-14	$15^{\text {th }}$ step speed frequency	$0.00-599.00 \mathrm{~Hz}$	0.00
N	04-50	PLC buffer 0	0-65535	0
N	04-51	PLC buffer 1	0-65535	0
N	04-52	PLC buffer 2	0-65535	0
N	04-53	PLC buffer 3	0-65535	0
N	04-54	PLC buffer 4	0-65535	0
N	04-55	PLC buffer 5	0-65535	0
N	04-56	PLC buffer 6	0-65535	0
N	04-57	PLC buffer 7	0-65535	0
N	04-58	PLC buffer 8	0-65535	0
N	04-59	PLC buffer 9	0-65535	0
N	04-60	PLC buffer 10	0-65535	0
N	04-61	PLC buffer 11	0-65535	0
N	04-62	PLC buffer 12	0-65535	0
N	04-63	PLC buffer 13	0-65535	0
N	04-64	PLC buffer 14	0-65535	0
N	04-65	PLC buffer 15	0-65535	0
N	04-66	PLC buffer 16	0-65535	0
N	04-67	PLC buffer 17	0-65535	0
N	04-68	PLC buffer 18	0-65535	0
N	04-69	PLC buffer 19	0-65535	0

05 Motor Parameters

		Parameter Name	Setting Range	Default
	05-00	Motor parameter auto-tuning	0 : No function 1: Dynamic test for induction motor (IM) 2: Static test for induction motor (IM) 4: Dynamic test for PM synchronous motor magnetic pole 5: Rolling auto-tuning for PM (IPM / SPM) motor 12: FOC sensorless inertia estimation 13: High frequency stall test for PM synchronous motor	0
	05-01	Full-load current for induction motor 1 (A)	10-120\% of the drive's rated current	$\begin{gathered} \text { Depending } \\ \text { on the } \\ \text { model } \\ \text { power } \\ \hline \end{gathered}$
	05-02	Rated power for induction motor 1 (kW)	0.00-655.35 kW	Depending on the model power
	05-03	Rated speed for induction motor 1 (rpm)	$0-x x x x x$ rpm 1710 ($60 \mathrm{~Hz}, 4$ poles); 1410 ($50 \mathrm{~Hz}, 4$ poles)	$\begin{gathered} \hline \text { Depending } \\ \text { on the } \\ \text { motor's } \\ \text { number of } \\ \text { poles } \\ \hline \end{gathered}$
	05-04	Number of poles for induction motor 1	2-20	4
	05-05	No-load current for induction motor 1 (A)	0.00-Pr.05-01 default	$\begin{aligned} & \text { Depending } \\ & \text { on the } \\ & \text { model } \\ & \text { power } \\ & \hline \end{aligned}$
	05-06	Stator resistance (Rs) for induction motor 1	0.000-65.535 Ω	$\begin{aligned} & \text { Depending } \\ & \text { on the } \\ & \text { model } \\ & \text { power } \\ & \hline \end{aligned}$
	05-07	Rotor resistance (Rr) for induction motor 1	0.000-65.535 Ω	0.000
	05-08	Magnetizing inductance (Lm) for induction motor 1	$0.0-6553.5 \mathrm{mH}$	0.0
	05-09	Stator inductance (Lx) for induction motor 1	$0.0-6553.5 \mathrm{mH}$	0.0
	05-13	Full-load current for induction motor 2 (A)	10-120\% of the drive's rated current	Depending on the model power
	05-14	Rated power for induction motor 2 (kW)	0.00-655.35 kW	$\begin{array}{\|c\|} \hline \text { Depending } \\ \text { on the } \\ \text { model } \\ \text { power } \\ \hline \end{array}$
	05-15	Rated speed for induction motor 2 (rpm)	$0-x x x x x$ rpm 1710 ($60 \mathrm{~Hz}, 4$ poles); 1410 ($50 \mathrm{~Hz}, 4$ poles)	$\begin{aligned} & \text { Depending } \\ & \text { on the } \\ & \text { motor's } \\ & \text { number of } \\ & \text { poles } \\ & \hline \end{aligned}$

Pr.	Parameter Name	Setting Range	Default
05-16	Number of poles for induction motor 2	2-20	4
05-17	No-load current for induction motor 2 (A)	0.00-Pr.05-13 default	$\begin{aligned} & \text { Depending } \\ & \text { on the } \\ & \text { model } \\ & \text { power } \\ & \hline \end{aligned}$
05-18	Stator resistance (Rs) for induction motor 2	0.000-65.535 Ω	$\begin{array}{\|l} \hline \text { Depending } \\ \text { on the } \\ \text { model } \\ \text { power } \\ \hline \end{array}$
05-19	Rotor resistance (Rr) for induction motor 2	0.000-65.535 Ω	0.000
05-20	Magnetizing inductance (Lm) for induction motor 2	$0.0-6553.5 \mathrm{mH}$	0.0
05-21	Stator inductance (Lx) for induction motor 2	$0.0-6553.5 \mathrm{mH}$	0.0
05-22	Multi-motors (induction) selection	1: Motor 1 2: Motor 2 3: Motor 3 (V/F or SVC control mode only) 4: Motor 4 (V/F or SVC control mode only)	1
05-23	Frequency for Y -connection / Δ-connection switch for an induction motor	$0.00-599.00 \mathrm{~Hz}$	60.00
05-24	Y-connection / Δ-connection switch for an induction motor	0: Disable 1: Enable	0
05-25	Delay time for Y -connection / Δ-connection switch for an induction motor	0.000-60.000 sec.	0.200
05-26	Accumulated Watt-second for a motor in low word (W-sec.)	Read only	0.0
05-27	Accumulated Watt-second for a motor in high word (W-sec.)	Read only	0.0
05-28	Accumulated Watt-hour for a motor (W-hour)	Read only	0.0
05-29	Accumulated Watt-hour for a motor in low word (kW-hour)	Read only	0.0
05-30	Accumulated Watt-hour for a motor in high word (kW-hour)	Read only	0.0
05-31	Accumulated motor operation time (minutes)	0-1439 min.	0

		Parameter Name	Setting Range	Default
	05-32	Accumulated motor operation time (days)	0-65535 days	0
	05-33	Induction motor (IM) or permanent magnet synchronous motor selection	0: Induction motor 1: SPM 2: IPM	0
	05-34	Full-load current for a permanent magnet synchronous motor	0-120\% of the drive's rated current	Depending on the model power
	05-35	Rated power for a permanent magnet synchronous motor	0.00-655.35 kW	Depending on the model power
	05-36	Rated speed for a permanent magnet synchronous motor	0-65535 rpm	2000
	05-37	Number of poles for a permanent magnet synchronous motor	0-65535	10
	05-39	Stator resistance for a permanent magnet synchronous motor	0.000-65.535 Ω	0.000
	05-40	Permanent magnet synchronous motor Ld	$0.00-655.35 \mathrm{mH}$	0.00
	05-41	Permanent magnet synchronous motor Lq	$0.00-655.35 \mathrm{mH}$	0.00
	05-42	PG offset angle for a permanent magnet synchronous motor	$0.0-360.0^{\circ}$	0.0
	05-43	Ke parameter of a permanent magnet synchronous motor	0-65535 (V/krpm)	0
	05-64	Full-load current for induction motor 3 (A)	10-120\% of the drive's rated current	Depending on the model power
	05-65	Rated power for induction motor 3 (kW)	0.00-655.35 kW	\qquad
	05-66	Rated speed for induction motor 3 (rpm)	$0-x x x x x$ rpm 1710 ($60 \mathrm{~Hz}, 4$ poles); 1410 ($50 \mathrm{~Hz}, 4$ poles)	$\begin{gathered} \text { Depending } \\ \text { on the } \\ \text { motor's } \\ \text { number of } \\ \text { poles } \\ \hline \end{gathered}$
	05-67	Number of poles for induction motor 3	2-20	4

06 Protection Parameters (1)

	Pr.	Parameter Name	Setting Range	Default
N	06-00	Low voltage level	$115 \mathrm{~V} / 230 \mathrm{~V}$ models: $150.0-220.0 \mathrm{VDC}$ 460V models: 300.0-440.0 VDC	$\begin{aligned} & 180.0 \\ & 360.0 \end{aligned}$
N	06-01	Over-voltage stall prevention	0: Disabled 115V / 230V models: 0.0-390.0 VDC 460V models: $0.0-780.0 \mathrm{VDC}$	$\begin{aligned} & 380.0 \\ & 760.0 \end{aligned}$
N	06-02	Selection for over-voltage stall prevention	0 : Traditional over-voltage stall prevention 1: Smart over-voltage stall prevention 2: Traditional over-voltage and smart over-current stall prevention 3: Smart over-voltage and smart over-current stall prevention	0
N	06-03	Over-current stall prevention during acceleration	Normal duty: 0-150\% (100\% corresponds to the rated current of the drive) Heavy duty: 0-200\% (100\% corresponds to the rated current of the drive)	$\begin{aligned} & 120 \\ & 180 \end{aligned}$
N	06-04	Over-current stall prevention during operation	Normal duty: 0-150\% (100\% corresponds to the rated current of the drive) Heavy duty: $0-200 \%$ (100% corresponds to the rated current of the drive)	$\begin{aligned} & 120 \\ & 180 \end{aligned}$
N	06-05	Acceleration / deceleration time selection for stall prevention at constant speed	0: By current acceleration / deceleration time 1: By the $1^{\text {st }}$ acceleration / deceleration time 2: By the $2^{\text {nd }}$ acceleration / deceleration time 3: By the $3^{\text {rd }}$ acceleration / deceleration time 4: By the $4^{\text {th }}$ acceleration / deceleration time 5: By automatic acceleration / deceleration	0
N	06-06	Over-torque detection selection (motor 1)	0 : No function 1: Continue operation after over-torque detection during constant speed operation 2: Stop after over-torque detection during constant speed operation 3: Continue operation after over-torque detection during RUN 4: Stop after over-torque detection during RUN	0
N	06-07	Over-torque detection level (motor 1)	$\begin{aligned} & 10-250 \% \\ & (100 \% \text { corresponds to the rated current of the drive) } \end{aligned}$	120
N	06-08	Over-torque detection time (motor 1)	$0.1-60.0 \mathrm{sec}$.	0.1

Pr.	Parameter Name	Setting Range	Default
N		0: No function 1: Continue operation after over-torque detection during constant speed operation 2: Stop after over-torque detection during constant speed operation N	Over-torque detection selection (motor 2) N

Pr.	Parameter Name	Setting Range	Default
		16: IGBT overheating (oH1)	
		17: Heatsink overheating (oH2)	
		18: IGBT temperature detection failure (tH 1 o)	
		19: Capacitor hardware error (tH2o)	
		21: Drive over-load (oL)	
		22: Electronic thermal relay 1 protection (EoL1)	
		23: Electronic thermal relay 2 protection (EoL2)	
		24: Motor overheating (PTC / PT100) (oH3)	
		26: Over-torque 1 (ot1)	
		27: Over-torque 2 (ot2)	
		28: Under current (uC)	
		29: Limit error (LiT)	
		31: EEPROM read error (cF2)	
		33: U-phase error (cd1)	
		34: V-phase error (cd2)	
		35: W-phase error (cd3)	
		36: cc (current clamp) hardware error (Hd0)	
		37: oc (over-current) hardware error (Hd1)	
		40: Auto-tuning error (AUE)	
		41: PID loss ACI (AFE)	
		42: PG feedback error (PGF1)	
		43: PG feedback loss (PGF2)	
		44: PG feedback stall (PGF3)	
		45: PG slip error (PGF4)	
		48: ACI loss (ACE)	
		49: External fault (EF)	
		50: Emergency stop (EF1)	
		51: External Base Block (B.B.)	
		52: Enter wrong password three times and locked (Pcod)	
		54: lllegal command (CE1)	
		55: Illegal data address (CE2)	
		56: lliegal data value (CE3)	
		57: Data is written to read-only address (CE4)	
		58: Modbus transmission time-out (CE10)	
		61: Y-connection / Δ-connection switch error (ydc)	
		62: Deceleration energy backup error (dEb)	
		63: Over-slip (oSL)	
		65: Hardware error of PG card (PGF5)	
		72: STO Loss (STL1)	
		76: STO (STo)	

	Parameter Name	Setting Range	Default
		77: STO Loss 2 (STL2) 78: STO Loss 3 (STL3) 79: U-phase Over-current before run (Aoc) 80: V-phase Over-current before run (boc) 81: W-phase Over-current before run (coc) 82: U-phase output phase loss (oPL1) 83: V-phase output phase loss (oPL2) 84: W-phase output phase loss (oPL3) 87: Low frequency overload protection (oL3) 89: Rotor position detection error (roPd) 101: CANopen guarding error (CGdE) 102: CANopen heartbeat error (CHbE) 104: CANopen bus off error (CbFE) 105: CANopen index error (CidE) 106: CANopen slave station setting error (CAdE) 107: CANopen memory error (CFrE) 111: InrCOM time-out error (InerCOM) 121: Internal communication error (CP20) 123: Internal communication error (CP22) 124: Internal communication error (CP30) 126: Internal communication error (CP32) 127: Firmware version error (CP33) 128: Over-torque 3 (ot3) 129: Over-torque 4 (ot4) 134: Electronics thermal relay 3 protection (EoL3) 135: Electronics thermal relay 4 protection (EoL4) 140: oc hardware error (Hd6) 141: GFF occurs before run (b4GFF) 142: Auto-tuning error 1 (DC test stage) (AUE1) 143: Auto-tuning error 2 (High frequency test stage) (AUE2) 144: Auto-tuning error 3 (Rotary test stage) (AUE3)	
	Fault output option 1	0-65535 (refer to bit table for fault code)	0
	Fault output option 2	0-65535 (refer to bit table for fault code)	0
	Fault output option 3	0-65535 (refer to bit table for fault code)	0
	Fault output option 4	0-65535 (refer to bit table for fault code)	0
	Electronic thermal relay selection (motor 2)	0: Inverter motor (with external forced cooling) 1: Standard motor (motor with fan on shaft) 2: Disable	2
	Electronic thermal relay action time (motor 2)	30.0-600.0 sec.	60.0

Chapter 11 Summary of Parameter Settings | MH300

	Pr.	Parameter Name	Setting Range	Default
N	06-29	PTC detection selection	0 : Warn and continue operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	0
N	06-30	PTC level	0.0-100.0\%	50.0
	06-31	Frequency command for malfunction	$0.00-599.00 \mathrm{~Hz}$	Read only
	06-32	Output frequency at malfunction	$0.00-599.00 \mathrm{~Hz}$	Read only
	06-33	Output voltage at malfunction	0.0-6553.5 V	Read only
	06-34	DC voltage at malfunction	0.0-6553.5 V	Read only
	06-35	Output current at malfunction	0.00-655.35 Amp	Read only
	06-36	IGBT temperature at malfunction	$-3276.7-3276.7^{\circ} \mathrm{C}$	Read only
	06-38	Motor speed at malfunction	-32767-32767 rpm	Read only
	06-39	Torque command at malfunction	-32767-32767\%	Read only
	06-40	Status of the multi-function input terminal at malfunction	0000h-FFFFh	Read only
	06-41	Status of the multi-function output terminal at malfunction	0000h-FFFFh	Read only
	06-42	Drive status at malfunction	0000h-FFFFh	Read only
N	06-44	STO latch selection	0 : STO Latch 1: STO No Latch	0
N	06-45	Output phase loss detection (OPHL) action	0 : Warn and continue operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	3
N	06-46	Detection time of output phase loss	0.000-65.535 sec.	0.500
N	06-47	Current detection level for output phase loss	0.00-100.00\%	1.00
N	06-48	DC brake time of output phase loss	0.000-65.535 sec.	0.000

Chapter 11 Summary of Parameter Settings | MH300

Pr.	Parameter Name	Setting Range	Default
06-73	Low current action	0 : No function 1: Warn and coast to stop 2: Warn and ramp to stop by the $2^{\text {nd }}$ deceleration time 3: Warn and continue operation	0
06-90	Operation time of fault record 5 (Day)	0-65535 days	Read only
06-91	Operation time of fault record 5 (Min.)	0-1439 min.	Read only
06-92	Operation time of fault record 6 (Day)	0-65535 days	Read only
06-93	Operation time of fault record 6 (Min.)	0-1439 min.	Read only

07 Special Parameters

	Pr.	Parameter Name	Setting Range	Default
N	07-00	Software brake level	$115 \mathrm{~V} / 230 \mathrm{~V}$ models: 350.0-450.0 VDC 460V models: 700.0-900.0 VDC	$\begin{aligned} & 370.0 \\ & 740.0 \end{aligned}$
N	07-01	DC brake current level	0-100\%	0
N	07-02	DC brake time at RUN	$0.0-60.0 \mathrm{sec}$.	0.0
N	07-03	DC brake time at STOP	0.0-60.0 sec.	0.0
N	07-04	DC brake frequency at STOP	0.00-599.00 Hz	0.00
N	07-05	Voltage increasing gain	1-200\%	100
N	07-06	Restart after momentary power loss	0: Stop operation 1: Speed tracking by speed before the power loss 2: Speed tracking by minimum output frequency	0
N	07-07	Allowed power loss duration	0.0-20.0 sec.	2.0
N	07-08	Base Block time	0.1-5.0 sec.	0.5
N	07-09	Current limit of speed tracking	20-200\%	100
N	07-10	Restart after fault action	0: Stop operation 1: Speed tracking by current speed 2: Speed tracking by minimum output frequency	0
N	07-11	Number of times of auto-restart after fault	0-10	0
N	07-12	Speed tracking during start-up	0 : Disable 1: Speed tracking by maximum output frequency 2: Speed tracking by motor frequency at start 3: Speed tracking by minimum output frequency	0
N	07-13	dEb function selection	0: Disable 1: dEb with auto-acceleration / auto-deceleration, the drive does not output the frequency after the power is restored. 2: dEb with auto-acceleration / auto-deceleration, the drive outputs the frequency after the power is restored. 3: dEb low-voltage control, then the drive's voltage increases to $350 \mathrm{~V}_{\mathrm{DC}} / 700 \mathrm{~V}_{\mathrm{DC}}$ and ramps to stop after low frequency 4: dEb high-voltage control of $350 \mathrm{VCC} / 700 \mathrm{~V} \mathrm{Vc}$, and the drive ramps to stop	0
N	07-15	Dwell time at acceleration	0.00-600.00 sec.	0.00
N	07-16	Dwell frequency at acceleration	$0.00-599.00 \mathrm{~Hz}$	0.00

	Pr.	Parameter Name	Setting Range	Default
N	07-17	Dwell time at deceleration	0.00-600.00 sec.	0.00
N	07-18	Dwell frequency at deceleration	$0.00-599.00 \mathrm{~Hz}$	0.00
N	07-19	Fan cooling control	0 : Fan is always ON 1: Fan is OFF after AC motor drive stops for one minute. 2: Fan is ON when AC motor drive runs; fan is OFF when AC motor drive stops. 3: Fan turns ON when temperature (IGBT) reaches around $60^{\circ} \mathrm{C}$.	3
N	07-20	Deceleration of emergency or forced stop	0 : Coast to stop 1: Stop by the $1^{\text {st }}$ deceleration time 2: Stop by the $2^{\text {nd }}$ deceleration time 3: Stop by the $3^{\text {rd }}$ deceleration time 4: Stop by the $4^{\text {th }}$ deceleration time 5: System deceleration 6: Automatic deceleration	0
N	07-21	Automatic energy-saving selection	0: Disable 1: Enable	0
N	07-22	Energy-saving gain	10-1000\%	100
N	07-23	Auto voltage regulation (AVR) function	0: Enable AVR 1: Disable AVR 2: Disable AVR during deceleration	0
N	07-24	Torque command filter time	$0.001-10.000 \mathrm{sec}$.	0.050
N	07-25	Slip compensation filter time	0.001-10.000 sec.	0.100
N	07-26	Torque compensation gain	IM: 0-10 (when Pr.05-33 = 0) PM: 0-5000 (when Pr.05-33 = 1 or 2)	1
N	07-27	Slip compensation gain	0.00-10.00	0.00 (Default value is 1.00 in SVC mode)
N	07-29	Slip deviation level	0.0-100.0\% 0 : No detection	0
N	07-30	Slip deviation detection time	$0.0-10.0 \mathrm{sec}$.	1.0
N	07-31	Slip deviation action	0 : Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning	0
N	07-32	Motor shock compensation factor	0-10000	1000

	Pr.	Parameter Name	Setting Range	Default
N	07-33	Auto-restart interval of fault	0.0-6000.0 sec.	60.0
	07-38	PMSVC voltage feed forward gain	0.00-2.00	1.00
N	07-62	dEb gain (Kp)	0-65535	8000
N	07-63	dEb gain (Ki)	0-65535	150
N	07-71	Torque compensation gain (motor 2)	IM: 0-10 (when Pr.05-33 = 0) PM: 0-5000 (when Pr.05-33 = 1 or 2)	1
N	07-72	Slip compensation gain (motor 2)	0.00-10.00	$\begin{gathered} 0.00 \\ \text { (Default } \\ \text { value is } 1.00 \\ \text { in SVC } \\ \text { mode) } \\ \hline \end{gathered}$
N	07-73	Torque compensation gain (motor 3)	IM: 0-10 (when Pr.05-33 = 0) PM: 0-5000 (when Pr.05-33 = 1 or 2)	1
N	07-74	Slip compensation gain (motor 3)	0.00-10.00	$\begin{gathered} 0.00 \\ \text { (Default } \\ \text { value is } 1.00 \\ \text { in SVC } \\ \text { mode) } \\ \hline \end{gathered}$
N	07-75	Torque compensation gain (motor 4)	IM: 0-10 (when Pr.05-33 = 0) PM: 0-5000 (when Pr.05-33 = 1 or 2)	1
N	07-76	Slip compensation gain (motor 4)	0.00-10.00	$\begin{gathered} 0.00 \\ \text { (Default } \\ \text { value is } 1.00 \\ \text { in SVC } \\ \text { mode) } \\ \hline \end{gathered}$

08 High-function PID Parameters

	Pr.	Parameter Name	Setting Range	Default
N	08-00	Terminal selection of PID feedback	0 : No function 1: Negative PID feedback: by analog input (Pr.03-00) 2: Negative PID feedback: by single-phase pulse input (MI7), without direction (Pr.10-16) 3: Negative PID feedback: by single -phase pulse input (MI7), with direction (Pr.10-16) 4: Positive PID feedback: by analog input (Pr.03-00) 5: Positive PID feedback: by single -phase pulse input (MI7), without direction (Pr.10-16) 6: Positive PID feedback: by single -phase pulse input (MI7), with direction (Pr.10-16) 7: Negative PID feedback: by communication protocol 8: Positive PID feedback: by communication protocol	0
N	08-01	Proportional gain (P)	$\begin{aligned} & 0.0-5000.0(\text { When Pr. } 08-23 \text { bit1 }=0) \\ & 0.00-500.00(\text { When Pr. } 08-23 \text { bit1 }=1 \text {) } \end{aligned}$	$\begin{gathered} 1.0 \\ 1.00 \end{gathered}$
N	08-02	Integral time (I)	$0.00-100.00 \mathrm{sec}$.	1.00
N	08-03	Differential time (D)	$0.00-1.00 \mathrm{sec}$.	0.00
N	08-04	Upper limit of integral control	0.0-100.0\%	100.0
N	08-05	PID output command limit (positive limit)	0.0-100.0\%	100.0
N	08-06	PID feedback value by communication protocol	-200.00-200.00\%	0.00
N	08-07	PID delay time	0.0-2.5 sec.	0.0
N	08-08	Feedback signal detection time	$0.0-3600.0 \mathrm{sec}$.	0.0
N	08-09	Feedback signal fault treatment	0 : Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: Warn and operate at last frequency	0
N	08-10	Sleep level	0.00-599.00 Hz / 0.00-200.00\%	0.00
N	08-11	Wake-up level	0.00-599.00 Hz / 0.00-200.00\%	0.00
N	08-12	Sleep delay time	$0.0-6000.0 \mathrm{sec}$.	0.0
N	08-13	PID feedback signal error deviation level	1.0-50.0\%	10.0
N	08-14	PID feedback signal error deviation time	$0.1-300.0 \mathrm{sec}$.	5.0
N	08-15	PID feedback signal filter time	0.1-300.0 sec.	5.0

	Pr.	Parameter Name	Setting Range	Default
N	08-16	PID compensation selection	0 : Parameter setting 1: Analog input	0
N	08-17	PID compensation	-100.0-100.0\%	0
	08-18	Sleep mode function setting	0 : Refer to PID output command 1: Refer to PID feedback signal	0
N	08-19	Wake-up integral limit	0.0-200.0\%	50.0
	08-20	PID mode selection	0: Serial connection 1: Parallel connection	0
	08-21	Enable PID to change the operation direction	0 : Operating direction can be changed 1: Operating direction cannot be changed	0
N	08-22	Wake-up delay time	0.00-600.00 sec.	0.00
N	08-23	PID control flag	bit $0=1$: PID running in reverse follows the setting for Pr.00-23. bit $0=0$: PID running in reverse refers to PID calculated value. bit $1=1$: PID Kp gain is 2 decimal places. bit $1=0$: PID Kp gain is 1 decimal place.	2
N	08-26	PID output command limit (reverse limit)	0.0-100.0\%	100.0
N	08-27	PID command acceleration / deceleration time	0.00-655.35 sec.	0.00
	08-29	Frequency base corresponding to 100.00% PID	0 : PID control output 100.00%, corresponding to maximum operation frequency (Pr.01-00) 1: PID control output 100.00%, corresponding to the input value of the auxiliary frequency	0
N	08-31	Proportional gain 2 (P)	$\begin{aligned} & 0.0-5000.0 \text { (When Pr. } 08-23 \text { bit1 }=0 \text {) } \\ & 0.00-500.00 \text { (When Pr. } 08-23 \text { bit1 }=1 \text {) } \end{aligned}$	$\begin{gathered} 1.0 \\ 1.00 \end{gathered}$
N	08-32	Integral time 2 (I)	0.00-100.00 sec.	1.00
N	08-33	Differential time 2 (D)	0.00-1.00 sec.	0.00
N	08-65	Source of PID target value	0: From frequency command (Pr.00-20, 00-30) 1: From Pr.08-66 2: From RS-485 3: From external analog (refer to Pr.03-00, 03-01) 4: From CANopen 6: From communication cards (CANopen card not included) 7: By the digital dial on the keypad	0
N	08-66	PID target value setting	-100.00-100.00\%	50.00

	Pr.	Parameter Name	Setting Range	Default
N	08-67	Master and auxiliary reverse running cutoff frequency	0.0-100.0\%	10.0
N	08-68	PID deviation limit	0.00-100.00\%	0.00
N	08-69	Integral separation level	0.00-100.00\%	0.00
	08-70	Smart start-up level	0.00-100.00\%	5.00
N	08-71	Smart start-up frequency command	$0.00-599.00 \mathrm{~Hz}$	0.00
N	08-72	Smart start-up acceleration time	0.00-600.00 sec.	3.00
N	08-75	PID 2 parameter switch condition	0: Does not switch (refer to Pr.08-01-08-03) 1: Auto-switch is based on output frequency 2: Auto-switch is based on the deviation	0
N	08-76	PID 2 parameter switch deviation 1	0.00-Pr.08-77\%	10.00
N	08-77	PID 2 parameter switch deviation 2	Pr,08-76-100.00\%	40.00
N	08-78	Allowed time to reverse direction after start-up	0.0-6553.5 sec.	0.0
	08-79	WireBreak detected upper level	0-100\%	0
	08-80	WireBreak detected lower level	0-100\%	0
	08-81	WireBreak detected Time	0.000-65.535 sec.	0.000
	08-82	WireBreak treatment	0 : Warn and do not stop 1: ramp to stop 2: coast to stop 3: Warn, PID hold	0

09 Communication Parameters

	Pr.	Parameter Name	Setting Range	Default
N	09-00	Communication address	1-254	1
N	09-01	COM1 transmission speed	4.8-115.2 Kbps	9.6
N	09-02	COM1 transmission fault treatment	0 : Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop 3: No warning, no error displayed and continue operation	3
N	09-03	COM1 time-out detection	0.0-100.0 sec.	0.0
N	09-04	COM1 communication protocol	1: 7N2 (ASCII) 2: 7E1 (ASCII) 3: 701 (ASCII) 4: 7E2 (ASCII) 5: 702 (ASCII) 6: 8N1 (ASCII) 7: 8N2 (ASCII) 8: 8E1 (ASCII) 9: 801 (ASCII) 10: 8E2 (ASCII) 11: 8 O 2 (ASCII) 12: 8N1 (RTU) 13: 8N2 (RTU) 14: 8E1 (RTU) 15: 801 (RTU) 16: 8E2 (RTU) 17: 8 O 2 (RTU)	1
N	09-09	Communication response delay time	$0.0-200.0$ ms	2.0
	09-10	Communication main frequency	0.00-599.00 Hz	60.00
N	09-11	Block transfer 1	0-65535	0
N	09-12	Block transfer 2	0-65535	0
N	09-13	Block transfer 3	0-65535	0
N	09-14	Block transfer 4	0-65535	0
N	09-15	Block transfer 5	0-65535	0
N	09-16	Block transfer 6	0-65535	0
N	09-17	Block transfer 7	0-65535	0
N	09-18	Block transfer 8	0-65535	0
N	09-19	Block transfer 9	0-65535	0
N	09-20	Block transfer 10	0-65535	0

Pr.	Parameter Name	Setting Range	Default
09-21	Block transfer 11	0-65535	0
09-22	Block transfer 12	0-65535	0
09-23	Block transfer 13	0-65535	0
09-24	Block transfer 14	0-65535	0
09-25	Block transfer 15	0-65535	0
09-26	Block transfer 16	0-65535	0
09-30	Communication decoding method	0 : Decoding method 1 1: Decoding method 2	1
09-31	Internal Communication Protocol	0: Modbus 485 -1: Internal communication slave 1 -2: Internal communication slave 2 -3: Internal communication slave 3 -4: Internal communication slave 4 -5 : Internal communication slave 5 -6: Internal communication slave 6 -7: Internal communication slave 7 -8: Internal communication slave 8 -10: Internal communication master -12: Internal PLC control	0
09-33	PLC command force to 0	0-65535	0
09-35	PLC address	1-254	2
09-36	CANopen slave address	$\begin{array}{\|l\|} \hline 0: \text { Disable } \\ 1-127 \end{array}$	0
09-37	CANopen speed	0: 1 Mbps 1: 500 Kbps 2: 250 Kbps 3: 125 Kbps 4: 100 Kbps (Delta only) 5: 50 Kbps	0
09-39	CANopen warning record	bit 0: CANopen software disconnection 1 (CANopen guarding time-out) bit 1: CANopen software disconnection 2 (CANopen heartbeat time-out) bit 3: CANopen SDO time-out bit 4: CANopen SDO buffer overflow bit 5: CANopen hardware disconnection warning (Can Bus OFF) bit 6: CANopen error protocol	0
09-40	CANopen decoding method	0 : Delta-defined decoding method 1: CANopen standard DS402 protocol	1

Pr.	Parameter Name	Setting Range	Default
09-41	CANopen communication status	0 : Node reset 1: Com reset 2: Boot up 3: Pre-operational 4: Operation 5: Stopped	Read only
09-42	CANopen control status	0 : Not ready for use 1: Inhibit start 2: Ready to switch on 3: Switched on 4: Enable operation 7: Quick stop active 13: Error reaction activation 14: Error state	Read only
09-43	CANopen reset index	bit 0: CANopen reset, internal address 20XX is 0 bit 1: CANopen reset, internal address 264 X is 0 bit 2: CANopen reset, internal address 26AX is 0 bit 3: CANopen reset, internal address 60XX is 0	65535
09-60	Communication card identification	0 : No communication card 1: DeviceNet slave 2: PROFIBUS-DP slave 3: CANopen slave / Master 5: EtherNet/IP slave 6: EtherCAT 10: Backup power supply 12: PROFINET	Read only
09-61	Firmware version of communication card	Read only	Read only
09-62	Product code	Read only	Read only
09-63	Error code	Read only	Read only
09-70	Communication card address (for DeviceNet or PROFIBUS)	DeviceNet: 0-63 PROFIBUS-DP: 1-125	1
09-71	DeviceNet speed setting (for DeviceNet)	Standard DeviceNet: 0: 125 Kbps 1: 250 Kbps 2: 500 Kbps 3: 1 Mbps (Delta only)	2

	Pr.	Parameter Name	Setting Range	Default
			Non-standard DeviceNet (Delta only): 0: 10 Kbps 1: 20 Kbps 2: 50 Kbps 3: 100 Kbps 4: 125 Kbps 5: 250 Kbps 6: 500 Kbps 7: 800 Kbps 8: 1 Mbps	
\checkmark	09-72	Other DeviceNet speed setting (for DeviceNet)	0 : Disable: In this mode, baud rate must be $125 \mathrm{Kbps}, 250 \mathrm{Kbps}$, 500 Kbps , or 1 Mbps in the standard DeviceNet speed. 1: Enable: In this mode, DeviceNet baud rate must be same as that for CANopen baud rate (0-8).	0
,	09-75	Communication card IP configuration (for EtherNet)	0: Static IP 1: Dynamic IP (DHCP)	0
,	09-76	Communication card IP address 1 (for EtherNet)	0-255	0
,	09-77	Communication card IP address 2 (for EtherNet)	0-255	0
,	09-78	Communication card IP address 3 (for EtherNet)	0-255	0
\checkmark	09-79	Communication card IP address 4 (for EtherNet)	0-255	0
,	09-80	Communication card address mask 1 (for EtherNet)	0-255	0
,	09-81	Communication card address mask 2 (for EtherNet)	0-255	0
\checkmark	09-82	Communication card address mask 3 (for EtherNet)	0-255	0
N	09-83	Communication card address mask 4 (for EtherNet)	0-255	0

10 Speed Feedback Control Parameters

	Parameter Name	Setting Range	Default
10-00	Encoder type selection	0: Disabled 1: ABZ 3: Resolver $1 \times \mathrm{PM}$ encoder 5: Pulse input (MI7)	0
10-01	Encoder pulses per revolution	1-20000	600
10-02	Encoder input type setting	0: Disable 1: Phases A and B are pulse inputs, forward direction if A-phase leads B-phase by 90 degrees. 2: Phases A and B are pulse inputs, forward direction if B-phase leads A-phase by 90 degrees. 3: Phase A is a pulse input and phase B is a direction input (low input $=$ reverse direction, high input = forward direction). 4: Phase A is a pulse input and phase B is a direction input (low input = forward direction, high input = reverse direction). 5: Single-phase input (MI7) NOTE: 1. When the MH300 inputs the A / B phase pulse, you must connect the MI6 terminal to the A-phase pulse, and the MI7 terminal to the B-phase pulse. 2. When the MH300 uses unidirectional input, it disables the MI6 function and prohibits any signal connection.	0
10-03	Frequency division output setting (denominator)	1-255	1
10-04	Electrical gear at load side A1	1-65535	100
10-05	Electrical gear at motor side B1	1-65535	100
10-06	Electrical gear at load side A2	1-65535	100
10-07	Electrical gear at motor side B2	1-65535	100
10-08	Encoder feedback fault treatment	0 : Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop	2
10-09	Encoder feedback fault detection time	0: Disabled $0.0-10.0 \mathrm{sec}$.	1.0

	Pr.	Parameter Name	Setting Range	Default
N	10-10	Encoder stall level	0 : No function $1-120 \%$	115
N	10-11	Encoder stall detection time	0.0-2.0 sec.	0.1
N	10-12	Encoder stall action	0 : Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop	2
N	10-13	Encoder slip range	0 : No function $0-50 \%$	50
N	10-14	Encoder slip detection time	0.0-10.0 sec.	0.5
N	10-15	Encoder stall and slip error action	0 : Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop	2
N	10-16	Pulse input type setting	0: Disabled 1: Phases A and B are pulse inputs, forward direction if A-phase leads B-phase by 90 degrees. 2: Phases A and B are pulse inputs, forward direction if B-phase leads A-phase by 90 degrees. 3: Phase A is a pulse input and phase B is a direction input (low input $=$ reverse direction, high input $=$ forward direction). 4: Phase A is a pulse input and phase B is a direction input (low input $=$ forward direction, high input $=$ reverse direction). 5: Single-phase input (MI7)	0
N	10-17	Electrical gear A	1-65535	100
N	10-18	Electrical gear B	1-65535	100
N	10-19	Positioning for encoder position	-32767-32767 pulses	0
N	10-20	Error range for encoder position reached	0-65535 pulses	10
N	10-21	Filter time (PG2)	0.000-65.535 sec.	0.100
N	10-24	FOC \& TQC function control	0-65535	0
N	10-25	FOC bandwidth for speed observer	20.0-100.0 Hz	40.0
N	10-26	FOC minimum stator frequency	0.0-10.0\% fN	2.0

	Pr.	Parameter Name	Setting Range	Default
N	10-27	FOC low-pass filter time constant	1-1000 ms	50
N	10-28	FOC gain for excitation current rise time	33-100\% Tr	100
N	10-29	Top limit of frequency deviation	$0.00-100.00 \mathrm{~Hz}$	20.00
	10-30	Resolver pole pair	1-50	1
N	10-31	I/F mode, current command	0-150\% rated current of the motor	40
N	10-32	PM FOC sensorless speed estimator bandwidth	$0.00-600.00 \mathrm{~Hz}$	5.00
N	10-34	PM sensorless speed estimator low-pass filter gain	0.00-655.35	1.00
N	10-35	AMR (Kp)	0.00-3.00	1.00
N	10-36	AMR (Ki)	0.00-3.00	0.20
N	10-39	Frequency point to switch from I/F mode to PM sensorless mode	$0.00-599.00 \mathrm{~Hz}$	20.00
N	10-40	Frequency point to switch from PM sensorless mode to I/F mode	$0.00-599.00 \mathrm{~Hz}$	20.00
N	10-42	Initial angle detection pulse value	0.0-3.0	1.0
	10-43	PG card version	0.00-655.35	Read only
N	10-49	Zero voltage time during start-up	00.000-60.000 sec.	00.000
N	10-51	Injection frequency	$0-1200 \mathrm{~Hz}$	500
N	10-52	Injection magnitude	0.0-200.0 V	$\begin{aligned} & 15.0 / \\ & 30.0 \end{aligned}$
N	10-53	Angle detection method	0 : Disabled 1: Force attracting the rotor to zero degrees 2: High frequency injection 3: Pulse injection	0

11 Advanced Parameters

	Pr.	Parameter Name	Setting Range	Default
N	11-23	Flux weakening area speed response	0-150\%	65
N	11-24	APR gain	$0.00-40.00 \mathrm{~Hz}$ (IM) / 0.00-100.00 Hz (PM)	10.00
N	11-25	Gain value for the APR feed forward	0-100	30
N	11-26	APR curve time	0.00-655.35 sec.	10.00
N	11-27	Maximum torque command	0-500\%	100
N	11-28	Torque offset source	0: Disable 1: Analog signal input 2: RS-485 communication (Pr.11-29) 3: Controlled by external terminal (Pr.11-30-11-32)	0
N	11-29	Torque offset setting	-100-100.0\%	0.0
N	11-30	High torque command compensation	-100-100.0\%	30.0
N	11-31	Middle torque command compensation	-100-100.0\%	20.0
N	11-32	Low torque command compensation	-100-100.0\%	10.0
N	11-33	Torque command source	0: Digital keypad 1: RS-485 communication (Pr.11-34) 2: Analog signal input (Pr.03-00) 3: CANopen	0
N	11-34	Torque command	$-100.0-100.0 \%$ (Pr.11-27 setting value $=100 \%$)	0.0
N	11-35	Torque command filter time	0.000-1.000 sec.	0.000
	11-36	Speed limit selection	0: Pr.11-37 (forward speed limit) and Pr.11-38 (reverse speed limit) 1: Speed limit source is Pr.00-20 (master frequency command source), and Pr.11-37 / Pr.11-38 2: Pr.00-20 (master frequency command source) 3: Speed limit source is the linear speed of tension control	0
N	11-37	Forward speed limit (torque mode)	0-120\%	10
N	11-38	Reverse speed limit (torque mode)	0-120\%	10
	11-39	Zero torque command mode selection	0 : Torque mode 1: Speed mode	0

12 Tension Control Parameters

Pr.	Parameter Name	Setting Range	Default
12-00	Tension control selection	0: Disabled 1: Closed-loop tension, speed mode 2: Closed-loop linear speed, speed mode 3: Closed-loop tension, torque mode 4: Open-loop tension, torque mode	0
12-01	Winding mode	0 : Rewind 1: Unwind	0
12-02	Mechanical gear A at load side	1-65535	100
12-03	Mechanical gear B at motor side	1-65535	100
12-04	PID target source	0: Set by parameter (Pr.12-05) 1: Set by RS-485 2: Analog input	0
12-05	PID target value	0.0-100.0\%	50.0
12-06	PID feedback source selection	0 : Analog input 1: Pulse input	0
12-07	Tension PID auto-tuning selection	0: Disabled 1: Reel diameter (Pr.12-08-12-09 corresponds to Pr.12- 29; Pr.12-11-12-12 corresponds to Pr.12-28) 2: Frequency (Pr.12-08-12-09 corresponds to Pr. 01-07; Pr.12-11-12-12 corresponds to Pr.01-00)	0
12-08	Tension PID P gain 1	0.0-1000.0	50.0
12-09	Tension PID I integral time 1	$0.00-500.00 \mathrm{sec}$.	1.00
12-11	Tension PID P gain 2	0.0-1000.0	50.0
12-12	Tension PID I integral time 2	$0.00-500.00 \mathrm{sec}$.	1.00
12-14	Tension PID output status selection	0: PID output is positive 1: PID outut is negative	0
12-15	Tension PID output limit	0.00-100.00\%	20.00
12-16	Tension PID output command limit (Negative limit)	0.00-655.35\%	20.00
12-17	Tension PID feedback upper limit	0.0-100.0\%	100.0
12-18	Tension PID feedback lower limit	0.0-100.0\%	0.0

	Pr.	Parameter Name	Setting Range	Default
	12-19	Linear speed input command source	0: Disabled 1: Analog input 2: RS-485 communication input 3: PG card pulse input 4: DFM-DCM pulse input 5: Pulse input through MI6 / MI7 terminal	0
	12-20	Maximum linear speed	$0.0-6500.0 \mathrm{~m} / \mathrm{min}$.	1000.0
	12-21	Minimum linear speed	$0.0-6500.0 \mathrm{~m} / \mathrm{min}$.	0.0
	12-22	Pulses per meter	0.0-6000.0 pulses $/ \mathrm{m}$	0.0
N	12-23	Current linear speed	$0.0-6500.0 \mathrm{~m} / \mathrm{min}$.	0.0
N	12-24	Linear speed low pass filter time	0.00-100.00 sec.	0.10
N	12-25	Linear speed command acceleration time	0.00-655.35 sec.	0.00
N	12-26	Linear speed command deceleration time	$0.00-655.35 \mathrm{sec}$.	0.00
	12-27	Reel diameter source	0: Calculated via line speed 1: Calculated via analog input selection 2: Calculated via thickness integral, the encoder installed at reel side inputs by PG card 3: Calculated via thickness integral, the encoder installed at motor side inputs by PG card 4: Calculated via thickness integral, the encoder installed at reel side inputs by MI6 / MI7 terminals 5: Calculated via thickness integral, the encoder installed at motor side inputs by MI6 / MI7 terminals	0
	12-28	Maximum reel diameter	$1.0-6000.0 \mathrm{~mm}$	6000.0
	12-29	Empty reel diameter	$1.0-6000.0 \mathrm{~mm}$	1.0
	12-30	Initial reel diameter source	0: RS-485 communication input (Pr.12-31) 1: Analog input (Pr.03-00-03-01 = d16)	0
N	12-31	Initial reel diameter	$1.0-6000.0 \mathrm{~mm}$	1.0
	12-32	Initial reel diameter 1	$1.0-6000.0 \mathrm{~mm}$	1.0
	12-33	Initial reel diameter 2	$1.0-6000.0 \mathrm{~mm}$	1.0
	12-34	Pulses per revolution	1-60000 ppr	1
	12-35	Revolutions per layer	1-10000	1
	12-36	Material thickness	0.001-65.000 mm	0.001
N	12-37	Reel diameter filter time	0.00-100.00 sec.	1.00
	12-38	Automatic reel diameter compensation	0: Disabled 1: Enabled	0

	Pr.	Parameter Name	Setting Range	Default
N	12-39	Reel diameter calculation delay time	0.0-6553.5 sec.	0.0
N	12-40	Current reel diameter	$1.0-6000.0 \mathrm{~mm}$	1.0
N	12-41	Minimum output frequency for reel diameter calculation	$0.00-599.00 \mathrm{~Hz}$	1.00
	12-42	Pre-startup mode selection	0: Disabled 1: Pre-startup of rewind mode 2: Pre-startup of unwind mode	0
	12-43	Switching level for prestartup and PID enable	0.0-100.0\% (according to Pr. 12-05)	15.0
	12-44	Pre-startup frequency	$0.00-599.00 \mathrm{~Hz}$	2.00
N	12-45	Pre-startup acceleration time	0.01-600.00 sec.	3.00
	12-46	Broken belt detection function	0: Disabled 1: Enabled	0
	12-47	Minimum linear speed of broken belt detection	$0.0-3000.0 \mathrm{~m} / \mathrm{min}$.	0.0
	12-48	Reel diameter error of broken belt detection	$1.0-6000.0 \mathrm{~mm}$	100.0
	12-49	Broken belt detection time	0.00-100.00 sec.	1.00
	12-50	Tension PID feedback error level	0-100\%	100
	12-51	Tension PID feedback error detection time	0.0-10.0 sec.	0.5
	12-52	Tension PID feedback error treatment	0: Warn and continue operation 1: Fault and ramp to stop 2: Fault and coast to stop	0
	12-54	Tension command source selection	0: RS-485 communication input 1: Analog input	0
	12-55	Maximum tension value	0-65535 N	0
N	12-56	Tension command setting value	0-65535 N	0
	12-57	Zero-speed tension setting source	0: Disabled 1: RS-485 communication input 2: Analog input	0
N	12-58	Zero-speed tension setting value	0-65535 N	0
N	12-59	Zero-speed tension threshold (line speed)	0-100.00\%	0

Chapter 11 Summary of Parameter Settings | MH300

	Pr.	Parameter Name	Setting Range	Default
N	12-60	Dynamic friction torque compensation	0.0-100.0\%	0.0
N	12-61	Material inertia compensation coefficient	0-30000	0
N	12-62	Acceleration inertia compensation gain	0.0-1000.0\%	0.0
N	12-63	Inertia compensation filter time	0.00-100.00	5.00
N	12-64	Deceleration inertia compensation gain	0.0-1000.0\%	0.0
	12-65	Tension taper curve selection	0-4 0 : No taper 1: Curve taper 2: Linear taper 3: Multi-step curve taper 4: Multi-step linear taper	0
	12-66	Tension taper setting source	0: RS-485 communication input 1: Analog input	0
N	12-67	Tension taper value	0-100\%	0
	12-68	Tension taper curve compensation value	0-60000	0
	12-69	Multi-step taper reel diameter 1	10.0-6000.0	6000.0
	12-70	Multi-step taper reel diameter 2	10.0-6000.0	6000.0
N	12-71	Multi-step taper value 1	0-100	0
N	12-72	Multi-step taper value 2	0-100	0
N	12-73	Pre-drive frequency gain	-50.0-50.0\%	0
N	12-74	Pre-drive acceleration time	0-65535 sec.	0
N	12-75	Pre-drive deceleration time	$0-65535 \mathrm{sec}$.	0
N	12-76	Speed limit gain	0-65535 sec.	0
N	12-77	Tension control flag	bit 0: Closed loop tension speed mode, allowed changing operation direction bit 1: Start-up compensation (switching between zerospeed tension command and normal tension command) bit 2: Acceleration and deceleration compensation (Pr.12-62 Acceleration inertia compensation gain; Pr.12-64 Deceleration inertia compensation gain)	0

Pr.	Parameter Name	Setting Range	Default
		bit 3: Reel diameter calculation by moving average method	
		bit 5: PID output reverse limit selection	
		bit 6: Material thickness range selection	

13 Macro (User-defined)

	Pr.	Parameter Name	Setting Range	Default
	13-00	Application selection	00: Disabled 01: User-defined parameter 02: Compressor 03: Fan 04: Pump 05: Conveyor 06: Machine tool 07: Packing 08: Textiles 10: Logistics 11: Tension PID function 12: Tension PID and master / auxiliary frequency function	00
	$\begin{gathered} 13-01 \\ - \\ 13-50 \end{gathered}$	Application parameters (user-defined)		

14 Protection Parameters (2)

	Pr.	Parameter Name	Setting Range	Default
N	14-00	Extension card input terminal selection (Al10)	0: No function 1: Frequency command (in MH300 series, this function can be the torque limit in torque control mode) 2: Torque command (torque limit in speed mode) 3: Torque compensation command 4: PID target value	0
N	14-01	Extension card input terminal selection (Al11)	5: PID feedback signal 6: PTC thermistor input value 7: Positive torque limit 8: Negative torque limit 9: Regenerative torque limit 10: Positive / negative torque limit 11: PT100 thermistor input value 13: PID compensation amount	0
N	14-02	Al10 Analog input bias	-100.0-100.0\%	0.0
N	14-03	Al11 Analog input bias	-100.0-100.0\%	0.0
N	14-04	Al10 positive / negative bias mode	0: No bias 1: Lower than or equal to bias 2: Higher than or equal to bias	0
N	14-05	Al11 positive / negative bias mode	3: The absolute value of the bias voltage while serving as the center 4: Bias serves as the center	0
N	14-06	Al10 analog input gain	-500.0-500.0\%	100.0
N	14-07	Al11 analog input gain	-500.0-500.0\%	100.0
N	14-08	AI10 analog input filter time	0.00-20.00 sec.	0.01
N	14-09	Al11 analog input filter time	0.00-20.00 sec.	0.01
*	14-10	ACI10 analog input 4-20 mA signal loss selection	0: Disable 1: Continue operation at the last frequency	0
N	14-11	ACI11 analog input 4-20 mA signal loss selection	2: Decelerate to 0 Hz 3: Stop immediately and display "ACE"	0
N	14-12	AO10 extension card output terminal selection	0 : Output frequency (Hz) 1: Frequency command (Hz)	0
N	14-13	AO11 extension card output terminal selection	2: Motor speed (Hz) 3: Output current (rms)	0
			4: Output voltage 5: DC bus voltage	

	Pr.	Parameter Name	Setting Range	Default
			6: Power factor 7: Power 8: Output torque 9: AVI 10: ACI 12: Iq current command 13: Iq feedback value 14: Id current command 15: Id feedback value 16: Vq-axis voltage command 17: Vd-axis voltage command 18: Torque command 19: PG2 frequency command 20: CANopen analog output 21: RS-485 analog output 22: Communication card analog output 23: Constant voltage output	
N	14-14	AO10 analog output 1 gain	0.0-500.0 \%	100.0
N	14-15	AO11 analog output 1 gain	0.0-500.0 \%	100.0
N	14-16	AVO10 analog output 1 in REV direction	0 : Absolute value of output voltage	0
N	14-17	AVO11 analog output 1 in REV direction	2: Reverse output 5-0 V; forward output 5-10 V	0
N	14-18	Extension card (Al10) input selection	$\begin{aligned} & 0: 0-10 \mathrm{~V}(\mathrm{AVI} 10) \\ & \text { 1: } 0-20 \mathrm{~mA}(\mathrm{ACl} 10) \\ & 2: 4-20 \mathrm{~mA}(\mathrm{ACl10}) \end{aligned}$	0
N	14-19	Extension card (Al11) input selection	$\begin{aligned} & 0: 0-10 \mathrm{~V}(\mathrm{AVI} 11) \\ & \text { 1: } 0-20 \mathrm{~mA}(\mathrm{ACl} 11) \\ & \text { 2: 4-20 mA (ACl11) } \end{aligned}$	0
N	14-20	AVO10 DC output setting level	0.00-100.00\%	0.00
N	14-21	AVO11 DC output setting level	0.00-100.00\%	0.00
N	14-22	AVO10 filter output time	0.00-20.00 sec.	0.01
N	14-23	AVO11 filter output time	0.00-20.00 sec.	0.01
N	14-24	Al10 extension card lowest point	$\begin{aligned} & \text { Pr. 14-18 }=0: 0.00-10.00 \mathrm{~V} \\ & \text { Pr. 14-18 } \neq 0: 0.00-20.00 \mathrm{~mA} \text { or } 4-20 \mathrm{~mA} \end{aligned}$	0.00
N	14-25	Al10 extension card proportional lowest point	0.00-100.00\%	0.00

	Pr.	Parameter Name	Setting Range	Default
N	14-26	Al10 extension card mid-point	$\begin{aligned} & \text { Pr. 14-18 }=0: 0.00-10.00 \mathrm{~V} \\ & \text { Pr. 14-18 } \neq 0: 0.00-20.00 \mathrm{~mA} \text { or } 4-20 \mathrm{~mA} \end{aligned}$	5.00
N	14-27	Al10 extension card proportional mid-point	0.00-100.00\%	50.00
N	14-28	Al10 extension card highest point	$\begin{aligned} & \text { Pr. } 14-18=0: 0.00-10.00 \mathrm{~V} \\ & \text { Pr. 14-18 } \neq 0: 0.00-20.00 \mathrm{~mA} \text { or } 4-20 \mathrm{~mA} \end{aligned}$	10.00
N	14-29	Al10 extension card proportional highest point	0.00-100.00\%	100.00
N	14-30	Al11 extension card lowest point	$\begin{aligned} & \text { Pr. 14-19 }=0: 0.00-10.00 \mathrm{~V} \\ & \text { Pr. 14-19 } \neq 0: 0.00-20.00 \mathrm{~mA} \text { or } 4-20 \mathrm{~mA} \end{aligned}$	0.00
N	14-31	Al11 extension card proportional lowest point	0.00-100.00\%	0.00
N	14-32	Al11 extension card mid-point	$\begin{aligned} & \text { Pr. } 14-19=0: 0.00-10.00 \mathrm{~V} \\ & \text { Pr. } 14-19 \neq 0: 0.00-20.00 \mathrm{~mA} \text { or } 4-20 \mathrm{~mA} \end{aligned}$	5.00
N	14-33	Al11 extension card proportional mid-point	0.00-100.00\%	50.00
N	14-34	Al11 extension card highest point	$\begin{aligned} & \text { Pr. } 14-19=0: 0.00-10.00 \mathrm{~V} \\ & \text { Pr. 14-19 } \neq 0: 0.00-20.00 \mathrm{~mA} \text { or } 4-20 \mathrm{~mA} \end{aligned}$	10.00
N	14-35	Al11 extension card proportional highest point	0.00-100.00\%	100.00
N	14-36	AO10 terminal analog signal mode	0 : AVO10 (analog voltage signal $0.00-10.00 \mathrm{~V}$) 1: ACO10 (analog current signal $0.0-20.0 \mathrm{~mA}$) 2: ACO10 (analog current signal $4.0-20.0 \mathrm{~mA}$)	0
N	14-37	AO11 terminal analog signal mode	0: AVO11 (analog voltage signal $0.00-10.00 \mathrm{~V}$) 1: ACO11 (analog current signal 0.0-20.0 mA) 2: ACO11 (analog current signal 4.0-20.0 mA)	0
	14-50	Output frequency at malfunction 2	0.00-599.00 Hz	Read only
	14-51	DC voltage at malfunction 2	0.0-6553.5 V	Read only
	14-52	Output current at malfunction 2	0.00-655.35 Amps	Read only
	14-53	IGBT temperature at malfunction 2	$-3276.7-3276.7^{\circ} \mathrm{C}$	Read only
	14-54	Output frequency at malfunction 3	0.00-599.00 Hz	Read only
	14-55	DC voltage at malfunction 3	0.0-6553.5 V	Read only
	14-56	Output current at malfunction 3	0.00-655.35 Amps	Read only

Chapter 11 Summary of Parameter Settings | MH300

	Pr.	Parameter Name	Setting Range	Default
N	14-76	Over-torque detection time (motor 3)	0.0-60.0 sec.	0.1
N	14-77	Over-torque detection action (motor 4)	0 : No function 1: Continue operation after over-torque detection during constant speed operation 2: Stop after over-torque detection during constant speed operation 3: Continue operation after over-torque detection during RUN 4: Stop after over-torque detection during RUN	0
N	14-78	Over-torque detection level (motor 4)	10-250\% (100% corresponds to the rated current of the drive)	120
N	14-79	Over-torque detection time (motor 4)	0.0-60.0 sec.	0.1
N	14-80	Electronic thermal relay selection 3 (motor 3)	0: Inverter motor (with external forced cooling) 1: Standard motor (motor with fan on the shaft) 2: Disable	2
N	14-81	Electronic thermal relay action time (motor 3)	30.0-600.0 sec.	60.0
N	14-82	Electronic thermal relay selection 4 (motor 4)	0: Inverter motor (with external forced cooling) 1: Standard motor (motor with fan on the shaft) 2: Disable	2
N	14-83	Electronic thermal relay action time (motor 4)	30.0-600.0 sec.	60.0

[This page intentionally left blank]

Chapter 12 Descriptions of Parameter Settings

12-1 Descriptions of Parameter Settings
12-2 Adjustment \& Applications

12-1 Descriptions of Parameter Settings

00 Drive Parameters

You can set this parameter during operation.

00-00 AC Motor Drive Identity Code

Default: Read only
Settings Read only

00-01 AC Motor Drive Rated Current Display

Default: Read only
Settings Read only
\square Pr.00-00 displays the identity code of the AC motor drive. Use the following specification table to check if Pr.00-01 setting is the rated current of the AC motor drive. Pr.00-01 corresponds to the identity code of the motor.
@ The default is the rated current for heavy duty. Set Pr.00-16 to 0 to display the rated current for normal duty.

	115 V models-single-phase				230 V model-single-phase				
Frame	A	B	C	A / B		B	C		
kW	0.2	0.4	0.75	0.2	0.4	0.75	1.5	2.2	
HP	0.25	0.5	1	0.25	0.5	1	2	3	
Identity code	102	103	104	302	303	304	305	306	
Rated current for heavy duty	1.6	2.5	5.0	1.6	2.8	5.0	7.5	11	
Rated current for normal duty	1.8	2.7	5.5	1.8	3.2	5.2	8.5	12.5	

230V models-three-phase														
Frame	A			B	C		D	E		F	G		I	
kW	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37
HP	0.25	0.5	1	2	3	5	7.5	10	15	20	25	30	40	50
Identity code	202	203	204	205	206	207	208	209	210	211	212	213	214	215
Rated current for heavy duty	1.6	2.8	5.0	7.5	11	17	25	33	49	65	75	90	120	146
Rated current for normal duty	1.8	3.2	5.2	8	12.5	19.5	27	36	51	69	81	102	134	160

460V models-three-phase																
Frame	A/B		B	C		D		E		F		G	H			
kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75
HP	0.5	1	2	3	5	7.5	10	15	20	25	30	40	50	60	75	100
Identity code	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418
Rated current for heavy duty	1.5	2.7	4.2	5.5	9	13	17	25	32	38	45	60	75	91	112	150
Rated current for normal duty	1.8	3	4.6	6.5	10.5	14.5	19.8	28	36	41.5	49	69	85	108	128	180

00-02 Parameter Reset

Default: 0
Settings 0: No function
1: Write protection for parameters
5: Return kWh display to 0
6: Reset PLC (including CANopen Master Index)
7: Reset CANopen index (Slave)
9: Reset all parameters to defaults with base frequency at 50 Hz)
10: Reset all parameters to defaults with base frequency at 150 Hz)

11: Reset all parameters to defaults with base frequency at 50 Hz)
(keep the setting values of user-defined Pr.13-01-13-50)
12: Reset all parameters to defaults with base frequency at 60 Hz) (saves the setting value of user-defined Pr.13-01-13-50)

1: All parameters are read only except Pr.00-02, 00-07, and 00-08.
Set Pr.00-02 to 0 before changing other parameter settings.5: You can return the kWh displayed value to 0 even during drive operation.
For example, you can set Pr.05-26-05-30 to 0.6: Clear the internal PLC programs (includes the related settings of PLC internal CANopen master)7: Reset the related settings of CANopen slave.
9 or 10: Reset all parameters to defaults. If you have set a password (Pr.00-08), unlock the password (Pr.00-07) to clear the password you have set before you reset all parameters.
1 For settings of $6,7,9,10,11$ and 12 , you must reboot the motor drive after you finish the setting.

00-03 Start-up Display Selection

Default: 0

> | Settings | $0: F$ (frequency command) |
| :--- | :--- |
| | 1: H (output frequency) |
| | 2: U (user-defined) see Pr.00-04 |
| | 3: A (output current) |

This parameter determines the start-up display page. This is the user-defined choice display according to the setting in Pr.00-04.

00-04 Content of Multi-function Display (User-Defined)

Default: 3

Settings 0: Display the output current from the drive to the motor (A) (unit: Amp)
1: Display the counter value (c) (unit: CNT)
2: Display the drive's actual output frequency (H.) (unit: Hz)
3: Display the drive's DC bus voltage (v) (unit: V_{DC})
4: Display the drive's output value (E) (unit: V_{AC})
5: Display the drive's output power angle (n) (unit: deg)
6: Display the drive's output power (P) (unit: kW)
7: Display the motor speed (r) (unit: rpm)
8: Display the drive's estimated output torque\%, motor's rated torque is 100% (t) (unit: \%)

9: Display PG feedback (G) (unit: PLS) (refer to Pr. 10-00-10-01)
10: Display PID feedback (b) (unit: \%)
11: Display signal value of AVI analog input terminal (1.) (unit: \%)
12: Display signal value of ACl analog input terminal (2.) (unit: \%)
14: Display the drive's IGBT temperature (i.) (unit: ${ }^{\circ} \mathrm{C}$)
16: Display digital input status (ON / OFF) (i)
17: Display digital output status (ON / OFF) (o)

18: Display the current multi-step speed (S)
19: Display corresponding CPU digital input pin status (d)
20: Display corresponding CPU digital output pin status (0.)
21: Actual motor position (PG1 of PG card) (P.)
(The maximum value is 32 bits to display)
22: Pulse input frequency (S.)
23: Pulse input position (q.)
24: Position command tracing error (E.)
25: Overload count (0.00-100.00\%) (o.) (unit: \%)
26: Ground fault GFF (G.) (unit: \%)
27: DC bus voltage ripple (r.) (unit: V_{DC})
28: Display PLC register D1043 data (C)
29: Display permanent magnet synchronous motor pole section (for EMM-PG01R)
30: Display the output of user-defined parameter (U)
31: Display Pr.00-05 user gain (K)
32: Number of actual motor revolutions during operation (PG card plugs in and Z phase signal input) (Z.)
33: Actual motor position during operation (when PG card is connected) (q)
35: Control mode (t.): $0=$ Speed control mode (SPD)
1 = Torque control mode (TQR)
36: The current operating carrier frequency of the drive (J.) (unit: Hz)
38: Display the drive status (6.)
39: Display the drive's estimated output torque, positive and negative, using $\mathrm{N}-\mathrm{m}$ as unit (0.0: positive torque; -0.0: negative torque) (C.)
40: Torque command (L.) (unit: \%)
41: kWh (J) (unit: kWh)
42: PID target value (h.) (unit: \%)
43: PID offset (o.) (unit: \%)
44: PID output frequency (b.) (unit: Hz)
46: Auxiliary frequency value (U.) (unit: Hz)
47: Master frequency value (A) (unit: Hz)
48: Frequency value after addition and subtraction of master and auxiliary frequency (L.) (unit: Hz)
51: PMSVC torque offset
52: Signal of analog extension card input terminal Al10 (4.) (unit: \%)
53: Signal of analog extension card input terminal Al11 (5.) (unit: \%)
55: Display the current reel diameter under the tension control (d) (unit: mm)
56: Display the current line speed under the tension control (L) (unit: m/min.)
57: Display the current tension setting value under the tension control (T) (unit: N)

Explanation 1

- When Pr.10-01 is set to 1000 and Pr.10-02 is set to 1, 2, the displayed range for PG feedback is between 0-4000.
- When Pr.10-01 is set to 1000 and Pr.10-02 is set to $3,4,5$, the displayed range for PG feedback is between 0-1000.

Explanation 2

- It can also display negative values when setting analog input bias (Pr.03-03-03-10). Example: Assume that AVI input voltage is 0 V, Pr.03-03 is 10.0%, Pr.03-07 is 4 (Bias serves as the center).

Explanation 3

Example: If MI1 and MI6 are ON, the following table shows the status of the terminals.
Normally opened contact (N.O.): (0: OFF, 1: ON)

Terminal	MI7	MI6	MI5	MI4	MI3	MI2	MI1
Status	0	1	0	0	0	0	1

- The value is 0000000000100001 in binary and 0021 H in HEX. When Pr.00-04 is set to 16 or 19, the u page on the keypad displays 0021 h .
- The setting 16 is the ON / OFF status of digital input according to Pr.02-12 setting and the setting 19 is the corresponding CPU pin ON / OFF status of the digital input.
- When MI1 / MI2 default setting is two-wire/ three-wire operation control ($\operatorname{Pr} .02-00 \neq 0$), and MI3 is set as three-wire, it is not affected by Pr.02-12.
- You can set 16 to monitor the digital input status, and then set 19 to check if the circuit is normal.

Explanation 4

Example: Assume that RY: Pr.02-13 is set to 9 (Drive is ready). After the drive is powered on, if there is no other abnormal status, the contact is ON. The display status is shown below.
Normally opened contact (N.O.):

Terminal	MO2	MO1	RY1
Status	0	0	1

- If Pr.00-04 is set to 17 or 20 , it displays in hexadecimal " 0001 h " with LED u page is ON in the keypad.
- The setting 17 is the ON / OFF status of digital output according to Pr.02-18 setting and the setting 20 is the corresponding CPU pin ON / OFF status of the digital output.
- You can set 17 to monitor the digital output status, and then set 20 to check if the circuit is normal.

Explanation 5

- Setting value 8: 100% means the motor rated torque.

Motor rated torque $=($ motor rated power $\times 60 / 2 \pi) /$ motor rated rotating speed

Explanation 6

- Setting value 25: when displayed value reaches 100.00%, the drive shows "oL" as an overload warning.

Explanation 7

- Setting value 38 :
bit 0 : The drive is running forward.
bit 1 : The drive is running backward.
bit 2: The drive is ready.
bit 3: Errors occurred on the drive.
bit 4: The drive is running.
bit 5 : Warnings occurred on the drive.

00-05 Coefficient Gain in Actual Output Frequency

Default: 1.00
Settings 0.00-160.00
Sets the user-defined unit coefficient gain. Set Pr.00-04 $=31$ to display the calculation result on the screen (calculation $=$ output frequency * Pr.00-05).

00-06 Firmware Version

Default: Read only
Settings Read only

00-07 Parameter Protection Password Input

Default: 0
Settings 0-65535
$0-4$ (the number of password attempts)
[a] This parameter allows you to enter your password (which is set in Pr.00-08) to unlock the parameter protection and to make changes to the parameter.To avoid problems in the future, be sure to write down the password after you set this parameter.Pr.00-07 and Pr.00-08 are used to prevent personnel from setting other parameters by accident. If you forget the password, clear the password setting by entering 9999 and pressing the ENTER key, then enter 9999 again and press ENTER within 10 seconds. After decoding, all the settings return to default.When setting is under password protection, all the parameters read 0, except Pr.00-08.

00-08 Parameter Protection Password Setting

Default: 0

Settings	$0-65535$
	0 : No password protection / password entered correctly in Pr.00-07
	1: Parameters have been locked

[1] This parameter is for setting the password protection. Password can be set directly the first time. After you set the password, the value of Pr.00-08 is 1 , which means password protection is activated. At this time, if you want to change any of the parameter settings, you must enter the correct password in Pr.00-07 to deactivate the password temporarily, and this would make Pr.0008 become 0 . After you finish setting the parameters, reboot the motor drive and the password is activated again.

1 Entering the correct password in Pr.00-07 only temporarily deactivates the password. To permanently deactivate password protection, set Pr.00-08 to 0 manually. Otherwise, password protection is always reactivated after you reboot the motor drive.
\llbracket The keypad copy function works only when the password protection is deactivated (temporarily or permanently), and the password set in Pr.00-08 cannot be copied to the keypad. So when copying parameters from the keypad to the motor drive, set the password manually again in the motor drive to activate password protection.

00-10 Control Mode

Default: 0
Settings 0: Speed mode
1: Position control mode
2: Torque mode
Determines the control mode of the AC motor drive.

00-11 Speed Control Mode

Default: 0
Settings 0: IMVF (IM V/F control)
1: IMVFPG (IM V/F control + Encoder)
2: IM / PM SVC (IM / PM space vector control)
3: IMFOCPG (IM FOC vector control + Encoder)
4: IMFOCPG (PM FOC vector control + Encoder)
5: IMFOC sensorless (IM field-oriented sensorless vector control)
7: IPM sensorless (Interior PM field-oriented sensorless vector control)

Determines the control mode of the AC motor drive:
0 : IM V/F control: you can set the proportion of V/F as required and control multiple motors simultaneously.
1: IM V/F control + Encoder pulse input: you can use the encoder for closed-loop speed control.
2: IM sensorless vector control: get the optimal control by auto-tuning the motor parameters.
3: IM FOC vector control+ Encoder: not only can increase torque, but also can increase the accuracy of the speed control (1:1000).
4: PM FOC vector control + Encoder: not only can increase torque, but also can increase the accuracy of the speed control (1:1000).

5: IM FOC Sensorless: IM field oriented sensorless vector control
7: IPM Sensorless: interior PM field oriented sensorless vector controlWhen Pr.00-10 $=0$ and you set Pr.00-11 to 0 , the V/F control diagram is as follows:
When Pr.00-10 = 0 and you set Pr.00-11 to 1, the V/F control + encoder diagram is as follows:

(4) When Pr.00-10 = 0 and you set Pr.00-11 to 2 , the sensorless vector control diagram is as follows:
IM Space Vector Control (IMSVC)

PM Space Vector Control (PMSVC):

Eal When Pr.00-10 = 0, and you set Pr.00-11 to 3, the IM FOCPG control diagram is as follows:

[1] When Pr.00-10 = 0, and you set Pr.00-11 to 4, the PM FOCPG control diagram is as follows:

When Pr.00-10 = 0, and you set Pr.00-11 to 5, IMFOC Sensorless control diagram is as follows:
When Pr.00-10 $=0$, and you set Pr.00-11 to 7, IPM FOC sensorless control diagram is as follows:

00-13 Torque Control Mode

Default: 0
Settings 0: IM TQCPG (IM Torque control + encoder)
1: PM TQCPG (PM Torque control + encoder)
2: IMTQC sensorless (IM sensorless torque control)See the following pages for more information.Pr.00-13 = 0, IM TQCPG control diagram is as follows:
Pr.00-13 = 1, PM TQCPG control diagram is as follows:

Pr.00-13 = 2, IM TQC Sensorless control diagram is as follows:

00-16 Duty Selection

Default: 1

> | Settings | $0:$ Normal duty |
| :--- | :--- |
| | 1: Heavy duty |

[1] Normal duty: over-load rated output current 150% in 3 seconds (120%, 1 minute). Refer to Pr.00-17 for the setting for the carrier wave. Refer to Pr.00-01 or the specification table for the rated current.
1 Heavy duty: over-load rated output current 200% in 3 seconds (150%, 1 minute). Refer to Pr.00-17 for the setting for the carrier wave. Refer to Pr.00-01 or the specification table for the rated current.

1 Pr.00-01 varies with the setting value for Pr.00-16. The default value and maximum for Pr.06-03 and Pr.06-04 also vary with the setting value of Pr.00-16.
11 In Normal Duty, the default setting of Pr.06-03 and Pr.06-04 is 120%, and the maximum is 150%. However, if DC voltage is higher than $700 \mathrm{~V}_{\mathrm{DC}}$ (460 V models) or $350 \mathrm{~V}_{\mathrm{DC}}$ (230 V models), then the maximum is 145%.
In In Heavy Duty, the default setting of Pr.06-03 and Pr.06-04 is 180%, and the maximum is 200%. However, if $D C$ voltage is higher than $700 \mathrm{~V}_{\mathrm{DC}}\left(460 \mathrm{~V}\right.$ models) or $350 \mathrm{~V}_{\mathrm{DC}}$ (230 V models), then the maximum is 165%.

00-17 Carrier Frequency

Default: 4 / 4

Settings Normal load: 2-15 KHz

Heavy load: 2-15 KHz
NOTE:
When Pr.00-11 = 5 (IMFOC Sensorless), the maximum carrier frequency is 14 kHz .
\ldots This parameter determines the PWM carrier frequency for the AC motor drive.

Models	$115 \mathrm{~V} / 230 \mathrm{~V}$		460 V	
	$0.25-15 \mathrm{HP}$	$20-30 \mathrm{HP}$	$0.5-20 \mathrm{HP}$	$25-75 \mathrm{HP}$
	$(0.2-11 \mathrm{~kW})$	$(15-37 \mathrm{~kW})$	$(0.4-15 \mathrm{~kW})$	$(18.5-100 \mathrm{~kW})$
Settings Range	$2-15 \mathrm{kHz}$			
Default - Normal Duty	4 kHz			
Default - Heavy Duty	4 kHz			

10 From the above table, the PWM carrier frequency has significant influences on the electromagnetic noise, the AC motor drive heat dissipation, and the motor acoustic noise. Therefore, if the surrounding noise is greater than the motor noise, lower the carrier frequency to reduce the temperature rise. Although the motor has quiet operation in the higher carrier frequency, consider the entire wiring and interference.
When the carrier frequency is higher than the default, decrease the carrier frequency to protect the drive. Refer to Pr.06-55 for related setting and details.

00-19 PLC Command Mask

Default: Read only

$$
\begin{array}{ll}
\text { Settings } & \text { bit } 0 \text { : } \text { Control command controlled by PLC } \\
& \text { bit 1: Frequency command controlled by PLC } \\
& \text { bit 3: Torque command controlled by PLC }
\end{array}
$$

Determines if frequency command, control command or torque command is controlled by PLC.

00-20 Master Frequency Command Source (AUTO, REMOTE)

Default: 0
Settings 0: Inputs from digital keypad
1: Inputs from RS-485 communication
2: Inputs from external analog (refer to Pr.03-00, Pr.03-01)
3: Inputs from external UP / DOWN terminals (multi-function input terminals)
4: Pulse inputs without direction command (refer to Pr. 10-16 without direction)
5: Pulse inputs with direction command (refer to Pr.10-16)
6: CANopen communication card
8: Communication cards (CANopen card not included)
9: PID function (Pr.08-65 should be set as 1)
NOTE:
HOA (Hand-Off-Auto) function is valid only when you use with MO function setting 42 and 56 or with KPC-CC01 (optional).Determines the master frequency source in the AUTO, REMOTE mode. The default is AUTO mode.You can switch the AUTO / HAND mode with the keypad KPC-CC01 (optional) or the multi-function input terminal (MI) to set the master frequency source.The default for the frequency source or operation source is for AUTO mode. It returns to AUTO mode whenever you cycle the power. If you use a multi-function input terminal to switch between AUTO and HAND mode, the highest priority is the multi-function input terminal. When the external terminal is OFF, the drive does not accept any operation signal and cannot execute JOG.When Pr.00-20 = 9, Pr.08-65 automatically set as 1 at the same time. Pr. $08-65$ needs to be set as 0 for changing back to other values.

00-21 Operation Command Source (AUTO, REMOTE)

Default: 0
Settings 0: Digital keypad
1: External terminals
2: RS-485 communication
5: Communication card (CANopen card not included)
NOTE:
HOA (Hand-Off-Auto) function is valid only when you use with MO function setting 42 and 56 or with KPC-CC01 (optional).Determines the operation frequency source in AUTO, REMOTE mode.In the HOA mode, if the multi-function input terminal (MI) function setting 41 and 42 are OFF, the drive does not receive any operation command and JOG is invalid.

00-22 Stop Method

Default: 0
Settings 0: Ramp to stop
1: Coast to stop
Determines how the motor is stopped when the drive receives the Stop command.

Ramp to Stop and Coast to Stop

1. Ramp to stop: the $A C$ motor drive decelerates to 0 or the minimum output frequency (Pr.01-09) according to the set deceleration time, and then to stop (according to Pr.01-07).
2. Coast to stop: the AC motor drive stops output immediately, and the motor coasts to stop according to the load inertia.
च Use "ramp to stop" for the safety of personnel, or to prevent material from being wasted in applications where the motor must stop immediately after the drive stops. You must set the deceleration time accordingly.
च If idling is allowed, or the load inertia is large, use "coast to stop". For example, blowers, punching machines and pumps.

00-23 Motor direction control

Default: 0
Settings 0: Enable forward and reverse
1: Disable reverse
2: Disable forward

Enables the AC motor drives to run in the forward and reverse direction. You can use it to prevent a motor from running in a direction that would cause injury or damage to the equipment.

00-24 Digital Keypad Frequency Command Memory

Default: Read Only
Settings Read only
10 If the keypad is the frequency command source, when Lv or Fault occurs, this parameter stores the current frequency command.

00-25 User-Defined Characteristics

Settings bit 0-3: user-defined decimal places
0000h-0000b: no decimal place
0001h-0001b: one decimal place
0010h-0010b: two decimal places
0011h-0011b: three decimal places
bit 4-15: user-defined unit
000xh: Hz
001xh: rpm
002xh: \%
003xh: kg
004xh: m/s
005xh: kW
006xh: HP
007xh: ppm
008xh: 1/m
009xh: kg/s
00Axh: kg/m
00Bxh: kg/h
00Cxh: lb/s
00Dxh: lb/m
00Exh: lb/h
00Fxh: ft/s
010xh: ft/m
011xh: m
012xh: ft
013xh: degC
014xh: degF
015xh: mbar
016xh: bar
017xh: Pa
018xh: kPa
019xh: mWG
01Axh: inWG
01Bxh: ftWG
01Cxh: psi
01Dxh: atm
01Exh: L/s
01Fxh: L/m
020xh: L/h
021xh: m3/s

```
022xh: m3/h
023xh: GPM
024xh: CFM
xxxxh: Hz
```bit 0-3: the control frequency F page, user-defined unit (Pr.00-04 = d10, PID feedback value) and the number of decimal places (Pr.00-26) which supports up to three decimal places.bit 4-15: the control frequency F page, user-defined unit (Pr.00-04 = d10, PID feedback value) and the displayed units for Pr.00-26.

[1] You must convert the setting value to decimal when using the keypad to set parameters.
Example: Assume that the user-defined unit is inWG and user-defined decimal place is the third decimal point.
According to the information above, the corresponding unit to inWG is 01Axh (\(x\) is the set decimal point), and the corresponding unit to the third decimal place is 0003h, then inWG and the third decimal point displayed in hexadecimal is 01A3h, that is 419 in decimal value. Thus, set Pr.00\(25=419\) to complete the setting.

\section*{00-26 Maximum User-Defined Value}

Default: 0
\[
\begin{array}{ll}
\text { Settings } & 0 \text { : Disable } \\
& 0-65535 \text { (when Pr.00-25 set to no decimal place) } \\
& 0.0-6553.5 \text { (when Pr.00-25 set to one decimal place) } \\
& 0.00-655.35 \text { (when Pr.00-25 set to two decimal places) } \\
& 0.000-65.535 \text { (when Pr.00-25 set to three decimal places) }
\end{array}
\]

1 When Pr.00-26 is NOT set to 0 , the user-defined value is enabled. After selecting the displayed unit and number of decimal points with Pr.00-25, the setting value of Pr.00-26 corresponds to Pr.01-00 (Maximum motor operating frequency), and then the motor operation frequency has a linear relationship with the displayed value on the digital keypad.
Example:
When the frequency set in Pr. \(01-00=60.00 \mathrm{~Hz}\), the maximum user-defined value for \(\operatorname{Pr} .00-26\) is \(100.0 \%\). This also means that Pr.00-25 is set at 0021 h to select \(\%\) as the unit.

\section*{NOTE:}

Set Pr.00-25 before using Pr.00-26. After you finish setting, when Pr.00-26 is not 0 , the displayed unit on the keypad shows correctly according to Pr.00-25 settings.

\section*{00-27 User-Defined Value}

Default: Read only
Settings Read only
1 Pr.00-27 displays the user-defined value when Pr.00-26 is not set to 0 .

\section*{00-29 LOCAL / REMOTE Mode}

Default: 0
Settings 0: Standard HOA function
1: Switch Local / Remote, the drive stops
2: Switch Local / Remote, the drive runs as the REMOTE setting for frequency and operation status

3: Switch Local / Remote, the drive runs as the LOCAL setting for frequency and operation status
4: Switch Local / Remote, the drive runs as LOCAL setting when switched to Local and runs as REMOTE setting when switched to Remote for frequency and operating status.
[ad The default for Pr.00-29 is 0, that is, the standard HOA (Hand-Off-Auto) function. Set the AUTO and HAND frequency and operation source with Pr.00-20, 00-21 and Pr.00-30, 00-31. The external terminal function \((\mathrm{MI})=56\) for LOC / REM mode selection is disabled when Pr.00-29=0.

If If Pr.00-29 is not set to 0 , the top right corner of digital keypad KPC-CC01 (optional) displays LOC or REM. Set the REMOTE and LOCAL frequency and operation source with Pr.00-20, 00-21 and \(\operatorname{Pr} .00-30,00-31\). Set the multi-function input terminal \((\mathrm{MI})=56\) to set the LOC / REM selection. The AUTO key on the KPC-CC01 (optional) is the REMOTE function; the HAND key is the LOCAL function.If Pr.00-29 is not set to 0, the AUTO / HAND keys are disabled. In this case, the external terminal (MI) setting \(=56\) (local / remote selection) has the highest command priority.

\section*{00-30 Master Frequency Command Source (HAND, LOCAL) \\ Default: 0}

Settings 0: Inputs from digital keypad
1: Inputs from RS-485 communication
2: Inputs from external analog (refer to Pr.03-00)
3: Inputs from external UP / DOWN terminals (multi-function input terminals)
4: Pulse inputs without direction command (refer to Pr. 10-16 without direction)
5: Pulse inputs with direction command (refer to Pr. 10-16)
6: CANopen communication card
8: Communication cards (CANopen card not included)
9: PID function (Pr.08-65 should be set as 1)
NOTE:
HOA (Hand-Off-Auto) function is valid only when you use with MO function setting 41 and 56 or with KPC-CC01 (optional).

\footnotetext{
Dad Determines the master frequency source in the "HAND, LOCAL" mode.
}
[a] You can switch the HAND, LOCAL mode with the keypad KPC-CC01 (optional) or the multifunction input terminal (MI) to set the master frequency source.
1 It returns to AUTO or REMOTE mode whenever you cycle the power. If you use a multi-function input terminal to switch between HAND (LOCAL) and AUTO (REMOTE) mode, the highest priority is the multi-function input terminal.
[1] The pulse of Pr.00-20 = 4 (Pulse input without direction command) is input by PG or MI7.

\section*{00-31 Operation Command Source (HAND, LOCAL)}

Default: 0
Settings 0: Digital keypad
1: External terminals
2: RS-485 communication
3: CANopen communication card
5: Communication card (CANopen card not included)
NOTE:
HOA (Hand-Off-Auto) function is valid only when you use with MO function setting 41 and 56 or with KPC-CC01 (optional).
1 Determines the operation frequency source in the "HAND, LOCAL" mode.
\(\square\) In the HOA mode, if the multi-function input terminal (MI) function setting 41 and 42 are OFF, the drive does not receive any operation command and JOG is invalid.

\section*{00-32 Digital Keypad STOP Function}

Default: 0
\(\begin{array}{ll}\text { Settings } & 0 \text { : Disable STOP key } \\ & \text { 1: Enable STOP key }\end{array}\)
This parameter is valid when the digital keypad is not set as the operation source (\(\operatorname{Pr} .00-21 \neq 0\)). When Pr.00-21 = 0, the STOP key on the digital keypad is not affected by this parameter.

\section*{00-33 RPWM Mode Selection}

Default: 0
Settings 0: Disabled
1: RPWM mode 1
2: RPWM mode 2
3: RPWM mode 3
Different control modes for Pr.00-33:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Motor & \multicolumn{4}{|c|}{ Induction Motor (IM) } & \begin{tabular}{c}
Permanent Magnet \\
Synchronous Motor (PM)
\end{tabular} \\
\hline Control Mode & VF & SVC & FOCPG & FOC & SVC \\
\hline 0: RPWM mode 1 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 1: RPWM mode 2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline 2: RPWM mode 3 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline
\end{tabular}

1 When the RPWM function is enabled, the drive randomly distributes the carrier frequency based on actual Pr.00-17 carrier frequency settings.
[1] The RPWM function can be applied to all control modes.

1 Once the RPWM function is enabled, particularly high frequency audio noise is reduced, and the audio frequency produced by the running motor also changes (usually from a higher to lower).Three RPWM modes are provided for different applications. Each mode corresponds to different frequency distribution, electromagnetic noise distribution, and audio frequency.

1 The settings for Pr.00-17 (Carrier Frequency) vary with enabling or disabling RPWM.

\section*{00-34 RPWM Range}

Default: 0.0
Settings \(\quad 0.0-4.0 \mathrm{kHz}\)
1 When the RPWM function is enabled, the minimum carrier frequency setting for Pr.00-17 is 3 kHz , and the maximum is 9 kHz .
\(10]\) Pr.00-34 is valid only when the RPWM function is enabled (\(\operatorname{Pr} .00-33 \neq 0\)).
Led When the RPWM function is enabled and Pr.00-17 is set to 4 or 8 kHz , the setting range for Pr.00-34 is \(0.0-2.0 \mathrm{kHz}\).

When the maximum setting for \(\operatorname{Pr} .00-34\) is \(2.0 \mathrm{kHz}(\pm 1 \mathrm{kHz})\). The carrier frequency fluctuation range is according to the diagram below.

Max. carrier
frequency setting

1 When the RPWM function is enabled and Pr.00-17 is set to 5,6 , or 7 kHz , the setting range for Pr.00-34 is \(0.0-4.0 \mathrm{kHz}\).
When the maximum setting for \(\operatorname{Pr} .00-34\) is \(4.0 \mathrm{kHz}(\pm 2 \mathrm{kHz})\). The carrier frequency fluctuation range is according to the diagram below.

Min. carrier frequency setting

Max. carrier
frequency setting
[1] Example:
When Pr.00-17 \(=4 \mathrm{kHz}\), Pr.00-33 is enabled (\(=1,2\), or 3), Pr.00-34 \(=2.0 \mathrm{kHz}\), then the carrier frequency outputs on the basis of 4 kHz , and the random frequency distribution tolerance is \(\pm 1\) kHz , that is, the carrier frequency randomly fluctuates from 3 kHz to 5 kHz .

\section*{00-35 Auxiliary Frequency Source}

Default: 0
Settings 0: Master and auxiliary frequency function disabled
1: Inputs from digital keypad
2: Inputs from RS-485 communication
3: Inputs from analog input
4: Inputs from external UP / DOWN (multi-function input terminals)
5: Pulse inputs without direction command (refer to Pr. 10-16)
6: CANopen communication card
8: Communication card

\section*{00-36 Master and auxiliary frequency command selection}

Default: 0

> \begin{tabular}{ll} Settings & \(0:\) Master + auxiliary frequency \\ & 1: Master - auxiliary frequency \\ & 2: Auxiliary - master frequency \\ \hline \end{tabular}

1 Master and auxiliary frequency command sets the master frequency source according to Pr.00-20, and sets the auxiliary frequency source according to Pr.00-35. Addition and subtraction mode of auxiliary / master frequency is set according to Pr.00-36.
1 When Pr.00-36 = 0, 1, 2, acceleration and deceleration by the system (includes S-curve) after adding or subtracting the auxiliary / master frequency, can then be output as a control command.
\(\square\) If the value received is negative after adding or subtracting the auxiliary / master frequency, then Pr.03-10 determines whether to change the running direction.If you set master frequency source (\(\operatorname{Pr} .00-20=0\)) or the auxiliary frequency source (Pr.00-35 = 1) by using the keypad, the F page of the keypad displays the setting frequency that you can use to set the master frequency or the auxiliary frequency. If the master frequency source or the auxiliary frequency source is NOT set by keypad (\(\operatorname{Pr} .00-20 \neq 0\) and \(\operatorname{Pr} .00-35 \neq 1\)), the \(F\) page of the keypad displays the value after adding or subtracting the auxiliary / master frequency.
1 When setting the master frequency source and auxiliary frequency source, Pr.00-35 cannot be set to the same value as Pr.00-20 or Pr.00-30.
1 When using the master and auxiliary frequency function, after the master and auxiliary frequencies are added or subtracted, if the value is positive, the output frequency will be limited by the maximum operating frequency (Pr.01-00); if the value is negative, the output frequency will be limited by reverse running cutoff frequency (Pr.08-67) for limiting.

\section*{00-47 Output Phase Order Selection}

Default: 0
\begin{tabular}{ll}
Settings & \(0:\) Standard \\
& 1: Exchange the rotation direction
\end{tabular}
\(\square\) Without changing the wiring, this parameter can be used to change the rotation direction from forward to reverse or from reverse to forward, and the indicator light won't be changed.
1 When using this parameter with Pr.00-23 (Control of motor direction), Pr.00-23 has priority over Pr.00-47.

\section*{00-48 Display Filter Time (Current)}

Default: 0.100
Settings \(0.001-65.535 \mathrm{sec}\).
Minimizes the current fluctuation displayed by digital keypad.

\section*{00-49 Display Filter Time (Keypad)}

Default: 0.100
Settings \(0.001-65.535 \mathrm{sec}\).
Minimizes the value fluctuation displayed by digital keypad.

\section*{00-50 Software Version (Date)}

Default: Read only
Settings Read onlyDisplays the current drive software version by date.

\section*{01 Basic Parameters}

You can set this parameter during operation.

\begin{abstract}
01-00 Motor 1 Maximum Operation Frequency
01-52 Motor 2 Maximum Operation Frequency
01-53 Motor 3 Maximum Operation Frequency
01-62 Motor 4 Maximum Operation Frequency
\end{abstract}

Default: 60.00 / 50.00
\[
\text { Settings } \quad 00.00-599.00 \mathrm{~Hz}
\]
\(\square\) Determines the drive's maximum operation frequency range. This setting corresponds to the maximum value for the analog input frequency setting signal (\(0-10 \mathrm{~V}, 4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}, \pm 10 \mathrm{~V}\)).

\section*{01-01 Motor 1 Rated / Base Frequency \\ 01-35 Motor 2 Rated / Base Frequency \\ 01-54 Motor 3 Rated / Base Frequency \\ 01-63 Motor 4 Rated / Base Frequency}

Default: 60.00 / 50.00
Settings \(\quad 00.00-599.00 \mathrm{~Hz}\)
Set this value according to the motor's rated frequency from the motor's nameplate. If the motor's rated frequency is 60 Hz , set the value to 60 Hz . If the motor's rated frequency is 50 Hz , set the value to 50 Hz .

\section*{01-02 Motor 1 Rated / Base Voltage \\ 01-36 Motor 2 Rated / Base Voltage \\ 01-55 Motor 3 Rated / Base Voltage \\ 01-64 Motor 4 Rated / Base Voltage}

Default: 220.0 / 440.0
Settings \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-255.0 \mathrm{~V}\)
460 V models: \(0.0-510.0 \mathrm{~V}\)
Set this value according to the rated voltage of the motor from the motor's nameplate. If the motor's rated voltage is 220 V , set the value to 220.0 V . If the motor's rated voltage is 200 V , set the value to 200.0 V .

There are a wide variety of motors, but the power system for each country is different. The convenient and economical way to solve this problem is to use an AC motor drive, which can deal with different voltages and frequencies, while supporting the original characteristics and life of the motor.

\section*{01-03 Motor 1 Mid-point Frequency 1}

Default: 3.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)

\section*{01-04 Motor 1 Mid-point Voltage 1}

Default: 11.0 / 22.0
Settings \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-240.0 \mathrm{~V}\) 460 V models: \(0.0-480.0 \mathrm{~V}\)
01-37 Motor 2 Mid-point Frequency 1Default: 3.00Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
01-38 Motor 2 Mid-point Voltage 1
Default: 11.0 / 22.0
Settings \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-240.0 \mathrm{~V}\)460V models: 0.0-480.0 V
01-56 Motor 3 Mid-point Frequency 1
Default: 3.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
01-57 Motor 3 Mid-point Voltage 1
Default: 11.0 / 22.0
Settings \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-240.0 \mathrm{~V}\)
460V models: 0.0-480.0 V
01-65 Motor 4 Mid-point Frequency 1
Default: 3.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
01-66 Motor 4 Mid-point Voltage 1
Default: 11.0 / 22.0
Settings \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-240.0 \mathrm{~V}\)460V models: 0.0-480.0 V
01-05 Motor 1 Mid-point Frequency 2
Default: 1.50
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
01-06 Motor 1 Mid-point Voltage 2Default: 5.0 / 10.0
Settings \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-240.0 \mathrm{~V}\)460V models: 0.0-480.0 V
01-39 Motor 2 Mid-point Frequency 2
Default: 1.50
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
01-40 Motor 2 Mid-point Voltage 2Default: 5.0 / 10.0
Settings \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-240.0 \mathrm{~V}\)460 V models: \(0.0-480.0 \mathrm{~V}\)
01-58 Motor 3 Mid-point Frequency 2
Default: 1.50
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)

\section*{01-59 Motor 3 Mid-point Voltage 2}

Default: 5.0 / 10.0
Settings \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-240.0 \mathrm{~V}\) 460V models: 0.0-480.0 V
01-67 Motor 4 Mid-point Frequency 2
Default: 1.50
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
01-68 Motor 4 Mid-point Voltage 2Default: 5.0 / 10.0Settings \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-240.0 \mathrm{~V}\)460V models: 0.0-480.0 V
01-07 Motor 1 Minimum Output Frequency
Default: 0.50
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
01-08 Motor 1 Minimum Output VoltageDefault: 1.0 / 2.0Settings \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-240.0 \mathrm{~V}\)460 V models: \(0.0-480.0 \mathrm{~V}\)
01-41 Motor 2 Minimum Output FrequencyDefault: 0.50Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
01-42 Motor 2 Minimum Output VoltageDefault: 1.0 / 2.0Settings \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-240.0 \mathrm{~V}\)460 V models: \(0.0-480.0 \mathrm{~V}\)
01-60 Motor 3 Minimum Output Frequency
Default: 0.50

Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)

\section*{01-61 Motor 3 Minimum Output Voltage}

Default: 1.0 / 2.0
Settings \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-240.0 \mathrm{~V}\) 460 V models: \(0.0-480.0 \mathrm{~V}\)
01-69 Motor 4 Minimum Output Frequency

Default: 0.50
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)

\section*{01-70 Motor 4 Minimum Output Voltage}

Default: 1.0 / 2.0
Settings \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-240.0 \mathrm{~V}\) 460 V models: \(0.0-480.0 \mathrm{~V}\)
The V/F curve setting is usually set by the motor's allowable loading characteristics. If the loading characteristics exceeds the loading limit of the motor, you must pay more attention to the heat
dissipation, dynamic balance, and bearing lubrication of the motor.
1 If the voltage is too high when the motor is at low frequencies, it may cause motor damage, overheating, and may trigger stalling or over-current protection. To prevent motor damage or motor fault, be careful when you set the voltage.
Ind The diagram below shows the V/F curve for motor 1. You can also find the V/F curve for motor 2 from the same diagram. For multi-motors selection, refer to multi-function input terminal settings 83 and 84 for Pr.02-01-02-07.

V/F Curve and The Related Parameters
Common settings for the V/F curve:
(1) General purpose
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Motor spec. 60 Hz} \\
\hline \multicolumn{3}{|l|}{\(\checkmark \wedge\)} \\
\hline 220 . & Pr. & Setting \\
\hline & 01-00 & 60.0 \\
\hline & 01-01 & 60.0 \\
\hline & 01-02 & 220.0 \\
\hline & \[
\begin{aligned}
& 01-03 \\
& 01-05
\end{aligned}
\] & 1.50 \\
\hline 10 & \[
\begin{aligned}
& 01-04 \\
& 01-06
\end{aligned}
\] & 10.0 \\
\hline 1.560 .0 & 01-07 & 1.50 \\
\hline & 01-08 & 10.0 \\
\hline
\end{tabular}

(2) For fan and hydraulic machinery

Motor spec. \(\mathbf{5 0 H z}\)

(3) High starting torque

\section*{Motor spec. 60 Hz}

Motor spec. 50 Hz

\begin{tabular}{|c|c|}
\hline Pr. & Setting \\
\hline \(01-00\) & 50.0 \\
\hline \(01-01\) & 50.0 \\
\hline \(01-02\) & 220.0 \\
\hline \(01-03\) & 2.20 \\
\(01-05\) & \\
\hline \(01-04\) & 23.0 \\
\(01-06\) & \\
\hline \(01-07\) & 1.30 \\
\hline \(01-08\) & 14.0 \\
\hline
\end{tabular}

\section*{01-09 Start-up Frequency}

Default: 0.50
\[
\text { Settings } \quad 0.00-599.00 \mathrm{~Hz}
\]

When the starting frequency is higher than the minimum output frequency, the drive's output is from the starting frequency to the setting frequency. Refer to the following diagram for details.
Fcmd = frequency command;
Fstart = start frequency (Pr.01-09);
fstart = actual start frequency of drive;
Fmin \(=4\) th output frequency setting (Pr.01-07 / Pr.01-41);
Flow = output frequency lower limit (Pr.01-11)

[a] When Fcmd > Fmin and Fcmd < Fstart:
If Flow < Fcmd, drive runs directly by Fcmd.
If Flow \(\geq\) Fcmd, drive runs by Fcmd, then rises to Flow according to acceleration time.
The output frequency goes directly to 0 when decelerating to Fmin.

\section*{01-10 Upper Frequency Limit}

Default: 599.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
01-11 Lower Frequency Limit
Default: 0.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
凹l If the frequency setting is higher than the upper limit (Pr.01-10), the drive runs with the upper frequency limit. If the frequency setting is lower than lower limit (Pr.01-11) and higher than minimum frequency (Pr.01-07), the drive runs with the lower frequency limit. Set the upper frequency limit > lower frequency limit (Pr.01-10 setting value must be >Pr.01-11 setting value).If the PID control is enabled for the drive, the drive's output frequency may exceed frequency command but is still limited by this setting.Related parameters: Pr.01-00 Maximum Operation Frequency.

1 When the drive starts, it operates from the minimum output frequency (Pr.01-07) and accelerates to the setting frequency. It is not limited by the lower limit frequency.
1 Use the settings of upper and lower frequency limit to prevent operator's misuse, overheating caused by operating at a too low frequency, or damage caused by excessive speed.
If If the upper frequency limit setting is 50 Hz and the frequency setting is 60 Hz , the maximum output frequency is 50 Hz .
If the lower frequency limit setting is 10 Hz and the minimum operation frequency setting (Pr.0107) is 1.5 Hz , the drive operates at 10 Hz when the frequency command is greater than Pr.01-07 and less than 10 Hz . If the frequency command is less than Pr.01-07, the drive stays in ready status with no output.
01-12 Acceleration Time 1
01-13 Deceleration Time 1
01-14 Acceleration Time 2
01-15 Deceleration Time 2
01-16 Acceleration Time 3
01-17 Deceleration Time 3
01-18 Acceleration Time 4
01-19 Deceleration Time 4
01-20 JOG Acceleration Time
01-21 JOG Deceleration Time

Default: 10.00
\[
\begin{array}{ll}
\text { Settings } & \text { Pr. } 01-45=0: 0.00-600.00 \mathrm{sec} . \\
& \text { Pr. } 01-45=1: 0.0-6000.0 \mathrm{sec} .
\end{array}
\]

1 Use the acceleration time to determine the time required for the AC motor drive to accelerate from 0 Hz to maximum output frequency (Pr.01-00).

The acceleration and deceleration time are invalid when using Pr.01-44 Auto-acceleration and Auto-deceleration Setting.Select the acceleration and deceleration time \(1,2,3\), and 4 with the multi-function input terminals settings. The defaults are acceleration and deceleration time 1. With the enabled torque limits and stall prevention functions, the actual acceleration and deceleration time are longer than the above action time.

10 Note that setting the acceleration and deceleration time too short may trigger the protection function (Pr.06-03 Over-current Stall Prevention during Acceleration or Pr.06-01 Over-voltage Stall Prevention).Note that setting the acceleration time too short may cause motor damage or trigger drive protection due to over-current during acceleration.

1 Note that setting the deceleration time too short may cause motor damage or trigger drive protection due to over-current during deceleration or over-voltage.Use suitable brake resistors (refer to Chapter 07 Optional Accessories) to decelerate in a short time and prevent over-voltage.
When you enable Pr.01-24-Pr.01-27 (S-curve acceleration and deceleration begin and arrival time), the actual acceleration and deceleration time are longer than the setting.

\section*{01-22 JOG Frequency}

Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
@ You can use both the external terminal JOG and F1 key on the optional keypad KPC-CC01 to set the JOG function. When the JOG command is ON, the AC motor drive accelerates from 0 Hz to the JOG frequency (Pr.01-22). When the JOG command is OFF, the AC motor drive decelerates from the JOG frequency to stop. The JOG acceleration and deceleration time (Pr.01-20, Pr.01-21) are the time to accelerate from 0.0 Hz to the JOG frequency (Pr.01-22). You cannot execute the JOG command when the AC motor drive is running. When the JOG command is executing, other operation commands are invalid.

\section*{01-23 First and Fourth Acceleration / Deceleration Exchange Frequency}

Default: 0.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
This function does not require the external terminal switching function; it switches the acceleration and deceleration time automatically by the Pr.01-23 setting. If you set the external terminal, it is based on the external terminal first, and not on Pr.01-23.
Use this parameter to set the switch frequency between acceleration and deceleration slope. The First / Fourth Accel. / Decel. slope is calculated by the Max. Operation Frequency (Pr.01-00) / acceleration / deceleration time.
Example: When the Max. Operation Frequency \((\operatorname{Pr} .01-00)=80 \mathrm{~Hz}\), and Switch Frequency between First and Fourth Accel. / Decel. (Pr.01-23) \(=40 \mathrm{~Hz}\) :
a. If Acceleration Time 1 (Pr.01-02) \(=10\) sec., Acceleration Time 4 (Pr.01-18) \(=6 \mathrm{sec}\)., then the acceleration time is 3 sec . for \(0-40 \mathrm{~Hz}\) and 5 sec . for \(40-80 \mathrm{~Hz}\).
b. If Deceleration Time 1 (Pr.01-13) \(=8 \mathrm{sec}\)., Deceleration Time 4 (Pr.01-19) \(=2 \mathrm{sec}\)., then the deceleration time is 4 sec . for \(80-40 \mathrm{~Hz}\) and 1 sec . for \(40-0 \mathrm{~Hz}\).

1st/4th Acceleration/Deceleration Frequency Switching
\begin{tabular}{l|l|l}
\(\mathcal{N}\) & 01-24 & S-curve for Acceleration Begin Time 1 \\
\(\mathcal{N}\) & \(01-25\) & S-curve for Acceleration Arrival Time 2 \\
\(\mathcal{N}\) & \(01-26\) & S-curve for Deceleration Begin Time 1 \\
\(\mathbb{N}\) & \(01-27\) & S-curve for Deceleration Arrival Time 2
\end{tabular}

Default: 0.20
Settings Pr. \(01-45=0: 0.00-25.00 \mathrm{sec}\).
Pr.01-45 = 1: 0.0-250.0 sec.

Iad Sets a slow start when the drive begins to accelerate at the start. The acceleration and deceleration curve adjust the S-curve acceleration and deceleration according to the parameter value. When you enable this function, the drive has a different acceleration and deceleration curve based on the acceleration and deceleration time.
[1] The S-curve function is disabled when you set the acceleration and deceleration time to 0 .When Pr.01-12, 01-14, 01-16, 01-18 \(\geq\) Pr.01-24 and Pr.01-25, the actual acceleration time \(=\operatorname{Pr} .01-12,01-14,01-16,01-18+(\operatorname{Pr} .01-24+\operatorname{Pr} .01-25) / 2\).
(1) When Pr.01-13, 01-15, 01-17, 01-19 \(\geq\) Pr.01-26 and Pr.01-27, the actual deceleration time \(=\operatorname{Pr} .01-13,01-15,01-17,01-19+(\operatorname{Pr} .01-26+\operatorname{Pr} .01-27) / 2\).

\begin{tabular}{c|l}
\hline 01-28 & Skip Frequency 1 (Upper Limit) \\
\hline 01-29 & Skip Frequency 1 (Lower Limit) \\
\hline 01-30 & Skip Frequency 2 (Upper Limit) \\
\hline 01-31 & Skip Frequency 2 (Lower Limit) \\
\hline 01-32 & Skip Frequency 3 (Upper Limit) \\
\hline 01-33 & Skip Frequency 3 (Lower Limit)
\end{tabular}

Default: 0.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
1 Sets the AC drive's skip frequency. The drive's frequency setting skips these frequency ranges. However, the frequency output is continuous. There are no limits for these six parameters and you can combine them. Pr.01-28 does not need to be greater than Pr.01-29; Pr.01-30 does not need to be greater than Pr.01-31; Pr.01-32 does not need to be greater than Pr.01-33. Pr.01-28-01-33 can be set as required. There is no size distinction among these six parameters.These parameters set the skip frequency ranges for the AC motor drive. You can use this function to avoid frequencies that cause mechanical resonance. The skip frequencies are useful when a motor has resonance vibration at a specific frequency bandwidth. Skipping this frequency avoids the vibration. There are three frequency skip zones available.
1 You can set the Frequency command (F) within the range of skip frequencies. Then the output frequency \((\mathrm{H})\) is limited to the lower limit of skip frequency ranges.
1 When accelerating and decelerating, the output frequency still passes through the skip frequency ranges.

\section*{01-34 Zero-speed Mode}

\section*{Default: 0}

Settings 0: Output waiting
1: Zero-speed operation
2: Fmin (refer to Pr.01-07, 01-41)When the frequency command of drive is less than Fmin (Pr.01-07, Pr.01-41), the drive operates using this parameter.0 : the AC motor drive is in waiting mode without voltage output from terminals \(\mathrm{U}, \mathrm{V}, \mathrm{W}\).1: the drive executes the DC brake by Vmin (Pr.01-08 and Pr.01-42) in V/F, FOC sensorless, and SVC modes. And it executes zero-speed operation in VFPG and FOCPG mode.2: the AC motor drive runs using Fmin (Pr.01-07, Pr.01-41) and Vmin (Pr.01-08, Pr.01-42) in V/F, VFPG, SVC, FOC sensorless and FOCPG modes.In V/F, VFPG, SVC and FOC sensorless modes:

In In FOCPG mode, when Pr.01-34 is set to 2, the AC motor drive operates according to this setting.

\section*{01-43 V/F Curve Selection}

Default: 0
Settings 0: V/F curve determined by Pr.01-00-01-08
1: V/F curve to the power of 1.5
2: V/F curve to the power of 2
16: V/F Separated mode (VFSM)
\(\square\) When setting to 0 , refer to Pr.01-01-01-08 for the motor 1 V/F curve. For motor 2, refer to Pr.01-35-01-42.

1 When setting to 1 or 2 , the second and third voltage frequency settings are invalid.
1 If the load on the motor is a variable torque load (torque is in direct proportion to rotating speed, such as the load of a fan or a pump), the load torque is low at low rotating speed. Decreasing the input voltage to make the magnetic field of the input current smaller and reduce flux loss and iron loss for the motor to increase efficiency.
1 When you set the V/F curve to high power, it has lower torque at low frequency, and the drive is not suitable for rapid acceleration and deceleration. Do NOT use this parameter for rapid acceleration and deceleration.

凹ar V/F absolutely separation, the rated voltage of Pr.01-02 corresponds to 100\%, and for half separation, the original FV conversion slope corresponds to \(100 \%\).

\section*{01-44 Auto-Acceleration / Auto-Deceleration Setting}

Default: 0
Settings 0: Linear acceleration and linear deceleration
1: Auto-acceleration and linear deceleration
2: Linear acceleration and auto-deceleration
3: Auto-acceleration and auto-deceleration
4: Stall prevention by auto-acceleration and auto-deceleration (limited by Pr.01-12-01-21)
[10] 0 (linear acceleration and linear deceleration): the drive accelerates and decelerates according to the setting for Pr.01-12-01-19.
[1 or 2 (auto / linear acceleration and auto / linear deceleration): the drive reduces the mechanical vibration and prevents the complicated auto-tuning processes. It does not stall during acceleration and has no need for a brake resistor. It can also improve operation efficiency and save energy.
[10] 3 (auto-acceleration and auto-deceleration): the drive auto-detects the load torque and accelerates from the fastest acceleration time and smoothest start current to the setting frequency. When decelerating, the drive auto-detects the load re-generation and stops the motor smoothly with the fastest deceleration time.
[1] 4 (stall prevention by auto-acceleration and auto-deceleration (limited by Pr.01-12-01-21)): if the acceleration and deceleration is within a reasonable range, the drive accelerates and decelerates according to Pr.01-12-01-19. If the acceleration and deceleration time is too short, the actual acceleration and deceleration time are greater than the acceleration and deceleration time settings.

(1) Optimize the acceleration / deceleration time when Pr.01-44 is set to 0 .
(2) Optimize the acceleration / deceleration time which load needs actually when Pr.01-44 is set to 3 .

\section*{01-45 Time Unit for Acceleration / Deceleration and S-Curve}

Default: 0
Settings 0: Unit 0.01 sec .
1: Unit 0.1 sec .

\section*{01-46 CANopen Quick Stop Time}

Default: 1.00
Settings Pr. 01-45 \(=0: 0.00-600.00 \mathrm{sec}\).
Pr.01-45 = 1: 0.00-6000.00 sec.
Ud Use this to set the time to decelerate from the maximum operation frequency (Pr.01-00) to 0.00 Hz by CANopen control.

\section*{01-49 Deceleration Method}

Default: 0
Settings 0: No function
1: Over voltage energy restriction
2: Traction energy control (TEC)0 : decelerate or stop in accordance with the original deceleration setting.
[1] The actual deceleration time of the motor is higher than the deceleration time setting due to the over-voltage stall prevention.
[ad 1: during deceleration, the drive controls the motor according to the setting of Pr.06-01 and the voltage recovery rate of the DC bus. The controller starts when the DC bus voltage reaches \(95 \%\) of Pr.06-01. When Pr.06-01 is set to 0 , the drive controls the motor according to the operating voltage and the voltage recovery rate of the DC bus. This method decelerates according to the setting for the deceleration time. The fastest actual deceleration time is not less than the deceleration time setting.
2: during deceleration, the drive controls the motor according to the setting of Pr.06-01 and the voltage recovery rate of the DC bus. The controller starts when the DC bus voltage reaches \(95 \%\) of Pr.06-01, auto-tunes the output frequency and the output voltage to accelerate consumption of the regenerative energy according to the drive's capability, and the deceleration time is the result of the drive's auto-tuning. Use this setting when over-voltage occurs due to unexpected deceleration time.

\section*{01-72 V/F separated mode, Voltage Input Percentage}

Default: 50.00
Settings 0-100.00
@ For V/F absolutely separation, the rated voltage of Pr.01-02 corresponds to \(100 \%\), and for half separation, the original FV conversion slope corresponds to \(100 \%\).

\section*{01-73 VF separated mode, Voltage Input Source Selection}

Default: 0
Settings 0: Digital Keypad
1: RS-485 communication
2: Reserved
3: AVI Analog input
4: ACI Analog input
5: Reserved
6: CANopen communicaton
7: Communication Card

\section*{01-74 VF separated mode, Voltage increasing time}

Default: 0
Settings 1.00-600.00

\section*{01-75 VF separated mode, Voltage decreasing time}

Default: 0
Settings 1.00-600.00

\section*{01-76 VF separated mode stop method}

Default: 0
Settings 0 : voltage decrease to 0 first, then frequency decrease to 0 .
1: voltage and frequency decrease to 0 at the same time

\section*{01-77 The deceleration time of VFSM over-current stall prevention}

Default: 0
Settings 1.00-600.00
Set this time < (frequency rise or fall time (Pr.01-12, 01-13) \(\times 100 /\) speed gain / voltage level \%), the half-separation speed limit time will not affect the original V/F graph

\section*{02 Digital Input / Output Parameters}
\(\checkmark\) You can set this parameter during operation.

\section*{02-00 Two-wire / Three-wire Operation Control}

Default: 1
Settings 0 : No function
1: Two-wire mode 1, power on for operation control (M1: FWD / STOP, M2: REV / STOP)
2: Two-wire mode 2, power on for operation control (M1: RUN / STOP, M2: FWD / REV)

3: Three-wire, power on for operation control
(M1: RUN, M2: REV / FWD, M3: STOP)
4: Two-wire mode 1, Quick Start (M1: FWD / STOP, M2: REV / STOP)
5: Two-wire mode 2, Quick Start
(M1: RUN / STOP, M2: FWD / REV)
6: Three-wire, Quick Start
(M1: RUN, M2: REV / FWD, M3: STOP)
In In the Quick Start function, the output remains ready for operation. The drive responds to the Start command immediately.When using the Quick Start function, there is greater potential voltage on the output terminals.This parameter sets the configuration of the external drive operation control and the Quick Start function. There are six different control modes listed in the following table.
\begin{tabular}{|c|c|c|}
\hline Pr.02-00 & \multicolumn{2}{|l|}{External terminal control circuits} \\
\hline \begin{tabular}{l}
Setting value: 1 \\
Two-wire \\
FWD / STOP REV / STOP
\end{tabular} & \[
\begin{aligned}
& \text { FWD/STOP } \square \overline{O O} \\
& \text { REV/STOP } \quad \overline{00}
\end{aligned}
\] & \begin{tabular}{rl}
MI1 "OPEN": STOP \\
"CLOSE": FWD \\
M12 & "OPEN": STOP \\
"CLOSE": REV \\
DCM
\end{tabular} \\
\hline \begin{tabular}{l}
Setting value: 2 \\
Two-wire \\
RUN / STOP \\
FWD / REV
\end{tabular} & \[
\begin{aligned}
& \text { RUN/STOP } \quad \overline{00} \\
& \text { FWD/REV } \quad \overline{00}
\end{aligned}
\] & \begin{tabular}{ll}
MI1 \begin{tabular}{l}
"OPEN": STOP \\
"CLOSE": RUN
\end{tabular} \\
MI2 & "OPEN": FWD \\
"CLOSE": REV \\
DCM & \multicolumn{1}{c}{ MH300 }
\end{tabular} \\
\hline \begin{tabular}{l}
Setting value: 3 \\
Three-wire
\end{tabular} & & \begin{tabular}{l}
MI1 "CLOSE": RUN \\
MI3 "OPEN": STOP \\
MI2 REV/FWD: "OPEN": FWD "CLOSE": REV \\
DCM
\end{tabular} \\
\hline \begin{tabular}{l}
Setting value: 4 \\
Two-wire \\
Quick Start
\end{tabular} & \[
\begin{aligned}
& \text { FWD/STOP } \quad \overline{\mathrm{OO}} \\
& \text { REV / STOP } \bullet \overline{0}-
\end{aligned}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Pr.02-00 & \multicolumn{2}{|l|}{External terminal control circuits} \\
\hline \begin{tabular}{l}
Setting value: 5 \\
Two-wire \\
Quick Start
\end{tabular} & \[
\begin{aligned}
& \text { RUN/STOP } \\
& \text { FWD/REV }
\end{aligned} \square \overline{00}
\] & \\
\hline \begin{tabular}{l}
Setting value: 6 \\
Three-wire Quick Start
\end{tabular} & & \begin{tabular}{l}
MI1 "CLOSE": RUN MI3 "OPEN": STOP \\
MI2 REV/FWD: "OPEN": FWD "CLOSE": REV \\
DCM \\
MH300
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
02-01 & Multi-function Input Command 1 (MI1) \\
\hline 02-02 & Multi-function Input Command 2 (MI2) \\
\hline 02-07 & Multi-function Input Command 7 (MI7)
\end{tabular}

Default: 0
02-03 Multi-function Input Command 3 (MI3)

 Default: 1
02-04 Multi-function Input Command 4 (MI4)Default: 2
02-05 Multi-function Input Command 5 (MI5)Default: 3
02-06 Multi-function Input Command 6 (MI6)Default: 4
02-26 Input Terminal of extension card (MI10)
Default: 0
02-27 Input Terminal of extension card (MI11)
Default: 0
02-28 Input Terminal of extension card (MI12)Default: 0
Settings 0: No function
1: Multi-step speed command 1
2: Multi-step speed command 2
3: Multi-step speed command 3
4: Multi-step speed command 4
5: Reset
6: JOG operation [by external control or KPC-CC01 (optional)]7: Acceleration / deceleration speed inhibit8: The first and second acceleration / deceleration time selection9: The third and fourth acceleration / deceleration time selection10: External Fault (EF) input (Pr.07-20)11: Base Block (B.B.) input from external

12: Output stops
13: Cancel the setting for auto-acceleration / auto-deceleration time
15: Rotating speed command from AVI
16: Rotating speed command from ACI
18: Forced to stop (Pr.07-20)
19: Frequency up command
20: Frequency down command
21: PID function disabled
22: Clear the counter
23: Input the counter value (MI6)
24: FWD JOG command
25: REV JOG command
26: TQC / FOC mode selection
27: ASR1 / ASR2 selection
28: Emergency stop (EF1)
29: Signal confirmation for Y -connection
30: Signal confirmation for \(\Delta\)-connection
31: High torque bias (Pr.11-30)
32: Middle torque bias (Pr.11-31)
33: Low torque bias (Pr.11-32)
35: Enable single-point positioning
37: Enable pulse-train position command position control
38: Disable to write EEPROM function
39: Torque command direction
40: Force coasting to stop
41: HAND switch
42: AUTO switch
43: Enable resolution selection (Pr.02-48)
44: Negative limit switch (NL)
45: Positive limit switch (PL)
46: Homing (ORG)
48: Mechanical gear ratio switch
49: Enable Drive
50: Inputs slave dEb action
51: Selection for PLC mode bit 0
52: Selection for PLC mode bit 1
53: Trigger CANopen quick stop
56: Local / Remote selection
70: Force auxiliary frequency return to 0
71: Disable PID function, force PID output return to 0
72: Disable PID function, retain the output value before disabled
73: Force PID integral gain return to 0 , disable integral

74: Reverse PID feedback
78: Multi-step position confirmation
79: Position / speed mode switching (0: Speed mode, 1: Position mode)
80: Location command source switching (increase)
(0: Internal register, 1: External pulse input)
83: Multi-motors (IM) selection bit 0
84: Multi-motors (IM) selection bit 1
86: Enable initial reel diameter
87: Initial reel diameter 1
88: Initial reel diameter 2
89: PID integration reset
90: Stop calculating the reel diameter
91: Winding mode selection
92: Enable tension control
93: Pause tension PID function
94: Enable to auto switch the reel
\(1 \mathbb{1}\) This parameter selects the functions for each multi-function terminal.
When Pr.02-00 = 0, you can set multi-function options with the multi-function input terminals MI1, MI2.

When Pr.02-00 \(\neq 0\), the multi-function input terminals MI1, MI2 work in accordance with the setting values for Pr.02-00.
Example:
If Pr.02-00 = 1: multi-function input terminal MI1 = FWD / STOP, multi-function input terminal MI2 \(=\) REV / STOP.
If Pr.02-00 = 2: multi-function input terminal MI1 \(=\) RUN \(/\) STOP,
multi-function input terminal MI2 \(=\) FWD \(/\) REV.
When multi-function input terminal MI7 \(=0\), MI7 is designated as a pulse input terminal.
【】 If Pr.02-00 is set to three-wire operation control, terminal MI3 is for the STOP contact. The function set previously for this terminal is automatically invalid.

Summary of function settings
Take the normally opened contact (N.O.) for example, ON: contact is closed, OFF: contact is open.
\begin{tabular}{|c|l|l|}
\hline Settings & \multicolumn{1}{|c|}{ Functions } & \\
\hline 0 & No function & \\
\hline 1 & \begin{tabular}{l}
Multi-step speed \\
command 1
\end{tabular} & \multicolumn{1}{c|}{ Descriptions } \\
\hline 2 & \begin{tabular}{l}
Multi-step speed \\
command 2
\end{tabular} & \begin{tabular}{l}
You can set 15 steps of speed or 15 positions with the digital \\
status of these 4 terminals. You can use 16-steps of speed if you
\end{tabular} \\
\hline 3 & \begin{tabular}{l}
Multi-step speed \\
command 3
\end{tabular} & \begin{tabular}{l}
include the master speed when setting as 15 steps of speed \\
(refer to Parameter Group 04 Multi-step Speed Parameters).
\end{tabular} \\
\hline 4 & \begin{tabular}{l}
Multi-step speed \\
command 4
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Settings & Functions & Descriptions \\
\hline 5 & Reset & Use this terminal to reset the drive after clearing a drive fault. \\
\hline 6 & JOG operation & \begin{tabular}{l}
This function is valid when the source of the operation command is the external terminals. \\
The JOG operation executes when the drive stops completely. While running, you can still change the operation direction, and the STOP key on the keypad* and the STOP command from communications are valid. Once the external terminal receives the OFF command, the motor stops in the JOG deceleration time. Refer to Pr.01-20-Pr.01-22 for details. \\
*: This function is valid when Pr.00-32 is set to 1 . \\
MIx : External terminal
\end{tabular} \\
\hline 7 & Acceleration / deceleration speed inhibit & When you enable this function, the drive stops acceleration or deceleration immediately. After you disable this function, the AC motor drive starts to accelerate or decelerate from the inhibit point. \\
\hline 8

9 & \begin{tabular}{l}
The first and second acceleration / deceleration time selection \\
The third and fourth acceleration / deceleration time selection
\end{tabular} & You can select the acceleration and deceleration time of the drive with this function, or from the digital status of the terminals; there are four acceleration and deceleration selections. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Settings & Functions & Descriptions \\
\hline 10 & External Fault (EF) input (Pr.07-20) & For external fault input. The drive decelerates according to the Pr.07-20 setting, and the keypad shows "EF" (it shows the fault record when an external fault occurs). The drive keeps running until the fault is cleared (terminal status restored) after RESET. \\
\hline 11 & \begin{tabular}{l}
B.B. input from \\
external (B.B.: Base \\
Block)
\end{tabular} & ON: the output of the drive stops immediately. The motor is in free run and the keypad displays the B.B. signal. Refer to Pr.0708 for details. \\
\hline 12 & Output stops & ON: the output of the drive stops immediately and the motor is in free run status. The drive is in output waiting status until the switch is turned to OFF, and then the drive restarts and runs to the current setting frequency. \\
\hline 13 & Cancel the setting for auto-acceleration / auto-deceleration time & Set Pr.01-44 to one of the 01-04 setting modes before using this function. When this function is enabled, OFF is for auto mode and ON is for linear acceleration / deceleration. \\
\hline 15 & Rotating speed command from AVI & ON: force the source of the frequency to be AVI. If the rotating speed commands are set to AVI and ACI at the same time, the priority is AVI > ACI. \\
\hline 16 & Rotating speed command from ACI & ON : force the source of the frequency to be ACI . If the rotating speed commands are set to AVI and ACl at the same time, the priority is AVI > ACI. \\
\hline 18 & Forced to stop & ON: the drive ramps to stop according to the Pr.07-20 setting. \\
\hline 19 & Frequency up command & ON: the frequency of the drive increases or decreases by one unit. If this function remains ON continuously, the frequency \\
\hline 20 & Frequency down command & \begin{tabular}{l}
increases or decreases according to Pr.02-09 / Pr.02-10. \\
The Frequency command returns to zero when the drive stops, and the displayed frequency is 0.00 Hz . If you select Pr.11-00, bit \(7=1\), the frequency is not saved.
\end{tabular} \\
\hline 21 & PID function disabled & ON: the PID function is disabled. \\
\hline 22 & Clear the counter & ON: the current counter value is cleared and displays 0 . The drive counts up when this function is disabled. \\
\hline 23 & Input the counter value (MI 6) & On: the counter value increases by 1 . Use the function with Pr.02-19. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Settings & Functions & Descriptions \\
\hline 24 & FWD JOG command & This function is valid when the source of the operation command is external terminal. ON: the drive executes forward JOG. When executing the JOG command in torque mode, the drive automatically switches to speed mode. The drive returns to torque mode after the JOG command is complete. \\
\hline 25 & REV JOG command & This function is valid when the source of the operation command is external terminal. ON: the drive executes reverse JOG. When executing the JOG command in torque mode, the drive automatically switches to speed mode. The drive returns to torque mode after the JOG command is complete. \\
\hline 26 & TQC / FOC mode selection & \begin{tabular}{l}
ON: TQC mode. \\
OFF: FOC mode. \\
Switch timing for torque/speed control \\
(\(00-20=0 / 2\), Multi-function input terminal is set to 26
\end{tabular} \\
\hline 27 & ASR1 / ASR2 selection & ON: the speed is adjusted by the ASR 2 setting. OFF: the speed is adjusted by the ASR 1 setting. Refer to Pr.11-02 for details. \\
\hline 28 & Emergency stop (EF1) & ON: the output of the drive stops immediately, displays "EF1" on the keypad, and the motor is in free run status. The drive keeps running until the fault is cleared after you press RESET on the keypad (EF: External Fault). \\
\hline 29 & Signal confirmation for Y-connection & When the control mode is V/F, ON: the drive operates by the first V/F. \\
\hline 30 & Signal confirmation for \(\Delta\)-connection & When the control mode is V/F, ON: the drive operates by the second V/F. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Settings & Functions & \multicolumn{2}{|r|}{Descriptions} \\
\hline 31 & High torque bias & \multicolumn{2}{|l|}{\multirow{3}{*}{Refer to Pr.11-30-11-32 for details.}} \\
\hline 32 & Middle torque bias & & \\
\hline 33 & Low torque bias & & \\
\hline 35 & & \multicolumn{2}{|l|}{ON: the AC motor drive executes internal single-point position control according to the setting for Pr.10-19. This function is valid in FOCPG mode only.} \\
\hline 37 & Enable pulse-train position command position control & \multicolumn{2}{|l|}{\begin{tabular}{l}
When Pr.00-20 is set to 4 or 5, ON: the input pulse of the PG card is the position command. When using this function, set Pr.11-25 to 0 . \\
Example: refer to the following diagram when using this function with \(\mathrm{MI}=\mathrm{d} 35\) returning to homing position.
\end{tabular}} \\
\hline 38 & Disable to write EEPROM function & \multicolumn{2}{|l|}{ON: writing to EEPROM is disabled. Changed parameters are not saved after power off.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Settings & Functions & \multicolumn{4}{|c|}{Descriptions} \\
\hline 39 & Torque command direction & \multicolumn{4}{|l|}{For torque control (Pr.00-10=2), when the torque command is AVI or \(\mathrm{ACI}, \mathrm{ON}\) : negative torque.} \\
\hline 40 & Force coasting to stop & \multicolumn{4}{|l|}{ON: during operation, the drive free runs to stop.} \\
\hline 41 & HAND switch & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
1. When the MI terminal switches to OFF, it executes a STOP command. Therefore, if the MI terminal switches to OFF during operation, the drive stops. \\
2. Use the optional keypad KPC-CC01 to switch between HAND and AUTO. The drive stops first, and then switches to HAND or AUTO status. \\
3. The optional digital keypad KPC-CC01 displays the current
\end{tabular}}} \\
\hline \multirow{6}{*}{42} & \multirow{6}{*}{AUTO switch} & & & & \\
\hline & & & bit 1 & bit 0 & \\
\hline & & OFF & 0 & 0 & \\
\hline & & AUTO & 0 & 1 & \\
\hline & & HAND & 1 & 0 & \\
\hline & & OFF & 1 & 1 & \\
\hline 43 & Enable resolution selection (Pr.02-48) & \multicolumn{4}{|l|}{Refer to Pr.02-48 for details.} \\
\hline 44 & \begin{tabular}{l}
Negative limit switch \\
(NL)
\end{tabular} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Signal input for negative limit switch (NL). \\
ON: The drive executes homing based on Pr.11-68-Pr.11-74 settings.
\end{tabular}} \\
\hline 45 & \begin{tabular}{l}
Positive limit switch \\
(PL)
\end{tabular} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Signal input for positive limit switch (PL). \\
ON: The drive executes homing based on Pr.11-68-Pr.11-74 settings.
\end{tabular}} \\
\hline 46 & Homing (ORG) & \multicolumn{4}{|l|}{\begin{tabular}{l}
Origin point input. \\
ON: The drive executes homing based on Pr.11-68-Pr.11-74 settings.
\end{tabular}} \\
\hline 48 & Mechanical gear ratio switch & \multicolumn{4}{|l|}{ON: the mechanical gear ratio switches to the second group. Refer to Pr. 10-04-Pr. 10-07.} \\
\hline 49 & Enable drive & \multicolumn{4}{|l|}{When the drive is enabled, the RUN command is valid. When the drive is disabled, the RUN command is invalid. When the drive is operating, the motor coasts to stop. This function varies with \(\mathrm{MO}=45\).} \\
\hline 50 & Inputs slave dEb action & \multicolumn{4}{|l|}{Enter the message setting in this parameter when the master triggers dEb. This ensures that the slave also triggers dEb, then master and slave stop simultaneously.} \\
\hline \multirow{3}{*}{51} & \multirow[t]{2}{*}{Selection for PLC mode (bit 0)} & PLC & & bit 1 & bit 0 \\
\hline & & Disable PLC & (PLC 0) & 0 & 0 \\
\hline & \multirow[b]{3}{*}{Selection for PLC mode (bit 1)} & & & 0 & 1 \\
\hline \multirow[t]{2}{*}{52} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\frac{\text { Trigger PLC to stop (PLC 2) }}{\text { No function }}\)}} & 1 & 0 \\
\hline & & & & 1 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Settings & Functions & \multicolumn{5}{|c|}{Descriptions} \\
\hline \multirow[t]{3}{*}{83} & \multirow[t]{3}{*}{Multi-motors (IM) selection bit 0} & \multicolumn{5}{|l|}{ON: parameters can be changed Example: \(\mathrm{MI} 1=83, \mathrm{MI} 2=84\)} \\
\hline & & \multirow[b]{2}{*}{MI1} & \multirow[b]{2}{*}{M12} & \multirow[b]{2}{*}{Motor Selection} & \multicolumn{2}{|l|}{Related Motor Parameter} \\
\hline & & & & & Max. Operation Frequency & V/F Curve Parameter \\
\hline \multirow{4}{*}{84} & \multirow{4}{*}{\begin{tabular}{l}
Multi-motors (IM) \\
selection bit 1
\end{tabular}} & OFF & OFF & Motor 1 & Pr.01-00 & Pr.01-01-01-08 \\
\hline & & ON & OFF & Motor 2 & Pr.01-52 & Pr.01-35-01-42 \\
\hline & & OFF & ON & Motor 3 & Pr.01-53 & Pr.01-54-01-61 \\
\hline & & ON & ON & Motor 4 & Pr.01-62 & Pr.01-63-01-70 \\
\hline \multirow[b]{2}{*}{86} & \multirow[t]{2}{*}{Enable initial reel diameter} & MIX \(=88\) & \multicolumn{2}{|l|}{MIX \(=87\)} & \multicolumn{2}{|l|}{MIX \(=86\)} \\
\hline & & OFF & OFF & \multicolumn{3}{|l|}{ON: the setting value of Pr.12-31 will be wrote into Pr. 12-40.} \\
\hline \multirow[t]{2}{*}{87} & \multirow[t]{2}{*}{Initial reel diameter 1} & OFF & ON & \multicolumn{3}{|l|}{ON: the setting value of Pr.12-32 will be wrote into Pr.12-40.} \\
\hline & & ON & OF & \multicolumn{3}{|l|}{ON: the setting value of Pr.12-33 will be wrote into Pr.12-40.} \\
\hline 88 & Initial reel diameter 2 & ON & ON & \multicolumn{3}{|l|}{ON: the setting value of Pr.12-40 will be back to the default.} \\
\hline 89 & PID integration reset & \multicolumn{5}{|l|}{ON: the integral items in PID return to zero} \\
\hline 90 & Stop calculating the reel diameter & \multicolumn{5}{|l|}{ON: stop calculating the reel diameter} \\
\hline 91 & Winding mode selection & \multicolumn{5}{|l|}{ON: rewind mode; OFF: unwind mode} \\
\hline 92 & Enable tension control & \multicolumn{5}{|l|}{ON: the output of tension PID equals zero} \\
\hline 93 & Pause tension PID function & \multicolumn{5}{|l|}{ON: PID keeps the present output until the status changes to be OFF and re-starts to calculate tension PID.} \\
\hline 94 & Enable to auto switch the reel & \multicolumn{5}{|l|}{ON: the drive automatically calculates output frequency according to the linear speed and the reel diameter have been detected to match their linear speed.} \\
\hline
\end{tabular}

\section*{02-09 External terminal UP / DOWN Key Mode}

Default: 0
Settings 0: By the acceleration / deceleration time
1: Constant speed (Pr.02-10)
2: Pulse signal (Pr.02-10)
3: Curve
4: Steps (Pr.02-10)

\section*{02-10 Acceleration / Deceleration Speed of External terminal UP / DOWN Key}

Settings \(\quad 0.001-1.000 \mathrm{~Hz} / \mathrm{ms}\)
Ila Use when the multi-function input terminals are set to 19, 20 (UP / DOWN command). The frequency increases or decreases according to Pr.02-09 and Pr.02-10.
1 When Pr.11-00 bit 7=1, the frequency is not saved. The Frequency command returns to zero when the drive stops, and the displayed frequency is 0.00 Hz . At this time, the increasing or decreasing frequency command (F) by using the UP or DOWN key is valid only when the drive is running.
[1] When Pr.02-09 is set to 0 : the increasing or decreasing frequency command (F) operates according to the setting for acceleration or deceleration time (refer to Pr.01-12-01-19).

(1) When Pr.02-09 is set to 1: the increasing / decreasing frequency command \((F)\) operates according to the setting of Pr.02-10 (0.01-1.00 Hz/ms).

[1] When Pr.02-09 is set to 2: the increasing / decreasing frequency command (F) operates according to the pulse of Pr.02-10.

When Pr.02-09 is set to 3 : the increasing / decreasing frequency command (F) operates according to the exponential curve.

[10 When Pr.02-09 is set to 4: the increasing / decreasing frequency command (\(F\)) operates according to the setting of Pr.02-10 per every 100 ms .

\section*{02-11 Multi-function Input Response Time}

Default: 0.005
Settings \(0.000-30.000 \mathrm{sec}\).
1 U Use this parameter to set the response time of the digital input terminals MI1-MI7.This function is to delay and confirm the digital input terminal signal. The time for delay is also the time for confirmation. The confirmation prevents interference that could cause error in the input to the digital terminals. But in the meanwhile, it delays the response time though confirmation improves accuracy.

\section*{02-12 Multi-function Input Mode Selection}

Default: 0000
Settings 0000h-FFFFh (0: N.O.; 1: N.C.)
\(\square\) This parameter setting is in hexadecimal.
[1] This parameter sets the status of the multi-function input signal (0: normally open; 1: normally closed) and it is not affected by the status of SINK / SOURCE.bit 0-bit 6 correspond to MI1-MI7.
1
The default for bit 0 (MI1) is FWD terminal, and the default for bit 1 (MI2) is REV terminal. You cannot use this parameter to change the input mode when Pr.02-00 \(\neq 0\).
\([1]\) You can change the terminal ON / OFF status through communications. For example: MI3 is set to 1 (multi-step speed command 1) and MI4 is set to 2 (multi-step speed command 2). Then the forward + second step speed command \(=1001_{2}=9_{10}\).
\([1]\)
As long as Pr.02-12 = 9 is set through communications, there is no need to wire any multi-function terminal to run forward with the second step speed.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline bit 6 & bit 5 & bit 4 & bit 3 & bit 2 & bit 1 & bit 0 \\
\hline MI7 & MI6 & MI5 & MI4 & MI3 & MI2 & MI1 \\
\hline
\end{tabular}

Use Pr.11-42 bit 1 to select whether the FWD / REV terminal is controlled by Pr.02-12 bit 0 and bit 1.

\section*{02-13 Multi-function Output 1 (Relay1)}

Default: 11

\section*{02-16 Multi-function Output 2 (MO1)}

Default: 0

\section*{02-17 Multi-function Output 3 (MO2) \\ 02-36 Output Terminal of Extension Card (MO10) or (RY10) \\ 02-37 Output Terminal of Extension Card (MO11) or (RY11) \\ 02-38 Output Terminal of Extension Card (MO12) or (RY12)}

Default: 0
\begin{tabular}{ll}
Settings & 0: No function \\
1: Indication during RUN \\
2: Operation speed reached \\
3: Desired frequency reached 1 (Pr.02-22) \\
4: Desired frequency reached 2 (Pr.02-24) \\
5: Zero speed (Frequency command) \\
6: Zero speed, includes STOP (Frequency command) \\
7: Over-torque 1 (Pr.06-06-06-08) \\
8: Over-torque 2 (Pr.06-09-06-11) \\
9: Drive is ready \\
10: Low voltage warning (Lv) (Pr.06-00) \\
11: Malfunction indication \\
13: Over-heat warning (Pr.06-15) \\
14: Software brake signal indication (Pr.07-00) \\
15: PID feedback error (Pr.08-13, Pr.08-14) \\
16: Slip error (oSL) \\
17: Count value reached (Pr.02-20; does not return to 0) \\
18: Count value reached (Pr.02-19; returns to 0)
\end{tabular}

19: External interrupt B.B. input (Base Block)
20: Warning output
21: Over-voltage
22: Over-current stall prevention
23: Over-voltage stall prevention
24: Operation source
25: Forward command
26: Reverse command
29: Output when frequency \(\geq\) Pr.02-34
30: Output when frequency < Pr.02-34
31: Y-connection for the motor coil
32: \(\Delta\)-connection for the motor coil
33: Zero speed (actual output frequency)
34: Zero speed include STOP (actual output frequency)
35: Error output selection 1 (Pr.06-23)
36: Error output selection 2 (Pr.06-24)
37: Error output selection 3 (Pr.06-25)
38: Error output selection 4 (Pr.06-26)
39: Position reached (Pr. 10-19)
40: Speed reached (including STOP)
42: Crane function
43: Motor actual speed detection
44: Low current output (use with Pr.06-71-Pr.06-73)
45: UVW output electromagnetic valve ON / OFF switch
46: Outputs when master dEb acts
49: Homing action completed
50: Output control for CANopen
51: Output control for RS-485
52: Output control for communication cards
66: SO output logic A
67: Outputs when analog input level reached
68: SO output logic B
69: Maximum reel diameter reached
70: Empty reel diameter reached
71: Broken belt detection
72: Tension PID feedback error
73: Over-torque 3
74: Over-torque 4
1 Use this parameter to set the function of the multi-function terminals.
Summary of function settings
Take the normally open contact (N.O.) for example, ON: contact is closed, OFF: contact is open.
\begin{tabular}{|c|c|c|}
\hline Settings & Functions & Descriptions \\
\hline 0 & No Function & Output terminal with no function \\
\hline 1 & Indication during RUN & Activates when the drive is not in STOP. \\
\hline 2 & Operation speed reached & Activates when output frequency of the drive reaches the setting frequency. \\
\hline 3 & Desired frequency reached 1 (Pr.02-22) & Activates when the desired frequency (Pr.02-22) is reached. \\
\hline 4 & Desired frequency reached 2 (Pr.02-24) & Activates when the desired frequency (Pr.02-24) is reached. \\
\hline 5 & Zero speed (Frequency command) & Activates when frequency command \(=0\) (the drive must be in RUN status). \\
\hline 6 & \begin{tabular}{l}
Zero speed, includes STOP \\
(Frequency command)
\end{tabular} & Activates when frequency command = 0 or stopped. \\
\hline 7 & Over-torque 1 & \begin{tabular}{l}
Activates when the drive detects over-torque. Pr.06-07 sets the over-torque detection level (motor 1), and Pr.06-08 sets the over-torque detection time (motor 1). \\
Refer to Pr.06-06-06-08.
\end{tabular} \\
\hline 8 & Over-torque 2 & \begin{tabular}{l}
Activates when the drive detects over-torque. Pr.06-10 sets the over-torque detection level (motor 2), and Pr.06-11 sets the over-torque detection time (motor 2). \\
Refer to Pr.06-09-06-11.
\end{tabular} \\
\hline 9 & Drive is ready & Activates when the drive is ON with no error detected. \\
\hline 10 & Low voltage warn (Lv) & Activates when the DC bus voltage is too low (refer to Pr.06-00 Low Voltage Level). \\
\hline 11 & Malfunction indication & Activates when fault occurs (except Lv stop). \\
\hline 13 & Over-heat warning & Activates when IGBT or heat sink overheats; to prevent the drive from shutting down due to over-heating (refer to Pr.0615). \\
\hline 14 & Software brake signal indication & Activates when the soft brake function is ON (refer to Pr.0700). \\
\hline 15 & PID feedback error & Activates when the PID feedback signal error is detected. \\
\hline 16 & Slip error (oSL) & Activates when the slip error is detected. \\
\hline 17 & Count value reached
(Pr.02-20) & \begin{tabular}{l}
When the drive executes external counter, this contact activates if the count value is equal to the setting value for Pr.02-20. \\
This contact deactivates when the setting value for Pr.02-20 > Pr.02-19.
\end{tabular} \\
\hline 18 & Count value reached
(Pr.02-19) & When the drive executes the external counter, this contact activates if the count value is equal to the setting value for Pr.02-19. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Settings & Functions & Descriptions \\
\hline 19 & External interrupt B.B. input (Base Block) & Activates when external interrupt (B.B.) stop output occurs in the drive. \\
\hline 20 & Warning output & Activates when a warning is detected. \\
\hline 21 & Over-voltage & Activates when over-voltage is detected. \\
\hline 22 & Over-current stall prevention & Activates when over-current stall prevention is detected. \\
\hline 23 & Over-voltage stall prevention & Activates when over-voltage stall prevention is detected. \\
\hline 24 & Operation source & Activates when the source of operation command is not controlled by the digital keypad (Pr.00-21 \(\neq 0\)). \\
\hline 25 & Forward command & Activates when the operation direction is forward. \\
\hline 26 & Reverse command & Activates when the operation direction is reverse. \\
\hline 29 & Output when frequency
\[
\geq \text { Pr. 02-34 }
\] & Activates when the frequency is \(\geq\) Pr.02-34 (actual output \(\mathrm{H} \geq\) Pr.02-34). \\
\hline 30 & Output when frequency
< Pr.02-34 & Activates when frequency is < Pr.02-34 (actual output \(\mathrm{H}<\) Pr.02-34). \\
\hline 31 & Y-connection for the motor coil & Activates when Pr.05-24 = 1, the frequency output is lower than Pr.05-23 minus 2 Hz , and the time is longer than Pr.0525. \\
\hline 32 & \(\Delta\)-connection for the motor coil & Activates when Pr.05-24 = 1, the frequency output is higher than Pr. 05-23 plus 2 Hz , and the time is longer than Pr.0525. \\
\hline 33 & Zero speed (actual output frequency) & Activates when the actual output frequency is 0 (the drive is in RUN mode). \\
\hline 34 & Zero speed includes stop (actual output frequency) & Activates when the actual output frequency is 0 or stopped. \\
\hline 35 & Error output selection 1
(Pr.06-23) & Activates when Pr.06-23 is ON. \\
\hline 36 & Error output selection 2
(Pr.06-24) & Activates when Pr.06-24 is ON. \\
\hline 37 & Error Output Selection 3
(Pr.06-25) & Activates when Pr.06-25 is ON. \\
\hline 38 & Error Output Selection 4
(Pr.06-26) & Activates when Pr.06-26 is ON. \\
\hline 39 & Position reached (Pr.10-19) & Activates when the position control point reaches Pr.10-19. \\
\hline 40 & Speed reached (including STOP) & Activates when the output frequency reaches the setting frequency or stopped. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Settings & Functions & \multicolumn{4}{|c|}{Descriptions} \\
\hline 42 & Crane function & \multicolumn{4}{|l|}{Use this function with Pr.02-34 and Pr.02-58. Refer to Pr.02-34 and Pr.02-58 for details.} \\
\hline 43 & Motor actual speed detection & \multicolumn{4}{|l|}{Active when the actual motor speed is less than Pr.02-47.} \\
\hline 44 & Low current output & \multicolumn{4}{|l|}{Use this function with Pr.06-71-Pr.06-73.} \\
\hline 45 & UVW output electromagnetic valve ON / OFF switch & \multicolumn{4}{|l|}{Use this function with external terminal input \(=49\) (drive enabled) and external terminal output \(=45\) (electromagnetic valve enabled), and then the electromagnetic valve is ON or OFF according to the status of the drive.} \\
\hline 46 & Outputs when master dEb acts & \multicolumn{4}{|l|}{When dEb rises at the master, MO sends a dEb signal to the slave. Output the message when the master triggers dEb. This ensures that the slave also triggers dEb. Then slave follows the deceleration time of the master to stop simultaneously with the master.} \\
\hline 49 & Homing action completed & \multicolumn{4}{|l|}{Activate when homing action is completed.} \\
\hline \multirow{6}{*}{50} & \multirow{6}{*}{Output control for CANopen} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Control the multi-function output terminals through CANopen. \\
The mapping table of the CANopen DO is shown in the following table:
\end{tabular}} \\
\hline & & Physical terminal & Setting for related parameters & Attribute & Corresponding index \\
\hline & & RY1 & Pr.02-13 = 50 & RW & \(2026-41\)
bit 0 of initial value \(0 \times 01\) \\
\hline & & MO1 & Pr.02-16 = 50 & RW & 2026-41
bit 3 of initial value \(0 \times 01\) \\
\hline & & MO2 & Pr.02-17 = 50 & RW & \(2026-41\)
bit 4 of initial value \(0 \times 01\) \\
\hline & & \multicolumn{4}{|l|}{Refer to subsection 15-3-5 for more information.} \\
\hline 51 & Output control for RS-485 & \multicolumn{4}{|l|}{For RS-485 communication control output.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Settings & Functions & \multicolumn{4}{|c|}{Descriptions} \\
\hline \multirow{5}{*}{52} & \multirow{5}{*}{Output control for communication cards} & \multicolumn{4}{|l|}{Control the output through communication cards (CMM-PD02, CMM-EIP02, CMM-EC02, CMM-DNO2)} \\
\hline & & \begin{tabular}{l|l}
\begin{tabular}{l}
Physical \\
terminal
\end{tabular} & p \\
\hline
\end{tabular} & Setting for related parameters & Attribute & Corresponding Address \\
\hline & & RY Pr & Pr.02-13 \(=51\) & kW & bit 0 of 2640 \\
\hline & & MO1 Pr & Pr.02-16 \(=51\) & W & bit 3 of 2640 \\
\hline & & MO2 Pr & Pr.02-17 = 51 & kW & bit 4 of 2640 \\
\hline \multirow[t]{2}{*}{66} & \multirow[t]{2}{*}{SO output logic A} & \multirow[t]{2}{*}{Status of the drive} & \multicolumn{3}{|c|}{Status of the safety output} \\
\hline & & & Status A (MO = 66) & \multicolumn{2}{|r|}{Status B (MO = 68)} \\
\hline \multirow{3}{*}{68} & \multirow{3}{*}{SO output logic B} & Normal & Broken circuit (open) & \multicolumn{2}{|l|}{Short circuit (closed)} \\
\hline & & STO & Short circuit (closed) & \multicolumn{2}{|l|}{Broken circuit (open)} \\
\hline & & STL1-STL3 & 3 Short circuit (closed) & \multicolumn{2}{|l|}{Broken circuit (open)} \\
\hline 67 & Outputs when analog input level reached & \multicolumn{4}{|l|}{\begin{tabular}{l}
The multi-function output terminals operate when the analog input level is between the high level and the low level. \\
Pr.03-44: Select one of the analog input channels (AVI, ACI) to be compared. \\
Pr.03-45: The high level for the analog input, default is \(50 \%\). \\
Pr.03-46: The low level for the analog input, default is \(10 \%\). If analog input > Pr.03-45, the multi-function output terminal operates. If analog input < 03-46, the multi-function output terminal stops output.
\end{tabular}} \\
\hline 69 & Maximum reel diameter reached & \multicolumn{4}{|l|}{In tension control mode, when reel diameter reaches Pr.12-22, the contact closes.} \\
\hline 70 & Empty reel diameter reached & \multicolumn{4}{|l|}{In tension control mode, when reel diameter reaches Pr.12-23, the contact closes.} \\
\hline 71 & Broken belt detection & \multicolumn{4}{|l|}{In tension control mode, a broken belt occurs when line speed is higher than Pr.12-40, the error of reel diameter exceeds Pr.12-40, and the detection time exceeds Pr.12-41.} \\
\hline 72 & Tension PID feedback error & \multicolumn{4}{|l|}{In tension control mode, when the difference between the PID target value and the PID feedback exceeds Pr.12-42, and the allowed error detection time for tension PID feedback exceeds Pr.12-43, refer to Pr.12-43 for the error treatment of the tension PID feedback.} \\
\hline 73 & Over-torque 3 & \multicolumn{4}{|l|}{Active when over-torque is detected. Pr.14-75 sets the overtorque detection level. Pr.14-76 sets the over-torque detection time (refer to Pr.14-74-14-76).} \\
\hline 74 & Over-torque 4 & \multicolumn{4}{|l|}{Active when over-torque is detected. Pr.14-78 sets the overtorque detection level. Pr.14-79 sets the over-torque detection time (refer to Pr.14-77-14-79).} \\
\hline
\end{tabular}

\section*{02-18 Multi-function Output Direction}

Default: 0000h
Settings 0000h-FFFFh (0: N.O.; 1: N.C.)
[1] This parameter is in hexadecimal.
1 This parameter is set by a bit. If the bit is 1 , the corresponding multi-function output acts in an opposite way.
Example:
Assume Pr.02-13 = 1 (indication when the drive is operating). If the output is positive, the bit is set to 0 , and then Relay is ON when the drive runs and is OFF when the drive stops. On the contrary, if the output is negative, and the bit is set to 1 , then the Relay is OFF when the drive runs and is ON when the drive stops.
\begin{tabular}{|c|c|c|c|c|}
\hline bit 4 & bit 3 & bit 2 & bit 1 & bit 0 \\
\hline MO2 & MO1 & Reserved & Reserved & RY \\
\hline
\end{tabular}

\section*{02-19 Terminal Counting Value Reached (returns to 0)}

Default: 0
Settings 0-65500
In The counting function is enabled when Pr.02-19 \(\neq 0\).You can set the input point for the counter using the multi-function terminal MI6 as a trigger terminal (set Pr.02-06 to 23). When counting is completed, the specified multi-function output terminal is activated [Pr.02-13, Pr.02-16, Pr.02-17, or Pr.02-36-Pr.02-38 (with extension card) is set to 18]. Pr.02-19 cannot be set to 0 at this time.

The timing diagram below show that when counting to 5 , RY1 activates and displays 0 .

Terminal Counter Value
RY1 Pr.02-13=18

The timing diagram of the external counting terminals and the counting value reached

\section*{02-20 Preliminary Counting Value Reached (does not return to 0)}

Default: 0
Settings 0-65500
[1] Use this parameter with Pr.02-19.
\(\square\) When the count value counts from 1 to reach this value, the corresponding multi-function output terminal is activated [Pr.02-13, Pr.02-16, Pr.02-17, or Pr.02-36-Pr.02-38 (with extension card) is set to 17], and keeps counting to the last count value.
Ia You can use this parameter as the end of counting to make the drive run from the low speed to stop.
The timing diagram is RY1 activates when the count value is three, and the display returns to zero when counts to five:

(Output signal)
Multi-function output terminal Preliminary Counter Value
 RY1 Pr.02-13=17

The timing diagram of the external counting terminals and the counting value reached

\section*{02-21 Digital Output Gain (DFM)}

Default: 1
Settings 1-55
Sets the signal for the digital output terminals (DFM-DCM) and the digital frequency output (pulse, work period \(=50 \%\)). The output pulse per second \(=\) output frequency \(\times\) Pr.02-21.

\section*{02-22 Desired Frequency Reached 1}

Default: 60.00 / 50.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)

\section*{02-23 The width of the desired frequency reached 1}

Default: 2.00
Settings \(0.00-599.00 \mathrm{~Hz}\)

\section*{02-24 Desired Frequency Reached 2}

Default: 60.00 / 50.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
02-25 The width of the desired frequency reached 2
Default: 2.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
1 Once the output speed (frequency) reaches the desired speed (frequency), if the corresponding multi-function output terminal is set to 3 or 4 (Pr.02-13, Pr.02-16, and Pr.02-17), this multifunction output terminal is "closed".

\section*{02-34 Output Frequency Setting for Multi-function Output Terminal}

Default: 0.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)

\section*{02-58 Multi-function Output Terminal (Function 42): Brake Frequency Check Point} Default: 0.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
(1) Use Pr.02-34 with Pr.02-58 for the crane function and select the crane function MO \#42 to set the multi-function outputs Pr.02-13, Pr.02-16, and Pr.02-17.When the output frequency \((\mathrm{H})\) is lower than the setting for Pr.02-58, multi-function output terminal setting 42 stops after the command breaks off.Pr.02-58 must be lower than Pr.02-34 when using MO=42.
[1]
Crane application example:

It is recommended that you use this with the Dwell function as shown in the following diagram:

\section*{02-35 External Operation Control Selection after Reset and Reboot}

Default: 0
Settings 0: Disable
1: Drive runs if the RUN command remains after reset or reboot.
Set value as 1 :
Pay attention that the drive will execute the running command by itself in the following status.
\(1 \mathbb{1}\) Status 1: After the drive is powered on and the external terminal for RUN stays ON, the drive runs.

1 Status 2: After clearing a fault once a fault is detected and the external terminal for RUN stays ON, you can run the drive by pressing the RESET key.

\section*{02-47 Motor Zero-speed Level}

Default: 0
Settings 0-65535 rpm
[1] If Pr.01-11 is set as "no PG feedback" control mode, it calculates by estimated rotating speed. If Pr.01-11 is set as "PG feedback" control mode, it calculates by the actual feedback speed, which means that motor needs to install encoder to feedback the actual rotating speed and use with PG card or MI pulse input terminal.Use this parameter to set the level of motor at zero-speed. When the speed is lower than this setting, the corresponding multi-function output terminal that is set to 43 is ON, as shown below:
When motor installs encoder to feedback and uses with PG card, the accuracy of zero-speed control increases.

\section*{02-48 Maximum Frequency of Resolution Switch}

Default: 60.00
Settings \(\quad 0.01-599.00 \mathrm{~Hz}\) (use with MI setting as 43).
02-49 Switch Delay Time of Maximum Output Frequency
Default: 0.000
Settings \(0.000-65.000\) sec.
Use to improve unstable speed or unstable position due to insufficient analog resolution. Use with the external terminal (setting to 43). After setting this parameter, you also need to adjust the analog output resolution of the controller so as to work with the parameter function.

\section*{02-50 Display the Status of the Multi-function Input Terminal}

\section*{Default: Read only}

Settings Monitor the status of the Multi-function Input Terminal

\[
\begin{aligned}
& 0=O F F \\
& 1=O N
\end{aligned}
\]
\begin{tabular}{|llll|}
\hline NOTE & & \\
\(2^{6}=64\) & \(2^{5}=32\) & \(2^{4}=16\) \\
\(2^{3}=8\) & \(2^{2}=4\) & \(2^{1}=2\) & \(2^{0}=1\) \\
\hline
\end{tabular}

Example:
When Pr.02-50 displays 0034h (hex) (that is, the value is 52 (decimal) and 0110100 (binary)), it means that MI3, MI5 and MI6 are ON.

```

$0=O F F$
$1=\mathrm{ON}$
Setting
$=$ bit $5 \times 2^{5}+$ bit $4 \times 2^{4}+$ bit $2 \times 2^{2}$
$=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{2}$
$=32+16+4$
$=52$

NOTE			
$2^{6}=64$	$2^{5}=32$	$2^{4}=16$	
$2^{3}=8$	$2^{2}=4$	$2^{1}=2$	$2^{0}=1$

```

\section*{02-51 Display the Status of the Multi-function Output Terminal}

Default: Read only
Settings Monitor the status of the Multi-function Output Terminal
bit

Example:
When Pr.02-51 displays 0009h (hex) (that is, the value is 9 (decimal) and 01001 (binary)), it means that Relay and MO1 are ON.

\[
\begin{aligned}
& 0=\text { OFF } \\
& 1=\text { ON } \\
& \text { Setting } \\
& =\text { bit } 3 \times 2^{3}+\text { bit } 0 \times 2^{0} \\
& =1 \times 2^{3}+1 \times 2^{0} \\
& =8+1 \\
& =9
\end{aligned} \quad \begin{array}{lll}
\text { NOTE } & \\
2^{4}=16 & 2^{3}=8 & 2^{2}=4 \\
2^{1}=2 & 2^{0}=1 & \\
\hline
\end{array}
\]

\section*{02-52 Display the External Multi-function Input Terminals Used by the PLC}

Default: Read only
Settings Monitor the status of PLC input terminals

\begin{tabular}{lcrr|}
NOTE & & \\
\(2^{6}=64\) & \(2^{5}=32\) & \(2^{4}=16\) \\
\(2^{3}=8\) & \(2^{2}=4\) & \(2^{1}=2\) & \(2^{0}=1\) \\
\hline
\end{tabular}

1 Example:
When Pr.02-52 displays 0034h (hex) (that is, the value is 52 (decimal) and 0110100 (binary)), it means that MI3, MI5 and MI6 are used by PLC.

\[
\begin{aligned}
& 0=\mathrm{OFF} \\
& 1=\mathrm{ON}
\end{aligned}
\]

Setting
\(=\) bit \(5 \times 2^{5}+\) bit \(4 \times 2^{4}+\) bit \(2 \times 2^{2}\)
\(=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{2}\)
\(=32+16+4\)
\(=52\)
\begin{tabular}{|lcrr|}
\hline NOTE & & \\
\(2^{6}=64\) & \(2^{5}=32\) & \(2^{4}=16\) \\
\(2^{3}=8\) & \(2^{2}=4\) & \(2^{1}=2\) & \(2^{0}=1\) \\
\hline
\end{tabular}

\section*{02-53 Display the External Multi-function Output Terminals Used by the PLC Default: Read only}

Settings Monitor the status of PLC output terminals

0=OFF
\(1=\) ON
\begin{tabular}{lll}
NOTE & & \\
\(2^{4}=16\) & \(2^{3}=8\) & \(2^{2}=4\) \\
\(2^{1}=2\) & \(2^{0}=1\) & \\
\hline
\end{tabular}

1 Example:
When Pr.02-53 displays 0009h (hex) (that is, the value is 9 (decimal) and 01001 (binary)), it means that Relay and MO1 is used by PLC.

\[
\begin{aligned}
& 0=\mathrm{OFF} \\
& 1=\mathrm{ON} \\
& \text { Setting } \\
& =\text { bit } 3 \times 2^{3}+\text { bit } 0 \times 2^{0} \\
& =1 \times 2^{3}+1 \times 2^{0} \\
& =8+1 \\
& =9
\end{aligned} \begin{array}{lll}
\text { NOTE } & \\
2^{4}=16 & 2^{3}=8 & 2^{2}=4 \\
2^{1}=2 & 2^{0}=1 & \\
\hline
\end{array}
\]

\section*{02-54 Display the Frequency Command Executed by the External Terminal}

Default: Read only
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\) (Read only)
1 When you set the source of the frequency command as the external terminal, if Lv or fault occurs, the external terminal frequency command is saved in this parameter.

\section*{02-70 IO Card Types}

Default: Read only
Settings Read only
\begin{tabular}{|l|}
\hline 1: EMC-BPS01 (backup power supply) \\
\hline 10: EMM-D33A \\
\hline 11: EMM-A22A \\
\hline 12: EMM-R2CA \\
\hline 13: EMM-R3AA \\
\hline
\end{tabular}

\section*{02-74 Internal / External Multi-function Input Terminal Selection}

Default: 0000h
Settings 0000-FFFFh
10 Selects the terminals MI1-MI7 to be internal terminals or external terminals. When the MIx is set as internal terminal, the corresponding external terminal function is disabled.
© To activate internal terminals via Pr.02-75 setting.

1 Setting method: convert the binary 12bit number to hexadecimal number for input.
Example: if the MI1, MI3, MI4 are triggered by virtual terminals, then Pr. 02-74 \(=34 \mathrm{~h}\).

0: external terminal
1: internal terminal
Settings
\(=\) bit \(5 \times 2^{5}+\) bit \(4 \times 2^{4}+\) bit \(2 \times 2^{2}\)
\(=1 \times 2^{5}+1 \times 2^{4}+1 \times 2^{2}\)
\(=32+16+4=52\)
Pr.02-74
=> \(52_{10}=34 \mathrm{~h}\)
\[
\begin{array}{lll}
\text { Note } & \\
2^{12}=4096 & 2^{11}=2048 & 2^{10}=1024 \\
2^{7}=128 & 2^{6}=64 & 2^{5}=32 \\
2^{4}=16 & 2^{3}=8 & 2^{2}=4 \\
2^{1}=2 & 2^{0}=1 &
\end{array}
\]

\section*{02-75 Internal Multi-function Output Terminal Selection}

Default: 0000h
Settings 0000-FFFFh
@ Sets the internal terminal action (ON / OFF) through digital keypad, communication or PLC.
凹】 The Local / Remote options on the digital keypad have the lowest priority. When the PLC uses the entity DI, the corresponding function of original DI can still be triggered through virtual terminals.Pr.02-74 and Pr.02-75 can both be changed during RUN.Pr.02-74 and Pr.02-75 are saved after powering off.You can choose N.O. (Pr.02-12 bit \(=0\)) or N.C. (Pr.02-12 bit \(=1\)) through the Pr.02-12 MI mode to trigger the virtual terminals.
Example: Sets Pr.02-75 = 34h to activate MI1, MI3 and MI4.

\section*{02-81 EF Activates when the Terminal Count Value Reached}

Default: 0
Settings 0 : Terminal count value reached, no EF displays (continues operating).
1: Terminal count value reached, EF is active.

\section*{02-82 Initial Frequency Command (F) Mode after Stop}

Default: 0
Settings 0: Use current Frequency command
1: Use zero Frequency command
2: Refer to Pr.02-83 to set up
02-83 Initial Frequency Command (F) Setting after Stop
Default: 60.00
Settings \(0.00-599.0 \mathrm{~Hz}\)

\section*{03 Analog Input / Output Parameters}
\(N\) You can set this parameter during operation.
03-00 AVI Analog Input Selection
Default: 1

\section*{03-01 ACI Analog Input Selection}

Default: 0

\section*{Settings}

0 : No function
1: Frequency command
2: Torque command (torque limit in speed mode)
3: Torque compensation command
4: PID target value
5: PID feedback signal
6: Thermistor input value (PTC)
7: Positive torque limit
8: Negative torque limit
9: Regenerative torque limit
10: Positive / negative torque limit
11: PT100 thermistor input value
12: Auxiliary frequency input
13: PID compensation value
14: Tension PID feedback signal
15: Line speed
16: Reel diameter
17: Tension PID target value
18: Tension setting value
19: Zero-speed tension
20: Tension taper
[1] When you use analog input as the PID reference target input, you must set Pr.00-20 to 2 (external analog input).
Setting method 1: Pr.03-00-03-01 set 1 as frequency command.
Setting method 2: Pr.03-00-03-01 set 4 as PID reference target input.
If the setting value 1 and setting value 4 exist at the same time, the AVI input has highest priority to become the PID reference target input value.
1 When you use analog input as the PID compensation value, you must set Pr.08-16 to 1 (source of PID compensation value is analog input). You can see the compensation value with Pr.08-17.When you use the frequency command, the corresponding value for \(0- \pm 10 \mathrm{~V} / 4-20 \mathrm{~mA}\) is \(0-\) maximum operation frequency (Pr.01-00).When you use the torque command, the corresponding value for \(0- \pm 10 \mathrm{~V} / 4-20 \mathrm{~mA}\) is \(0-\) maximum output torque (Pr.11-27).
When you use torque compensation, the corresponding value for \(0- \pm 10 \mathrm{~V} / 4-20 \mathrm{~mA}\) is 0 -the rated torque.

When the settings for Pr.03-00 and Pr.03-01 are the same, the AVI input is selected first.

\section*{03-03 AVI Analog Input Bias}

Default: 0.0
Settings -100.0-100.0\%
Sets the corresponding AVI voltage for the external analog input 0 .

\section*{03-04 ACI Analog Input Bias}

Default: 0.0
Settings -100.0-100.0\%
Sets the corresponding ACI current for the external analog input 0 .

\section*{03-07 AVI Positive / Negative Bias Mode \\ 03-08 ACI Positive / Negative Bias Mode}

Default: 0
Settings 0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
[1] In a noisy environment, use negative bias to provide a noise margin. Do NOT use less than 1 V to set the operation frequency.

\section*{03-10 Reverse Setting when Analog Signal Input is Negative Frequency Default: 0}

Settings 0: Negative frequency input is not allowed. The digital keypad or external terminal controls the forward and reverse direction.

1: Negative frequency input is allowed. Positive frequency = run in a forward direction; negative frequency \(=\) run in a reverse direction. The digital keypad or external terminal control cannot change the running direction.Use this parameter only for AVI or ACl analog input.Requirements for negative frequency (reverse running)
1. \(\operatorname{Pr} .03-10=1\)
2. Bias mode \(=\) Bias serves as the center
3. Corresponded analog input gain \(<0\) (negative); this makes the input frequency negative.

In using the additional analog input function (Pr.03-18 = 1), when the analog signal is negative after the addition, you can set this parameter to allow or not allow the reverse direction. The result after adding is restricted by the "Condition for negative frequency (reverse running)".

In the diagram below, black line is voltage-frequency curve with no bias; gray line is voltagefrequency curve with bias.

\section*{Diagram 01}

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid
Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) \(=100 \%\)

\section*{Diagram 02}

Diagram 03

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency \(=\) reverse run Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) \(=100 \%\)

\section*{Diagram 04}

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain \((A V I)=100 \%\)

\section*{Diagram 05}

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain \((A V I)=100 \%\)

\section*{Diagram 06}

Diagram 07

\section*{Diagram 08}

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) \(=100 \%\)

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency \(=\) reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain \((A V I)=100 \%\)

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain \((A V I)=100 \%\)

Diagram 09

\section*{Diagram 10}

Pr.03-03=-10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) \(=100 \%\)

\section*{Diagram 11}

Pr.03-03=-10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency \(=\) reverse run
Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) \(=100 \%\)

\section*{Diagram 12}

Pr.03-03=-10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency \(=\) reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain \((A V I)=100 \%\)

\section*{Diagram 13}

Pr.03-03=-10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain \((A V I)=100 \%\)

\section*{Diagram 14}

Diagram 15

Pr.03-03=-10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain \((A V I)=100 \%\)

\section*{Diagram 16}

Pr.03-03=-10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run . Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain \((A V I)=100 \%\)

\section*{Diagram 17}

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) \(=111.1 \%\)
\(10 / 9=111.1 \%\)

\section*{Diagram 18}

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.
\[
\begin{aligned}
\text { Pr.03-11 Analog input Gain (AVI) } & =111.1 \% \\
10 / 9 & =111.1 \%
\end{aligned}
\]

\section*{Diagram 19}

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency \(=\) reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) \(=111.1 \%\)
\[
10 / 9=111.1 \%
\]

\section*{Diagram 20}

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency \(=\) reverse run.
Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain (AVI) \(=111.1 \%\)
\[
10 / 9=111.1 \%
\]

Diagram 21

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency \(=\) reverse run
Direction can not be switched by digital keypad or external terminal control.
\[
\begin{aligned}
\text { Pr.03-11 Analog input Gain }(\mathrm{AVI}) & =111.1 \% \\
10 / 9 & =111.1 \%
\end{aligned}
\]

\section*{Diagram 22}

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run
Direction can not be switched by digital keypad
or external terminal control
Pr.03-11 Analog input Gain \((A V I)=111.1 \%\)
\(10 / 9=111.1 \%\)

\section*{Diagram 23}

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external terminal control.

Pr.03-11 Analog input Gain \((\mathrm{AVI})=111.1 \%\) \(10 / 9=111.1 \%\)

\section*{Diagram 24}

Pr.03-03=10\%
Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run) 0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control

Pr.03-11 Analog input Gain \((A V I)=111.1 \%\)
\(10 / 9=111.1 \%\)
Diagram 25
\[
\begin{array}{ll}
\text { Frequency } & \begin{array}{l}
\text { Pr.03-07-03-08 (Positive/Negative Bias Mode) } \\
\text { 0: No bias }
\end{array} \\
\begin{array}{l}
\text { 1: Lower than or equal bias } \\
\text { 2: Greater than or equal to bias } \\
\text { 3: The absolute value of the bias voltage } \\
\text { while serving as the center }
\end{array} \\
\text { 4: Bias serves as the center }
\end{array}
\]

\section*{Diagram 26}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Frequency} & Pr.03-07-03-08 (Positive/Negative Bias Mode) \\
\hline \multicolumn{3}{|r|}{60 Hz Pr.03-07-03-08 (Positive/Negative Bias Mode)} \\
\hline & & 1: Lower than or equal bias \\
\hline & & 2: Greater than or equal to bias \\
\hline & & \begin{tabular}{l}
3: The absolute value of the bias voltage while serving as the center \\
4: Bias serves as the center
\end{tabular} \\
\hline -V & & Pr.03-10 (Analog Frequency Command for Reverse Run) \\
\hline 10987654321 & 12345678910 & 0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals. \\
\hline & & \begin{tabular}{l}
1: Negative frequency is valid. \\
Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.
\end{tabular} \\
\hline
\end{tabular}

Diagram 27

Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Calculate the bias:
\(\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{X})} \quad X V=\frac{100}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%\)
= -11.1 \%

Calculate the gain:
Pr.03-11 \(=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%\)

\section*{Diagram 28}

0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Calculate the bias:
\(\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad X V=\frac{100}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%\)
= -11.1 \%

Calculate the gain:
Pr. \(03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%\)

\section*{Diagram 29}

Pr.03-07-03-08 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency = reverse run.
Direction can not be switched by digital keypad or external terminal control.

Calculate the bias:
\(\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad X V=\frac{100}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%\)
= -11.1 \%

Calculate the gain:
Pr.03-11 \(=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%\)

\section*{Diagram 30}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Frequency} & Pr.03-07-03-08 (Positive/Negative Bias Mode) \\
\hline \multirow[t]{4}{*}{\[
60 \mathrm{~Hz}
\]} & & 0: No bias \\
\hline & & 1: Lower than or equal bias \\
\hline & & 2: Greater than or equal to bias \\
\hline & & \begin{tabular}{l}
3: The absolute value of the bias voltage while serving as the center \\
4: Bias serves as the center
\end{tabular} \\
\hline & & Pr.03-10 (Analog Frequency Command for Reverse Run) \\
\hline -V10987654321 & 123456789 & 0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keyboard or external terminals. \\
\hline & & \begin{tabular}{l}
1: Negative frequency is valid. \\
Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control.
\end{tabular} \\
\hline
\end{tabular}

Diagram 31

Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency \(=\) reverse run.
Direction can not be switched by digital keypad or external terminal control.

Calculate the bias:
\(\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad X V=\frac{100}{-9}=-1.11 \mathrm{~V} \quad \therefore 03-03=\frac{-1.11}{10} \times 100 \%\)
Calculate the gain:
Pr.03-11 \(=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%\)

\section*{Diagram 32}

Pr.03-07-03-08 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keyboard or external terminals.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency \(=\) reverse run.
Direction can not be switched by digital keypad or external terminal control.

Calculate the bias:
\(\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad X \mathrm{~V}=\frac{100}{-9}=-1.11 \mathrm{~V} \quad \begin{aligned} \therefore 03-03 & =\frac{-1.11}{10} \times 100 \% \\ & =-11.1 \%\end{aligned}, ~\)
Calculate the gain:
Pr. \(03-11=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%\)

\section*{03-11 AVI Analog Input Gain \\ 03-12 ACI Analog Input Gain}

Default: 100.0
Settings -500.0-500.0\%
Use Pr.03-03-03-12 when the Frequency command source is the analog voltage or current signal.

\title{
03-15 AVI Analog Input Filter Time \\ 03-16 ACI Analog Input Filter Time
}

Default: 0.01
Settings \(0.00-20.00 \mathrm{sec}\).
\(\square\) Use these input delays to filter a noisy analog signal.
1 When the time constant setting is too large, the control is stable but the control response is slow. When the time constant setting is too small, the control response is faster but the control may be unstable. For optimal setting, adjust the setting based on the control stability or the control response.

\section*{03-18 Analog Input Addition Function}

Default: 0
Settings 0: Disable (AVI, ACI)
1: Enable (analog extension card not included)When Pr.03-18 = 1
Example: Pr.03-00 = Pr.03-01 = 1, frequency command = AVI +ACI
When Pr.03-18 = 0 and the analog input selection settings (Pr.03-00 and Pr.03-01) are the same, AVI has priority over ACI. In other words, when Pr.03-00 and Pr.03-01 are both set to 1 (Frequency command), the drive ignores the setting value from ACl but execute the frequency command according to the setting value from AVI.

Frequency

Fcmd \(=[(\) ay \(\pm\) bias \() \times\) gain \(] \times \frac{\text { Fmax }(01-00)}{10 \mathrm{~V} \text { or } 16 \mathrm{~mA} \text { or } 20 \mathrm{~mA}}\)
Fcmd: the corresponding frequency of 10 V or 20 mA
ay : 0~10V, \(4 \sim 20 \mathrm{~mA}, 0 \sim 20 \mathrm{~mA}\)
bias : Pr.03-03, Pr. 03-04
gain: Pr.03-11, Pr.03-12

\section*{03-19 Signal Loss Selection for the Analog Input 4-20 mA}

Default: 0

\section*{Settings 0: Disable \\ 1: Continue operation at the last frequency \\ 2: Decelerate to 0 Hz \\ 3: Stop immediately and display "ACE"}Determines the treatment when the \(4-20 \mathrm{~mA}\) signal is lost, when AClc (Pr.03-29 = 0).When Pr.03-29 \(\neq 0\), the voltage input to ACl terminal is \(0-10 \mathrm{~V}\) or \(0-20 \mathrm{~mA}\), and \(\mathrm{Pr} .03-19\) is invalid.

When the setting is 1 or 2 , the keypad displays the warning code "ANL". It keeps blinking until the ACl signal is recovered.When the motor drive stops, the warning condition does not continue to exist, so the warning disappears.

\section*{03-20 AFM Multi-function Output}

Default: 0
Settings 0-23
Function Chart
\begin{tabular}{|c|c|c|c|}
\hline Settings & Functions & \multicolumn{2}{|r|}{Descriptions} \\
\hline 0 & Output frequency (Hz) & \multicolumn{2}{|l|}{Maximum frequency Pr.01-00 is processed as 100\%.} \\
\hline 1 & Frequency command (Hz) & \multicolumn{2}{|l|}{Maximum frequency Pr.01-00 is processed as 100\%.} \\
\hline 2 & Motor speed (Hz) & \multicolumn{2}{|l|}{Maximum frequency Pr.01-00 is processed as 100\%.} \\
\hline 3 & Output current (rms) & \multicolumn{2}{|l|}{(\(2.5 \times\) rated current) is processed as 100\%.} \\
\hline 4 & Output voltage & \multicolumn{2}{|l|}{(\(2 \times\) rated voltage) is processed as \(100 \%\).} \\
\hline 5 & DC bus voltage & \multicolumn{2}{|l|}{\(450 \mathrm{~V}(900 \mathrm{~V})=100 \%\)} \\
\hline 6 & Power factor & \multicolumn{2}{|l|}{-1.000-1.000 = 100\%} \\
\hline 7 & Power & \multicolumn{2}{|l|}{(\(2 \times\) rated power) is processed as \(100 \%\).} \\
\hline 8 & Output torque & \multicolumn{2}{|l|}{Full load torque \(=100 \%\)} \\
\hline 9 & AVI & \multicolumn{2}{|l|}{\(0-10 \mathrm{~V}=0-100 \%\)} \\
\hline 10 & ACI & \multicolumn{2}{|l|}{\(4-20 \mathrm{~mA}=0-100 \%\)} \\
\hline 12 & Iq current command & \multicolumn{2}{|l|}{(\(2.5 \times\) rated current) is processed as \(100 \%\).} \\
\hline 13 & Iq feedback value & \multicolumn{2}{|l|}{(\(2.5 \times\) rated current) is processed as \(100 \%\).} \\
\hline 14 & Id current command & \multicolumn{2}{|l|}{(\(2.5 \times\) rated current) is processed as \(100 \%\).} \\
\hline 15 & Id feedback value & \multicolumn{2}{|l|}{(\(2.5 \times\) rated current) is processed as \(100 \%\).} \\
\hline 16 & Vq-axis voltage command & \multicolumn{2}{|l|}{\(250 \mathrm{~V}(500 \mathrm{~V})=100 \%\)} \\
\hline 17 & Vd-axis voltage command & \multicolumn{2}{|l|}{\(250 \mathrm{~V}(500 \mathrm{~V})=100 \%\)} \\
\hline 18 & Torque command & \multicolumn{2}{|l|}{Rated current of motor \(=100 \%\)} \\
\hline 19 & PG2 frequency command & \multicolumn{2}{|l|}{Maximum frequency Pr.01-00 is processed as 100\%.} \\
\hline \multirow{5}{*}{20} & \multirow{5}{*}{CANopen analog output} & \multicolumn{2}{|l|}{For CANopen communication analog output} \\
\hline & & Terminal & Corresponding address \\
\hline & & AFM1 & 2026-A1 \\
\hline & & AO10 & 2026-AB \\
\hline & & AO11 & 2026-AC \\
\hline \multirow{5}{*}{21} & \multirow{5}{*}{RS-485 analog output} & \multicolumn{2}{|l|}{For RS-485 (Modbus) analog output} \\
\hline & & Terminal & Corresponding address \\
\hline & & AFM1 & 26A0H \\
\hline & & AO10 & 26AAH \\
\hline & & AO11 & 26ABH \\
\hline \multirow{5}{*}{22} & \multirow{5}{*}{Communication card analog output} & \multicolumn{2}{|l|}{For Communication analog output (CMM-EIP02, CMM-PD02, CMM-DN02)} \\
\hline & & Terminal & Corresponding address \\
\hline & & AFM1 & 26A0H \\
\hline & & AO10 & 26AAH \\
\hline & & AO11 & 26ABH \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Settings & \multicolumn{1}{|c|}{ Functions } & \multicolumn{1}{c|}{ Descriptions } \\
\hline 23 & Constant voltage output & \begin{tabular}{l}
Pr.03-32 controls the voltage output level. \\
\(0-100 \%\) of Pr.03-32 corresponds to 0-10 V of AFM.
\end{tabular} \\
\hline
\end{tabular}

\section*{03-21 AFM Analog Output Gain}

Default: 100.0
Settings 0.0-500.0\%
Adjusts the voltage level outputted to the analog meter from the analog signal (Pr.03-20) output terminal AFM of the drive.

\section*{03-22 AFM Analog Output in REV Direction}

Default: 0
\(\begin{array}{ll}\text { Settings } & 0 \text { : Absolute value of output voltage } \\ & 1 \text { : Reverse output } 0 \mathrm{~V} \text {; forward output } 0-10 \mathrm{~V}\end{array}\)

Selections for the analog output direction

\section*{03-27 AFM Output Bias}

Default: 0.00
Settings -100.00-100.00\%
1 Example 1: AFM \(0-10 \mathrm{~V}\) is set to the output frequency, the output equation is \(10 \mathrm{~V} \times\) (output frequency / Pr.01-00) \(\times\) Pr.03-21 \(+10 \mathrm{~V} \times\) Pr.03-27
1 Example 2: AFM \(0-20 \mathrm{~mA}\) is set to the output frequency, the output equation is \(20 \mathrm{~mA} \times\) (output frequency / Pr.01-00) \(\times\) Pr.03-21 \(+20 \mathrm{~mA} \times\) Pr.03-27
[1] Example 3: AFM 4-20 mA is set to the output frequency, the output equation is \(4 \mathrm{~mA}+16 \mathrm{~mA} \times\) (output frequency \(/\) Pr.01-00) \(\times\) Pr. 03-21 \(+16 \mathrm{~mA} \times\) Pr.03-27
This parameter sets the corresponding voltage for the analog output 0 .

\section*{03-28 AVI Terminal Input Selection}

Default: 0
\[
\begin{array}{ll}
\text { Settings } & 0: 0-10 \mathrm{~V} \\
& 3:-10-10 \mathrm{~V}
\end{array}
\]
[1] When Pr. 03-28 \(=0\), Pr. 03-63-03-68 are valid.
[a] When Pr.03-28 = 3, Pr.03-69-03-74 are valid.

\section*{03-29 ACI Terminal Input Selection}

Default: 0
\[
\begin{array}{ll}
\text { Settings } & 0: 4-20 \mathrm{~mA} \\
& 1: 0-10 \mathrm{~V} \\
& \text { 2: } 0-20 \mathrm{~mA}
\end{array}
\]

ㄸ. When you change the input mode, verify that the external terminal switch position (ACI) is correct.
When you change the setting, proportion to the corresponding AVI and ACI will change to default.

\section*{03-30 PLC Analog Output Terminal Status}

Default: Read only
Settings Monitor the status of the PLC analog output terminals
bit 1: AFM
bit 2: AO10
bit 3: AO11

\begin{tabular}{l}
\(0=\mathrm{OFF}\) \\
\(1=\mathrm{ON}\) \\
\begin{tabular}{l}
NOTE \\
\(2^{3}=8\)
\end{tabular} \(2^{2}=4 \quad 2^{1}=2 \quad 2^{0}=1\) \\
\hline
\end{tabular}

Ead Example:
When Pr.03-30 displays 000Ah (hex) (that is, the value is 10 (decimal) and 1010 (binary)), it means that AFM and AO11 are used by PLC.

\section*{03-31 AFM Output Selection}

Default: 0
Settings 0: 0-10 V output
1: 0-20 mA output
2: 4-20 mA output
03-32 AFM DC Output Setting Level
Default: 0.00
Settings 0.00-100.00\%

03-35 AFM Output Filter Time
Default: 0.01
Settings \(0.00-20.00 \mathrm{sec}\).
03-39 VR Input Selection
Default: 1
Settings 0: Disable
1: Frequency command
VR is the abbreviation for Variable Resistor; it is the potentiometer of the keyboard panel KPMH-LC01.

03-44 Multi-function MO Output by AI Level Source
Default: 0
Settings 0: AVI
1: ACI
3: Extension card input terminal AI10
4: Extension card input terminal AI11

\section*{03-45 AI Upper Level 1}

Default: 50
Settings -100-100\%
03-46 AI Lower Level 2
Default: 10
Settings -100-100\%
(1) Multi-function output terminal 67 must work with Pr.03-44 to select input channels. When analog input level is higher than Pr.03-45, multi-function output acts; when analog input level is lower than Pr.03-46, multi-function output terminals stop outputting.When setting levels, AI upper level must be higher than AI lower level.

\section*{03-50 Analog Input Curve Selection}

Default: 0
Settings 0: Normal Curve
1: Three-point curve of AVI (\& AI10)
2: Three-point curve of ACI (\& AI11)
3: Three-point curve of AVI \& ACI (\& AI10 \& AI11) (Al10, Al11 are valid when expansion card is installed)

\section*{03-57 ACI Lowest Point}

Default: 4.00
Settings Pr.03-29 \(=1,0.00-10.00 \mathrm{~mA}\)
Pr.03-29 \(=1,0.00-20.00 \mathrm{~mA}\)
03-58 ACI Proportional Lowest Point
Default: 0.00
Settings 0.00-100.00\%

\section*{03-59 ACI Mid-point}
\[
\begin{array}{ll}
\text { Settings } & \text { Pr. } 03-29=1,0.00-10.00 \mathrm{~mA} \\
& \text { Pr. } 03-29 \neq 1,0.00-20.00 \mathrm{~mA}
\end{array}
\]

\section*{03-60 ACI Proportional Mid-point}

Default: 50.00
Settings 0.00-100.00\%

\section*{03-61 ACI Highest Point}

Default: 20.00
\[
\begin{array}{ll}
\text { Settings } & \text { Pr. } 03-29=1,0.00-10.00 \mathrm{~mA} \\
& \text { Pr. } 03-29 \neq 1,0.00-20.00 \mathrm{~mA}
\end{array}
\]

\section*{03-62 ACI Proportional Highest Point}

Default: 100.00
Settings 0.00-100.00\%
[1] When Pr.03-29 = 1, the ACl setting is \(0-10 \mathrm{~V}\) and the unit is voltage \((\mathrm{V})\).
When \(\operatorname{Pr} .03-29 \neq 1\), the ACl setting is \(0-20 \mathrm{~mA}\) or \(4-20 \mathrm{~mA}\) and the unit is current \((\mathrm{mA})\).When you set the analog input ACI to the Frequency command, 100\% corresponds to Fmax (Pr.01-00 Maximum Operation Frequency).
\(\mathbb{\square}\) The requirement for these three parameters (Pr.03-57, Pr.03-59 and Pr.03-61) is Pr.03-57 < Pr.03-59 < Pr.03-61. The values for three proportional points (Pr.03-58, Pr.03-60 and Pr.03-62) have no limits. Values between two points are calculated by a linear equation.The output \% becomes 0\% when the ACI input value is lower than lowest point setting. For example:
If Pr.03-57 = 2 mA ; Pr.03-58 = 10\%, then the output becomes \(0 \%\) when the AVI input is \(\leq 2 \mathrm{~mA}\).
If the ACl input swings between 2 mA and 2.1 mA , the drive's output frequency oscillates between 0\% and 10\%.

\section*{03-63 AVI Voltage Lowest Point}

Default: 0.00
Settings \(0.00-10.00 \mathrm{~V}\)

\section*{03-64 AVI Proportional Lowest Point}

Default: 0.00
Settings -100.00-100.00\%
03-65 AVI Voltage Mid-point
Default: 5.00
Settings \(\quad 0.00-10.00 \mathrm{~V}\)
03-66 AVI Proportional Mid-point
Default: 50.00
Settings -100.00-100.00\%

\section*{03-67 AVI Voltage Highest Point}

Default: 10.00
Settings \(\quad 0.00-10.00 \mathrm{~V}\)

\section*{03-68 AVI Proportional Highest Point}

Default: 100.00
Settings -100.00-100.00\%
[a] When you set the positive voltage AVI to the Frequency command, 100\% corresponds to Fmax (Pr.01-00 Maximum Operation Frequency) and the motor runs in the forward direction.
\(\llbracket \rrbracket\) The requirement for these three parameters (Pr.03-63, Pr.03-65 and Pr.03-67) is Pr.03-63 < Pr.03-65 < Pr.03-67. The values for three proportional points (Pr.03-64, Pr.03-66 and Pr.03-68) have no limits. Values between two points are calculated by a linear equation.The output \% becomes \(0 \%\) when the positive voltage AVI input value is lower than lowest point setting.

For example:
If Pr.03-63 = 1 V ; Pr.03-64 \(=10 \%\), then the output becomes \(0 \%\) when the AVI input is \(\leq 1 \mathrm{~V}\). If the AVI input swings between 1 V and 1.1 V , the drive's output frequency oscillates between \(0 \%\) and 10\%.

\section*{03-69 Negative AVI Voltage Lowest Point}

Default: 0.00
Settings \(0.00-10.00 \mathrm{~V}\)
(valid when Pr.03-28 sets as \(-10-10 \mathrm{~V}\))
03-70 Negative AVI Proportional Lowest Point
Default: 0.00
Settings -100.00-100.00\%
(valid when Pr.03-28 sets as -10-10 V)

\section*{03-71 Negative AVI Voltage Mid-point}

Default: -5.00
Settings \(0.00-10.00 \mathrm{~V}\)
(valid when Pr.03-28 sets as -10-10 V)

\section*{03-72 Negative AVI Proportional Mid-point}

Default: -50.00
Settings -100.00-100.00\%
(valid when Pr.03-28 sets as -10-10 V)

\section*{03-73 Negative AVI Voltage Highest Point}

Default: -10.00
Settings \(0.00-10.00 \mathrm{~V}\)
(valid when Pr.03-28 sets as -10-10 V)

\section*{03-74 Negative AVI Proportional Highest Point}

Default: -100.00
\begin{tabular}{ll}
Settings & \(-100.00-100.00 \%\) \\
& (valid when Pr.03-28 sets as \(-10-10 \mathrm{~V}\))
\end{tabular}Pr.03-69-Pr.03-74 are valid when Pr.03-28 sets as -10-10 V.When you set the negative voltage AVI to the Frequency command, \(-100 \%\) corresponds to Fmax (Pr.01-00 Maximum Operation Frequency) and the motor runs in the reverse direction.The requirement for these three parameters (Pr.03-69, Pr.03-71 and Pr.03-73) is Pr.03-69 < Pr.03-71 < Pr.03-73. The values for three proportional points (Pr.03-70, Pr.03-72 and Pr.03-74) have no limits. Values between two points are calculated by a linear equation.The output \% becomes \(0 \%\) when the negative AVI input value is lower than the lowest point setting. For example:

If Pr.03-69 = -1 V; Pr.03-70 = 10\%, then the output becomes \(0 \%\) when the AVI input is \(\geq-1 \mathrm{~V}\). If the AVI input swings between -1 V and -1.1 V , drive's output frequency oscillates between \(0 \%\) and \(10 \%\).
\begin{tabular}{|c|c|}
\hline 04-00 & Sp \\
\hline 04-01 & \(2^{\text {nd }}\) Step Speed Frequency \\
\hline 04-02 & \(3^{\text {rd }}\) Step Speed Frequency \\
\hline 04-03 & \(4^{\text {th }}\) Step Speed Frequency \\
\hline 04-04 & \(5^{\text {th }}\) Step Speed Frequency \\
\hline 04-05 & \(6^{\text {th }}\) Step Speed Frequency \\
\hline 04-06 & \(7^{\text {th }}\) Step Speed Frequency \\
\hline 04-07 & \(8^{\text {th }}\) Step Speed Frequency \\
\hline 04-08 & \(9^{\text {th }}\) Step Speed Frequency \\
\hline 04-09 & \(10^{\text {th }}\) Step Speed Frequency \\
\hline 04-10 & \(11^{\text {th }}\) Step Speed Frequency \\
\hline 04-11 & \(12^{\text {th }}\) Step Speed Frequency \\
\hline 04-12 & \(13^{\text {th }}\) Step Speed Frequency \\
\hline 04-13 & \(14^{\text {th }}\) Step Speed Frequency \\
\hline 04-14 & \(15^{\text {th }}\) Step Speed Frequen \\
\hline
\end{tabular}

Default: 0.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
[®] Use the multi-function input terminals (refer to settings 1-4 of Pr.02-01-02-07 and Pr.02-26-02-28 Multi-function Input Command) to select the multi-step speed command (the maximum is 15th step speed). Pr.04-00 to 04-14 sets the multi-step speed frequency as shown in the following diagram.
@ The external terminal/digital keypad / communication controls the RUN and STOP commands with Pr.00-21.
You can set each multi-step speed between \(0.00-599.00 \mathrm{~Hz}\) during operation.
[1] Explanation for the timing diagram of the multi-step speed and external terminals The related parameter settings are:
1. Pr.04-00-04-14: sets the \(1^{\text {st }}-15^{\text {th }}\) multi-step speed (to set the frequency of each step speed).
2. Pr.02-01-02-07 and Pr.02-26-02-28: sets the multi-function input terminals (multi-step speed command 1-4).
(1) Related parameters:
- Pr.01-22 JOG frequency setting
- Pr.02-01 multi-function input command 1 (MI1)
- Pr.02-02 multi-function input command 2 (MI2)
- Pr.02-03 multi-function input command 3 (MI3)
- Pr.02-04 multi-function input command 4 (MI4)

Settings 0-65535
You can combine the PLC buffer with the built-in PLC function for a variety of applications.

\section*{05 Motor Parameters}

In this parameter group, the following are abbreviations for different types of motors:
- IM: Induction motor
- PM: Permanent magnet synchronous AC motor
- IPM: Interior permanent magnet synchronous AC motor
- SPM: Surface permanent magnet synchronous AC motor
\(\wedge\) You can set this parameter during operation.

\section*{05-00 Motor Parameter Auto-tuning}

Default: 0
Settings 0: No function
1: Dynamic test for induction motor (IM)
2: Static test for induction motor (IM)
4: Dynamic test for PM synchronous motor magnetic pole
5: Rolling auto-tuning for PM (IPM / SPM) motor
12: FOC sensorless inertia estimation
13: High frequency stall test for PM synchronous motor

\section*{05-01 Full-load Current for Induction Motor 1 (A)}

Default: Depending on the model power
Settings 10-120 \% of the drive's rated current
Sets this value according to the rated current of the motor as indicated on the motor nameplate. The default is \(90 \%\) of the drive's rated current.

Example: The rated current for a \(7.5 \mathrm{HP}(5.5 \mathrm{~kW})\) motor is 25 A . The default is 22.5 A .
The setting range is \(2.5-30 \mathrm{~A} .(25 \times 10 \%=2.5 \mathrm{~A}\) and \(25 \times 120 \%=30 \mathrm{~A})\).

\section*{05-02 Rated Power for Induction Motor 1 (kW)}

Default: Depending on the model power
Settings 0.00-655.35 kW
Sets the rated power for motor 1 . The default is the drive's power value.

\section*{05-03 Rated Speed for Induction Motor 1 (rpm)}

Default: Depending on the motor's number of poles
Settings \(0-x x x x x\) rpm (Depending on the motor's number of poles) 1710 (60 Hz 4 poles); 1410 (50 Hz 4 poles)
Sets the rated speed for the motor as indicated on the motor nameplate.

\section*{05-04 Number of Poles for Induction Motor 1}

Default: 4
Settings 2-20Sets the number of poles for the motor (must be an even number).Set up Pr.01-01 and Pr.05-03 before setting up Pr.05-04 to make sure the motor operates normally.

\section*{05-05 No-load Current for Induction Motor 1 (A)}

Default: Depending on the model power
Settings \(0.00-\mathrm{Pr} .05-01\) default
[a] The default is \(40 \%\) of the motor's rated current.

\section*{05-06 Stator Resistance (Rs) for Induction Motor 1}

Default: Depending on the model power
Settings \(0.000-65.535 \Omega\)
05-07 Rotor Resistance (Rr) for Induction Motor 1
Default: 0.000
Settings \(0.000-65.535 \Omega\)
05-08 Magnetizing Inductance (Lm) for Induction Motor 1
Default: 0.0
Settings \(0.0-6553.5 \mathrm{mH}\)
05-09 Stator Inductance (Lx) for Induction Motor 1
Default: 0.0
Settings \(\quad 0.0-6553.5 \mathrm{mH}\)
05-13 Full-load Current for Induction Motor 2 (A)
Default: Depending on the model power
Settings 10-120\% of the drive's rated current
[1] Set this value according to the rated current of the motor as indicated on the motor nameplate.
The default is \(90 \%\) of the drive's rated current.
Example: The rated current for a \(7.5 \mathrm{HP}(5.5 \mathrm{~kW})\) motor is 25 A . The default is 22.5 A .
The setting range is \(2.5-30 \mathrm{~A} .(25 \times 10 \%=2.5 \mathrm{~A}\) and \(25 \times 120 \%=30 \mathrm{~A})\)
05-14 Rated Power for Induction Motor \(2(\mathrm{~kW})\)
Default: Depending on the model power
Settings \(\quad 0.00-655.35 \mathrm{~kW}\)
Sets the rated power for motor 2 . The default is the drive's power value.

\section*{05-15 Rated Speed for Induction Motor 2 (rpm)}

Default: Depending on the motor's number of poles

Settings \(0-x x x x x\) rpm (Depending on the motor's number of poles) 1710 (60 Hz 4 poles); 1410 (50 Hz 4 poles)Sets the rated speed for the motor as indicated on the motor nameplate.

\section*{05-16 Number of Poles for Induction Motor 2}

Default: 4
Settings 2-20
Sets the number of poles for the motor (must be an even number).
1 Set up Pr.01-35 and Pr.05-15 before setting up Pr.05-04 to make sure the motor operates normally.

\section*{05-17 No-load Current for Induction Motor 2 (A)}

Default: Depending on the model power
Settings \(\quad 0.00-\mathrm{Pr} .05-13\) default
The default is \(40 \%\) of the motor's rated current.

\section*{05-18 Stator Resistance (Rs) for Induction Motor 2}

Default: Depending on the model power
Settings \(0.000-65.535 \Omega\)

\section*{05-19 Rotor Resistance (Rr) for Induction Motor 2}

Default: 0.000
Settings \(0.000-65.535 \Omega\)
05-20 Magnetizing Inductance (Lm) for Induction Motor 2
Default: 0.0
Settings \(\quad 0.0-6553.5 \mathrm{mH}\)
05-21 Stator Inductance (Lx) for Induction Motor 2
Default: 0.0
Settings \(\quad 0.0-6553.5 \mathrm{mH}\)

\section*{05-22 Multi-motors (Induction) Selection}

Default: 1
Settings 1: Motor 1
2: Motor 2
3: Motor 3 (VF or SVC control mode only)
4: Motor 4 (VF or SVC control mode only)
Sets the motor operated by the AC motor drive. Multi-motors selection only supports single control mode. For example, when you set motor 1 as SVC control mode, the control mode of motors 2-4 are also set as SVC.

\section*{05-23 Frequency for Y-connection / \(\Delta\)-connection Switch for an Induction Motor} Default: 60.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)

\section*{05-24 Y-connection / \(\Delta\)-connection Switch for an Induction Motor}

Default: 0
Settings 0: Disable
1: Enable

\section*{05-25 Delay Time for Y-connection / \(\Delta\)-connection Switch for an Induction Motor}

Default: 0.200
Settings \(0.000-60.000 \mathrm{sec}\).
11 You can apply Pr.05-23-Pr.05-25 in a wide range of motors, and the motor coil executes the Y-connection / \(\Delta\)-connection switch as required. The wide range motors are related to the motor design. In general, the motor has higher torque with low speed Y -connection and has higher speed with high speed \(\Delta\)-connection
[1] Pr.05-24 enables and disables the switch of Y-connection / \(\Delta\)-connection.
\(\square\) When you set Pr.05-24 as 1, the drive uses the Pr.05-23 setting and current motor frequency, and switches the current motor to \(Y\)-connection or \(\Delta\)-connection. You can switch the relevant motor parameter settings simultaneously.
(1) Pr.05-25 sets the switch delay time of Y-connection / \(\Delta\)-connection.

1 When the output frequency reaches the Y-connection / \(\Delta\)-connection switch frequency, the drive delays according to Pr.05-25 before activating the multi-function output terminals.

\(\mathrm{Y}-\Delta\) connection switch: can be used for wide range motor
Y-connection for low speed: higher torque can be used for rigid tapping \(\Delta\)-connection for high speed: higher torque can be used for high-speed drilling

> \begin{tabular}{l|l} 05-26 & Accumulated Watt-second for a Motor in Low Word (W-sec.) \\ \hline 05-27 & Accumulated Watt-second for a Motor in High Word (W-sec.) \\ \hline 05-28 & Accumulated Watt-hour for a Motor (W-hour) \\ \hline 05-29 & Accumulated Watt-hour for a Motor in Low Word (kW-hour) \\ \hline 05-30 & Accumulated Watt-hour for a Motor in High Word (kW-hour) \end{tabular}

Default: 0.0
Settings Read only
[1] Pr.05-26-05-30 records the amount of power the motors consume. The accumulation begins when the drive is activated and the record is saved when the drive stops or turns OFF. The amount of consumed watts continues to accumulate when the drive is activated again. To clear the accumulation, set Pr.00-02 as 5 to return the accumulation record to 0 .
[] The accumulated total watts of the motor per second \(=\operatorname{Pr} .05-27 \times 65536+\operatorname{Pr} .05-26\) Example: when Pr.05-26 \(=2548.1\) and Pr. \(05-27=15.2\), the accumulated total watts of the motor per second \(=15.2 \times 65536+2548.1=996147.2+2548.1=998695.3\)
© The accumulated total kilowatts of the motor per hour \(=\) Pr. \(05-30 \times 65536+\) Pr. 05-29
Example: when Pr. \(05-29=3361.4\) and Pr. \(05-30=11.2\), the accumulated total kilowatts of the motor per hour \(=11.2 \times 65536+3361.4=734003.2+3361.4=737364.6\)

\section*{05-31 Accumulated Motor Operation Time (Min.)}

Default: 0
Settings 0-1439
05-32 Accumulated Motor Operation Time (Day)
Default: 0
Settings 0-65535
Use Pr.05-31 and Pr.05-32 to record the motor operation time. To clear the operation time, set Pr.05-31 and Pr.05-32 as 00. An operation time shorter than 60 seconds is not recorded.
05-33 Induction Motor (IM) or Permanent Magnet Synchronous AC Motor (PM) SelectionDefault: 0Settings 0: Induction Motor1: SPM
2: IPM
05-34 Full-load Current for a Permanent Magnet Synchronous AC Motor
Default: Depending on the model power
Settings 0-120\% of the drive's rated current
05-35 Rated Power for a Permanent Magnet Synchronous AC MotorDefault: Depending on themotor power
Settings \(0.00-655.35 \mathrm{~kW}\)
Sets the rated power for the permanent magnet synchronous motor. The default is the drive's power value.
05-36 Rated Speed for a Permanent Magnet Synchronous MotorDefault: 2000Settings 0-65535 rpm
05-37 Number of Poles for a Permanent Magnet Synchronous MotorDefault: 10
Settings 0-65535
05-39 Stator Resistance for a Permanent Magnet Synchronous Motor
Default: 0.000
Settings 0.000-65.535 \(\Omega\)
05-40 Permanent Magnet Synchronous AC Motor LdDefault: 0.00Settings \(\quad 0.00-655.35 \mathrm{mH}\)
05-41 Permanent Magnet Synchronous AC Motor LqDefault: 0.00
Settings \(\quad 0.00-655.35 \mathrm{mH}\)
05-42 PG Offset Angle for a Permanent Magnet Synchronous MotorDefault: 0
Settings \(0.0-360.0^{\circ}\)
When you set Pr.05-00 as 4, the drive detects the offset angle and writes it into Pr.05-42.

\section*{05-43 Ke parameter for a Permanent Magnet Synchronous Motor \\ Default: 0}
Settings 0-65535 V/krpm

\section*{05-64 Full-load Current for Induction Motor 3 (A)}

Default: Depending on the model power

Settings 10-120\% of the drive's rated current
Set this value according to the rated current of the motor as indicated on the motor nameplate. The default is \(90 \%\) of the drive's rated current.

Example: The rated current for a \(7.5 \mathrm{HP}(5.5 \mathrm{~kW})\) motor is 25 A . The default is 22.5 A .
The setting range is \(2.5-30 \mathrm{~A} .(25 \times 10 \%=2.5 \mathrm{~A}\) and \(25 \times 120 \%=30 \mathrm{~A})\)

\section*{05-65 Rated Power for Induction Motor 3 (kW)}

Default: Depending on the model power
Settings \(0.00-655.35 \mathrm{~kW}\)
Sets the rated power for motor 3 . The default is the drive's power value.

\section*{05-66 Rated Speed for Induction Motor 3 (rpm)}

Default: Depending on the motor's number of poles

Settings \(0-x x x x x\) rpm (Depending on the motor's number of poles) 1710 (60 Hz 4 poles); 1410 (50 Hz 4 poles)
Sets the rated speed for the motor as indicated on the motor nameplate.

\section*{05-67 Number of Poles for Induction Motor 3}

Default: 4
Settings 2-20Sets the number of poles for the motor (must be an even number).Set up Pr.01-54 and Pr.05-66 before setting up Pr.05-67 to make sure the motor operates normally.

\section*{05-68 No-load Current for Induction Motor 3 (A)}

Default: Depending on the model power
Settings 0.00-Pr.05-64 default
The default is \(40 \%\) of the motor's rated current.

\section*{05-69 Stator Resistance (Rs) for Induction Motor 3}

Default: Depending on the model power

Settings \(0.000-65.535 \Omega\)

\section*{05-70 Full-load Current for Induction Motor 4 (A)}

Default: Depending on the model power

Settings 10-120\% of the drive's rated current
Set this value according to the rated current of the motor as indicated on the motor nameplate. The default is \(90 \%\) of the drive's rated current.

Example: The rated current for a \(7.5 \mathrm{HP}(5.5 \mathrm{~kW})\) motor is 25 A . The default is 22.5 A .
The setting range is \(2.5-30 \mathrm{~A} .(25 \times 10 \%=2.5 \mathrm{~A}\) and \(25 \times 120 \%=30 \mathrm{~A})\)

\section*{05-71 Rated Power for Induction Motor 4 (kW)}

Default: Depending on the model power
Settings 0.00-655.35 kW
Sets the rated power for motor4. The default is the drive's power value.

\section*{05-72 Rated Speed for Induction Motor 4 (rpm)}

Default: Depending on the motor's number of poles
Settings \(0-x x x x x\) rpm (Depending on the motor's number of poles)
1710 (60 Hz 4 poles); 1410 (50 Hz 4 poles)
Sets the rated speed for the motor as indicated on the motor nameplate.

\section*{05-73 Number of Poles for Induction Motor 4}
\[
\text { Default: } 4
\]

Settings 2-20Sets the number of poles for the motor (must be an even number).Set up Pr.01-63 and Pr.05-72 before setting up Pr.05-73 to make sure the motor operates normally.

\section*{05-74 No-load Current for Induction Motor 4 (A)}

Default: Depending on the model power

Settings 0.00-Pr.05-64 default
The default is \(40 \%\) of the motor's rated current.

\section*{05-75 Stator Resistance (Rs) for Induction Motor 4}

Default: Depending on the model power

Settings \(0.000-65.535 \Omega\)

\section*{06 Protection Parameters (1)}

You can set this parameter during operation.

\section*{06-00 Low Voltage Level}

Default: 180.0 / 360.0
\[
\begin{array}{cl}
\text { Settings } & 115 \mathrm{~V} / 230 \mathrm{~V} \text { models: } 150.0-220.0 \mathrm{~V} \mathrm{DC} \\
& 460 \mathrm{~V} \text { models: } 300.0-440.0 \mathrm{~V} \mathrm{DC}
\end{array}
\]
[1] Sets the Low Voltage (Lv) level. When the DC bus voltage is lower than Pr.06-00, the drive stops output and the motor free runs to a stop.
[1] If the Lv fault is triggered during operation, the drive stops output and the motor free runs to a stop. There are three Lv faults, LvA (Lv during acceleration), Lvd (Lv during deceleration), and Lvn (Lv in constant speed) that are triggered according to the status of acceleration or deceleration. You must press RESET to clear the LV fault. The drive automatically restarts if you set to restart after momentary power loss (refer to Pr.07-06 Restart after Momentary Power Loss and Pr.07-07 Allowed Power Loss Duration for details).
(1)] If the Lv fault is triggered when the drive is in STOP status, the drive displays LvS (Lv during stop), which is not recorded, and the drive restarts automatically when the input voltage is higher than the Lv level of 30 V (230 V models) or 60 V (460 V models).

\section*{06-01 Over-voltage Stall Prevention}

Default: 380.0 / 760.0
\begin{tabular}{ll}
Settings & \(0:\) Disabled \\
& \(115 \mathrm{~V} / 230 \mathrm{~V}\) models: \(0.0-390.0 \mathrm{~V}_{\mathrm{DC}}\) \\
& 460 V models: \(0.0-780.0 \mathrm{~V}_{\mathrm{DC}}\)
\end{tabular}
(1) Setting Pr.06-01 to 0.0 disables the over-voltage stall prevention function (connected with braking unit or braking resistor). Use this setting when braking units or resistors are connected to the drive.
[1] Setting Pr.06-01 to a value > 0 enables the over-voltage stall prevention. This setting refers to the power supply system and loading. If the setting is too low, then over-voltage stall prevention is easily activated, which may increase deceleration time.
[1] When setting value exceeds the OV level (as shown in the table below), the OV stall function is deemed to be disabled.
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Voltage } & \multicolumn{2}{|c|}{ OV Stall } & OV \\
\cline { 2 - 4 } & Default & Setting Range & Default (Read only) \\
\hline 230 V models & \(380 \mathrm{~V}_{\mathrm{DC}}\) & \(0.0 \sim 390.0 \mathrm{~V}_{\mathrm{DC}}\) & \(410 \mathrm{~V}_{\mathrm{DC}}\) \\
\hline 460 V models & \(760 \mathrm{~V}_{\mathrm{DC}}\) & \(0.0 \sim 780.0 \mathrm{~V}_{\mathrm{DC}}\) & \(820 \mathrm{~V}_{\mathrm{DC}}\) \\
\hline
\end{tabular}

Related parameters:
- Pr.01-13, Pr.01-15, Pr.01-17, Pr.01-19 Deceleration Time 1-4
- Pr.02-13 Multi-function Output 1 (Relay 1)
- Pr.02-16-Pr.02-17 Multi-function Output 2-3 (MO1, 2)
- Pr.06-02 Selection for Over-voltage Stall Prevention

\section*{06-02 Selection for Over-voltage Stall Prevention}

Default: 0
Settings 0: Traditional over-voltage stall prevention
1: Smart over-voltage stall prevention
2: Traditional over-voltage and smart over-current stall prevention
3: Smart over-voltage and smart over-current stall prevention
\(\square\) A comparison between traditional stall prevention and smart stall prevention:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Type} & \multicolumn{3}{|c|}{Over-voltage} & \multicolumn{3}{|c|}{Over-current} \\
\hline & Description & Action & Parameter & Description & Action & Parameter \\
\hline \multirow[t]{2}{*}{Traditional} & \multirow[t]{2}{*}{Frequency maintains during deceleration} & \multirow[b]{2}{*}{Deceleration stops} & \multirow[t]{2}{*}{Pr.06-01} & Frequency maintains during acceleration & Acceleration stops & Pr.06-03 \\
\hline & & & & Frequency decreases at constant speed & Frequency gradually decreases & Pr.06-04 \\
\hline \multirow[t]{2}{*}{Smart} & \multirow[t]{2}{*}{Frequency increases during acceleration / deceleration / constant speed} & \multirow[t]{2}{*}{Frequency gradually increases} & \multirow[t]{2}{*}{Pr.06-01} & Frequency decreases during acceleration / deceleration & Frequency gradually decreases & Pr.06-03 \\
\hline & & & & Frequency decreases at constant speed & Frequency gradually decreases & Pr.06-04 \\
\hline
\end{tabular}
[1] Pr.06-02 (Selection for stall prevention) can be used with Pr.01-49 (Regenerative energy restriction control method), but Pr.06-02 cannot work with Pr.01-44 (Auto-acceleration and autodeceleration setting).
When Pr.06-02 or Pr.01-49 is enabled (setting value \(>\) 0), Pr.01-44 (Auto-acceleration and autodeceleration setting) automatically disables (setting value \(=0\)) and cannot be set; when Pr.01-44 is enabled (setting value >0), Pr.06-02 and Pr.01-49 automatically disable and cannot be set.If you use smart over-voltage or smart over-current stall prevention for industries that require fast response, you can decrease the deceleration time when needed.

When using smart over-voltage stall prevention, the drive decelerates to stop with the fastest deceleration time according to different working condition, rather than the first to fourth deceleration time (Pr. Pr.01-13, Pr.01-15, Pr.01-17, Pr.01-19).
凹. For 220V / 440V 160 kW models and above, the default for Pr.06-02 is automatically set to 1 (Smart over-voltage and traditional over-current stall prevention). If you need to set the deceleration time with Pr. Pr.01-13, Pr.01-15, Pr.01-17, Pr.01-19, set Pr.06-02 \(=0\).
[a] Related parameters:
Pr.01-12-01-19 Acceleration / Deceleration time 1-4
Pr.02-13 Multi-function output (Relay 1)

Pr.02-16-Pr.02-17 Multi-function Output (MO1, 2)
Pr.06-01 Over-voltage stall prevention
Pr.06-03 Over-current stall prevention during acceleration
Pr.06-04 Over-current stall prevention during operation
Pr.06-05 Acceleration / deceleration time selection for stall prevention at constant speed

\section*{Traditional over-voltage stall prevention}

1 U Used for uncertain load inertia. When it stops under normal load, the over-voltage does not occur during deceleration and fulfills the deceleration time setting. However, load regenerative inertia may occasionally increase and does not trip due to over-voltage when decelerating to stop. In this case, the drive automatically increases the deceleration time until it stops.
1 Because of the motor load inertia, the motor may exceed the synchronous speed when the drive decelerates; in this case, the motor becomes generator. If the motor load inertia is larger, or the setting for drive's decelerating time is too small, the motor regenerates energy to the drive, and makes the DC bus voltage increase to the maximum allowable value. Thus, when traditional overvoltage stall prevention is enabled, the drive does not decelerate further and maintains the output frequency until the voltage drops below the setting value again.
1 When the over-voltage stall prevention is enabled, the drive deceleration time is larger than the setting time.
1 When there is a problem with the deceleration time, this function is disabled. See below for solution:
1. Increase the deceleration time properly.
2. Install a brake resistor (refer to Section 7-1 Brake Resistors and Brake Units Selection Chart for details) to dissipate the heat, that is, the electrical energy regenerating from the motor.

\section*{Smart over-voltage stall prevention}

Ilal Adopts closed-loop control and takes the setting for Pr.06-01 over-voltage stall prevention as target command during acceleration, deceleration and constant speed. When the DC bus voltage is higher than the stall prevention level, the controller increases the output frequency gradually according to closed-loop response until the DC bus voltage drops below the stall prevention level, and returns to target frequency based on the previous setting for deceleration time when the DC bus voltage is lower than the stall prevention level. If the DC bus voltage is still higher than the stall prevention level during the adjustment, the output frequency increases to the maximum operation frequency (Pr.01-00).

\section*{Traditional over-current stall prevention}

When the output current exceeds the over-current stall prevention level (Pr.06-03) during acceleration, the output frequency stops accelerating. The output frequency continues to accelerate when the output current drops below the stall prevention level to protect the drive.
\(\llbracket\) When the output current exceeds the over-current stall prevention during operation (Pr.06-04), the output frequency decreases according to the setting for acceleration / deceleration time selection for over-current stall prevention at constant speed (Pr.06-05). When the output current drops below the stall prevention level, the output frequency accelerates to the target frequency according to its previous set acceleration time.

\section*{Smart over-current stall prevention}

1 Adopts closed-loop control. It takes the setting for Pr.06-03 over-current stall prevention during acceleration as target command during acceleration and deceleration, and takes Pr.06-04 overcurrent stall prevention during operation as target command at constant speed. When the output current exceeds the stall prevention level, the controller decreases the output frequency gradually according to the closed-loop response until the current drops below the stall prevention level, and returns to target frequency based on the previous setting when the current is lower than the stall prevention level. If the output current is still higher than the stall prevention level during the adjustment, the output frequency decreases to the minimum output frequency at 0.5 Hz .

\section*{06-03 Over-current Stall Prevention during Acceleration}

Default: 120 / 180
\[
\begin{aligned}
\text { Settings } & \text { Normal duty: } 0-150 \%(100 \% \text { corresponds to the rated current of the drive) } \\
& \text { Heavy duty: } 0-200 \% \text { (} 100 \% \text { corresponds to the rated current of the drive })
\end{aligned}
\]

1 If the motor load is too large or the drive's acceleration time is too short, the output current of the drive may be too high during acceleration, and it may cause motor damage or trigger protection functions (OL or OC). Use this parameter to prevent these situations.
1 During acceleration, the output current of the drive may increase abruptly and exceed the setting value of Pr.06-03. In this case, the drive stops accelerating and keeps the output frequency constant, and then continues to accelerate until the output current decreases.

Refer to Pr.06-16 for the stall level in flux weakening region. The protection curve:

1 When you enable the over-current stall prevention, the drive's acceleration time is longer than the setting.When the over-current stall prevention occurs because the motor capacity is too small or operates in the default, decrease the Pr.06-03 setting value.
1 When you encounter any problem with the acceleration time, refer to the following guides for troubleshooting.
1. Increase the deceleration time to a suitable value.
2. Set Pr.01-44 Auto Acceleration / Deceleration Setting to 1, 3 or 4 (auto-acceleration)
[1] Related parameters:
- Pr.01-12, 01-14, 01-16, 01-18 Acceleration Time 1-4)
- Pr.01-44 Auto Acceleration / Deceleration Setting
- Pr.02-13 Multi-function Output 1 (Relay 1)
- Pr.02-16-02-17 Multi-function Output 2-3 (MO1, 2)

\section*{06-04 Over-current Stall Prevention during Operation}

Default: 120 / 180
Settings Normal duty: 0-150\% (100\% corresponds to the rated current of the drive) Heavy duty: \(0-200 \%\) (\(100 \%\) corresponds to the rated current of the drive)

Ill This is a protection for the drive to decrease output frequency automatically when the motor overloads abruptly during constant motor operation.If the output current exceeds the setting value for Pr.06-04 when the drive is operating, the drive decreases output frequency (according to Pr.06-05) to prevent the motor from stalling. The lower limit for the over-current stall prevention is determined by the maximum value among 0.5 Hz , Pr.01-07 and Pr.01-11.If the output current is lower than the setting value for Pr.06-04, the drive accelerates (according to Pr.06-05) again to the setting frequency.

Acceleration / Deceleration Time Selection for Stall Prevention at Constant Speed

Default: 0
Settings 0: By current acceleration / deceleration time
1: By the \(1^{\text {st }}\) acceleration / deceleration time
2: By the \(2^{\text {nd }}\) acceleration / deceleration time
3: By the \(3^{\text {rd }}\) acceleration / deceleration time
4: By the \(4^{\text {th }}\) acceleration/deceleration time
5: By auto-acceleration / auto-deceleration
Sets the acceleration / deceleration time selection when stall prevention occurs at constant speed.

\section*{06-06 Over-torque Detection Selection (Motor 1)}

\section*{Default: 0}

Settings 0: No function
1: Continue operation after over-torque detection during constant speed operation
2: Stop after over-torque detection during constant speed operation
3: Continue operation after over-torque detection during RUN
4: Stop after over-torque detection during RUN

\section*{06-09 Over-torque Detection Selection (Motor 2)}

Default: 0
Settings 0: No function
1: Continue operation after over-torque detection during constant speed operation

2: Stop after over-torque detection during constant speed operation
3: Continue operation after over-torque detection during RUN
4: Stop after over-torque detection during RUN
When you set Pr.06-06 and Pr.06-09 to 1 or 3, a warning message displays but there is no error record. When you set Pr.06-06 and Pr.06-09 to 2 or 4, a warning message displays and there is an error record.

\section*{06-07 Over-torque Detection Level (Motor 1)}

Default: 120
Settings 10-250\% (100\% corresponds to the rated current of the drive)

\section*{06-08 Over-torque Detection Time (Motor 1)}

Default: 0.1
Settings \(0.1-60.0 \mathrm{sec}\).
06-10 Over-torque Detection Level (Motor 2)
Default: 120
Settings \(10-250 \%\) (\(100 \%\) corresponds to the rated current of the drive)

\section*{06-11 Over-torque Detection Time (Motor 2)}

Default: 0.1
Settings \(0.1-60.0 \mathrm{sec}\).When the output current exceeds the over-torque detection level (Pr.06-07 or Pr.06-10) and also exceeds the over-torque detection time (Pr.06-08 or Pr.06-11), the over-torque detection follows the setting of Pr.06-06 and Pr.06-09.When you set Pr.06-06 or Pr.06-09 to 1 or 3 , an ot 1 / ot2 warning displays while the drive keeps running. The warning remains on until the output current is smaller than \(5 \%\) of the over-torque detection level.

[1] When you set Pr.06-06 or Pr.06-09 to 2 or 4 , an ot 1 / ot2 warning displays and the drive stops running after over-torque detection. The drive keeps running after you manually reset it.

\section*{06-12 Current Limit}

Default: 150
Settings \(0-250 \%\) (\(100 \%\) corresponds to the rated current of the drive)
Sets the maximum output current of the drive. Use Pr.11-17-Pr.11-20 to set the drive's output current limit.

\title{
06-13 Electronic Thermal Relay Selection 1 (Motor 1) \\ 06-27 Electronic Thermal Relay Selection 2 (Motor 2)
}

Default: 2
\[
\begin{array}{ll}
\text { Settings } & 0: \text { Inverter motor (with external forced cooling) } \\
& 1: \text { Standard motor (motor with fan on the shaft) } \\
& 2: \text { Disable }
\end{array}
\]

Prevents self-cooled motor from overheating under low speed. Use an electronic thermal relay to limit the drive's output power.

Setting the parameter to 0 is suitable for an inverter motor (motor fan using an independent power supply). For this kind of motor, there is no significant correlation between cooling capacity and motor speed. Therefore, the action of electronic thermal relays remains stable in low speed to ensure the load capability of the motor in low speed.

1 Setting the parameter to 1 is suitable for standard motor (motor fan is fixed on the rotor shaft). For this kind of motor, the cooling capacity is lower in low speed; therefore, the action of an electronic thermal relay reduces the action time to ensure the life of motor.
10 When the power is cycled frequently, if the power is switched OFF, the electronic thermal relay protection is reset; therefore, even setting the parameter to 0 or 1 may not protect the motor well. If there are several motors connected to one drive, install an electronic thermal relay in each motor.

\section*{06-14 Electronic Thermal Relay Action Time 1 (Motor 1) \\ 06-28 Electronic Thermal Relay Action Time 2 (Motor 2)}

Default: 60.0
Settings \(\quad 30.0-600.0 \mathrm{sec}\).
Set the parameter to \(150 \%\) of motor rated current and use with the setting of Pr.06-14 and 06-28 to prevent motor damage due to overheating. When it reaches the setting, the drive displays "EoL1 / EoL2", and the motor free runs to stop.
Use this parameter to set the action time of the electronic thermal relay. It works based on the I 2 t characteristic curve of electronic thermal relay, the output frequency and current of the drive, and the operation time to prevent the motor from overheating.

[1] The action of the electronic thermal relay depends on the settings for Pr.06-13 and Pr.06-27.
1. Pr. 06-13 or Pr.06-27 set to 0 (using inverter motor):

When the output current of the drive is higher than \(150 \%\) of motor rated current (refer to the motor cooling curve with independent fan), the drive starts to count the time. The electronic thermal relay acts when the accumulated time exceeds Pr.06-14 or Pr.06-28.
2. Pr.06-13 or Pr.06-27 set to 1 (using standard motor):

When the output current of the drive is higher than \(150 \%\) of the motor rated current (refer to the motor cooling curve with shaft-fixed fan), the drive starts to count the time. The electronic thermal relay acts when the accumulated time exceeds Pr.06-14 or Pr.06-28.
1 The actual electronic thermal relay action time adjusts according to the drive output current (shown as the motor loading rate \%). The action time is short when the current is high, and the action time is long when the current is low. Refer to the following chart: (The motor cooling curve with shaft-fixed fan and motor cooling curve with independent fan \(\mathrm{F}=50 \mathrm{~Hz}\) are the same one.)

Operation time

\section*{06-15 Temperature Level Ove-rheat (OH) Warning}

Default: Depending on the model power
Settings \(\quad 0.0-110.0^{\circ} \mathrm{C}\)
Sets the drive's internal IGBT overheat warning level. When the temperature is higher than Pr.06-15 setting, the oH1 fault displays and the warning remains but it does not affect the drive operation.
Use this parameter to check the motor overheat in advance in order to take precautionary measures to decrease the temperature and maintain the motor's normal operation.If you set the temperature \(5^{\circ} \mathrm{C}\) higher than the maximum setting value for Pr. \(06-15\), IGBT overheating occurs and the drive stops. Refer to Chapter 14 oH 1 fault descriptions for details.

\section*{06-16 \\ Stall Prevention Limit Level \\ (Weak Magnetic Area Current Stall Prevention Level)}

Default: 100
Settings 0-100\% (Refer to Pr.06-03, Pr.06-04)
\(\lfloor\) This parameter only works in VF, VFPG, and SVC control modes.
ded the over-current stall prevention level when the motor's operation frequency is larger than Pr.01-01 (base frequency).
Example: When Pr.06-03 = 150\%, Pr.06-04 = 100\% and Pr.06-16 = 80\%.
When the motor's operation frequency is larger than Pr.01-01 (Motor 1 rated / base frequency), the lowest level of over-current stall prevention during acceleration is:
Pr.06-03 \(\times\) Pr. \(06-16=150 \times 80 \%=120 \%\). (Refer to Pr.06-03 diagram for the protection curve)

\author{
06-17 Fault Record 1 \\ 06-18 Fault Record 2 \\ 06-19 Fault Record 3 \\ 06-20 Fault Record 4 \\ 06-21 Fault Record 5 \\ 06-22 Fault Record 6
}

Default: 0
Display 0: No fault record
1: Over-current during acceleration (ocA)
2: Over-current during deceleration (ocd)
3: Over-current during steady operation (ocn)
4: Ground fault (GFF)
5: IGBT short circuit between upper bridge and lower bridge (occ)
6: Over-current at stop (ocS)
7: Over-voltage during acceleration (ovA)
8: Over-voltage during deceleration (ovd)
9: Over-voltage at constant speed (ovn)
10: Over-voltage at stop (ovS)
11: Low-voltage during acceleration (LvA)
12: Low-voltage during deceleration (Lvd)
13: Low-voltage at constant speed (Lvn)
14: Low-voltage at stop (LvS)
15: Phase loss protection (orP)
16: IGBT overheating (oH 1)
17: Heatsink overheating (OH 2)
18: IGBT temperature detection failure (tH1o)
19: Capacitor hardware error (tH2o)
21: Drive over-load (oL)
22: Electronic thermal relay protection 1 (EoL1)
23: Electronic thermal relay protection 2 (EoL2)
24: Motor overheating (PTC / PT100) (oH3)
26: Over-torque 1 (ot1)
27: Over-torque 2 (ot2)
28: Under current (uC)
29: Limit error (LiT)
31: EEPROM read error (cF2)
33: U-phase error (cd1)
34: V-phase error (cd2)
35: W-phase error (cd3)
36: cc (current clamp) hardware failure (Hd 0)
37: oc (over-current) hardware failure (Hd1)

40: Auto-tuning error (AUE)
41: PID loss ACI (AFE)
42: PG feedback error (PGF1)
43: PG feedback loss (PGF2)
44: PG feedback stall (PGF3)
45: PG slip error (PGF4)
48: ACl loss (ACE)
49: External fault (EF)
50: Emergency stop (EF1)
51: External base block (bb)
52: Enter wrong password three times and locked (Pcod)
54: Illegal command (CE1)
55: Illegal data address (CE2)
56: Illegal data value (CE3)
57: Data is written to read-only address (CE4)
58: Modbus transmission time-out (CE10)
61: Y-connection / \(\Delta\)-connection switch error (ydc)
62: Deceleration energy backup error (dEb)
63: Over-slip (oSL)
65: Hardware error of PG card (PGF5)
72: STO loss (STL1)
76: Safe torque off (STo)
77: STO loss 2 (STL2)
78: STO loss 3 (STL3)
79: U-phase Over-current before run (Aoc)
80: V-phase Over-current before run (boc)
81: W-phase Over-current before run (coc)
82: U-phase output phase loss (oPL1)
83: V-phase output phase loss (oPL2)
84: W-phase output phase loss (oPL3)
87: Low frequency overload protection (oL3)
89: Rotor position detection error (roPd)
101: CANopen guarding error (CGdE)
102: CANopen heartbeat error (CHbE)
104: CANopen bus off error (CbFE)
105: CANopen index error (CidE)
106: CANopen slave station setting error (CAdE)
107: CANopen memory error(CFrE)
111: InrCOM time-out error (ictE)
121: Internal communication error (CP20)
123: Internal communication error (CP22)
124: Internal communication error (CP30)

126: Internal communication error (CP32)
127: Firmware version error (CP33)
128: Over-torque 3 (ot3)
129: Over-torque 4 (ot4)
134: Electronic thermal relay 3 protection (EoL3)
135: Electronic thermal relay 4 protection (EoL4)
140: oc hardware error (Hd6)
141: GFF occurs before run (b4GFF)
142: Auto-tuning error 1 (DC test stage) (AUE1)
143: Auto-tuning error 2 (High frequency test stage) (AUE2)
144: Auto-tuning error 3 (Rotary test stage) (AUE3)
1 When the fault occurs and forces stopping, the fault is recorded in this parameter.
1 During stop with low voltage Lv (LvS warning), there is no error record. During operation with mid-low voltage Lv (LvA, Lvd, Lvn error), there is a record.
\(\mathbb{1}\) When dEb function is valid and enabled, the drive executes dEb and records fault code 62 to Pr.06-17-Pr.06-22 and Pr.14-70-Pr.14-73 simultaneously.

\section*{06-23 Fault Output Option 1 \\ 06-24 Fault Output Option 2 \\ 06-25 Fault Output Option 3 \\ 06-26 Fault Output Option 4}

Default: 0
Settings 0-65535 (refer to bit table for fault code)
\(\mathbb{\square} \mathbb{4}\) Use these parameters with multi-function output terminal (set to 35-38) for the specific requirement. When the fault occurs, the corresponding terminals activate. Convert the binary value to decimal value before you enter the value for Pr.06-23-Pr.06-26.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Fault Code } & bit 0 & bit 1 & bit 2 & bit 3 & bit 4 & bit 5 & bit 6 \\
\hline & current & Volt. & OL & SYS & FBK & EXI & CE \\
\hline 0: No fault record & & & & & & & \\
\hline 1: Over-current during acceleration (ocA) & \(\bullet\) & & & & & & \\
\hline 2: Over-current during deceleration (ocd) & \(\bullet\) & & & & & & \\
\hline 3: Over-current during constant speed (ocn) & \(\bullet\) & & & & & & \\
\hline 4: Ground fault (GFF) & \(\bullet\) & & & & & & \\
\hline \begin{tabular}{l}
5: IGBT short circuit between upper bridge and \\
lower bridge (occ)
\end{tabular} & \(\bullet\) & & & & & & \\
\hline 6: Over-current at stop (ocS) & \(\bullet\) & & & & & & \\
\hline 7: Over-voltage during acceleration (ovA) & & \(\bullet\) & & & & & \\
\hline 8: Over-voltage during deceleration (ovd) & & \(\bullet\) & & & & & \\
\hline 9: Over-voltage during constant speed (ovn) & & \(\bullet\) & & & & & \\
\hline 10: Over-voltage at stop (ovS) & & \(\bullet\) & & & & & \\
\hline 11: Low-voltage during acceleration (LvA) & & \(\bullet\) & & & & & \\
\hline 12: Low-voltage during deceleration (Lvd) & & \(\bullet\) & & & & & \\
\hline 13: Low-voltage during constant speed (Lvn) & & \(\bullet\) & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Fault Code} & bit 0 & bit 1 & bit 2 & bit 3 & bit 4 & bit 5 & bit 6 \\
\hline & current & Volt. & OL & SYS & FBK & EXI & CE \\
\hline 14: Low-voltage at stop (LvS) & & \(\bullet\) & & & & & \\
\hline 15: Phase loss protection (orP) & & \(\bullet\) & & & & & \\
\hline 16: IGBT overheating (oH 1) & & & \(\bullet\) & & & & \\
\hline 17: Heatsink overheating (OH 2) & & & \(\bullet\) & & & & \\
\hline 18: IGBT temperature detection failure (tH 1 o) & & & \(\bullet\) & & & & \\
\hline 21: Drive over-load (oL) & & & \(\bullet\) & & & & \\
\hline 22: Electronic thermal relay protection 1 (EoL1) & & & \(\bullet\) & & & & \\
\hline 23: Electronic thermal relay protection 2 (EoL2) & & & \(\bullet\) & & & & \\
\hline 24: Motor overheating (PTC / PT100) (oH3) & & & \(\bullet\) & & & & \\
\hline 26: Over-torque 1 (ot1) & & & \(\bullet\) & & & & \\
\hline 27: Over-torque 2 (ot2) & & & \(\bullet\) & & & & \\
\hline 28: Under current (uC) & \(\bullet\) & & & & & & \\
\hline 29: Limit error (LiT) & & & & & & \(\bullet\) & \\
\hline 31: EEPROM read error (cF2) & & & & \(\bullet\) & & & \\
\hline 33: U-phase error (cd1) & & & & - & & & \\
\hline 34: V-phase error (cd2) & & & & \(\bullet\) & & & \\
\hline 35: W-phase error (cd3) & & & & \(\bullet\) & & & \\
\hline 36: cc (current clamp) hardware failure (Hd0) & & & & \(\bullet\) & & & \\
\hline 37: oc (over-current) hardware failure (Hd1) & & & & \(\bullet\) & & & \\
\hline 40: Auto-tuning error (AUE) & & & & - & & & \\
\hline 41: PID loss ACI (AFE) & & & & & - & & \\
\hline 42: PG feedback error (PGF1) & & & & & \(\bullet\) & & \\
\hline 43: PG feedback loss (PGF2) & & & & & \(\bullet\) & & \\
\hline 44: PG feedback stall (PGF3) & & & & & \(\bullet\) & & \\
\hline 45: PG slip error (PGF4) & & & & & \(\bullet\) & & \\
\hline 48: ACI loss (ACE) & & & & & - & & \\
\hline 49: External fault input (EF) & & & & & & - & \\
\hline 50: Emergency stop (EF1) & & & & & & \(\bullet\) & \\
\hline 51: External Base Block (bb) & & & & & & \(\bullet\) & \\
\hline 52: Enter wrong password three times and locked (Pcod) & & & & \(\bullet\) & & & \\
\hline 54: Illegal command (CE1) & & & & & & & \(\bullet\) \\
\hline 55: Illegal data address (CE2) & & & & & & & \(\bullet\) \\
\hline 56: lllegal data value (CE3) & & & & & & & \(\bullet\) \\
\hline 57: Data is written to read-only address (CE4) & & & & & & & \(\bullet\) \\
\hline 58: Modbus transmission time-out (CE10) & & & & & & & - \\
\hline 61: Y-connection/4-connection switch error (ydc) & & & & & & - & \\
\hline 62: Deceleration Energy Backup Error (dEb) & & - & & & & & \\
\hline 63: Over-slip (oSL) & & & & & & - & \\
\hline 65: Hardware error of PG card (PGF5) & & & & & \(\bullet\) & & \\
\hline 72: STO loss (STL1) & & & & \(\bullet\) & & & \\
\hline 76: Safe Torque Off (STo) & & & & - & & & \\
\hline 77: STO loss 2 (STL2) & & & & \(\bullet\) & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Fault Code } & bit 0 & bit 1 & bit 2 & bit 3 & bit 4 & bit 5 & bit 6 \\
\hline & current & Volt. & OL & SYS & FBK & EXI & CE \\
\hline 78: STO loss 3 (STL3) & & & & \(\bullet\) & & & \\
\hline 79: U-phase over-current before run (Aoc) & \(\bullet\) & & & & & & \\
\hline 80: V-phase over-current before run (boc) & \(\bullet\) & & & & & & \\
\hline 81: W-phase over-current before run (coc) & \(\bullet\) & & & & & & \\
\hline 82: U-phase output phase loss (oPL1) & \(\bullet\) & & & & & & \\
\hline 83: V-phase output phase loss (oPL2) & \(\bullet\) & & & & & & \\
\hline 84: W-phase output phase loss (oPL3) & \(\bullet\) & & & & & & \\
\hline 87: Low frequency overload protection (oL3) & & & \(\bullet\) & & & & \\
\hline 89: Rotor position detection error (roPd) & & & & & \(\bullet\) & & \\
\hline 101: CANopen guarding error (CGdE) & & & & & & & \(\bullet\) \\
\hline 102: CANopen heartbeat error (CHbE) & & & & & & & \(\bullet\) \\
\hline 104: CANopen bus off error (CbFE) & & & & & & & \(\bullet\) \\
\hline 105: CANopen index error (CIdE) & & & & & & & \(\bullet\) \\
\hline 106: CANopen slave station setting error (CAdE) & & & & & & & \(\bullet\) \\
\hline 107: CANopen memory error (CFrE) & & & & & & & \(\bullet\) \\
\hline 111: InrCOM time-out error (ictE) & & & & & & & \(\bullet\) \\
\hline 121: Internal communication error (CP20) & & & & & & & \(\bullet\) \\
\hline 123: Internal communication error (CP22) & & & & & & & \(\bullet\) \\
\hline 124: Internal communication error (CP30) & & & & & & & \(\bullet\) \\
\hline 126: Internal communication error (CP32) & & & & & & & \(\bullet\) \\
\hline 127: Firmware version error (CP33) & & & & \(\bullet\) & & & \\
\hline 128: Over-torque 3 (ot3) & & & \(\bullet\) & & & & \\
\hline 129: Over-torque 4 (ot4) & & & \(\bullet\) & & & & \\
\hline 134: Electronic thermal relay 3 protection (EoL3) & & & \(\bullet\) & & & & \\
\hline 135: Electronic thermal relay 4 protection (EoL4) & & & \(\bullet\) & & & & \\
\hline 140: oc hardware error (Hd6) & & & & \(\bullet\) & & & \\
\hline 141: GFF occurs before run (b4GFF) & & & & \(\bullet\) & & & \\
\hline \begin{tabular}{l}
142: Auto-tuning error 1 \\
(DC test stage) (AUE1)
\end{tabular} & & & & \(\bullet\) & & & \\
\hline 143: Auto-tuning error 2 \\
(High frequency test stage) (AUE2)
\end{tabular}

\section*{06-29 PTC Detection Selection}

Default: 0

\section*{Settings 0: Warn and continue operation \\ 1: Fault and ramp to stop \\ 2: Fault and coast to stop \\ 3: No warning}
\(\square\) Sets the operation mode of a drive after you set Pr.06-29 to define PTC detection.

\section*{06-30 PTC Level}

Default: 50.0
\[
\text { Settings } 0.0-100.0 \%
\]Sets AVI / ACI analog input function Pr.03-00-03-01 to 6 [Positive temperature coefficient (PTC) thermistor input value].

Use this to set the PTC level; the corresponding value for \(100 \%\) is the analog input maximum value.When using the AVI terminal, you must set Pr.03-28 to 0 and switch AVI voltage to \(0-10 \mathrm{~V}\). At this time, the AVI input impedance is \(20 \mathrm{~K} \Omega\).
When the temperature reaches to the set protection level, the motor acts according to the settings for Pr.06-29 and displays warning "oH3" (if Pr.06-29 = 1-3). When the temperature is lower than the set protection level, you can press RESET key to clear the fault.

1 The PTC uses the AVI-input and is connected via resistor-divider as shown below:
1. The voltage between +10 V to ACM : lies within \(10 \mathrm{~V}-11 \mathrm{~V}\).
2. The impedance for AVI is around \(20 \mathrm{~K} \Omega\). Recommended value for resistor-divider \(1 \mathrm{~K}-10 \mathrm{~K} \Omega\).
3. Please contact your motor dealer for the curve of temperature and resistance value for PTC. Protection level (Pr.06-30) = V + \(10 \times(\mathrm{RPTC} / / 20 \mathrm{~K}) /[\mathrm{R} 1+(\mathrm{RPTC} / / 20 \mathrm{~K})]\)
- \(\mathrm{V}+10\) : voltage between \(+10 \mathrm{~V}-\mathrm{ACM}\), Range \(10.4 \sim 11.2 \mathrm{~V}_{\mathrm{DC}}\);
- RPTC: motor PTC overheat protection level;
- 20K \(\Omega\) : is AVI input impedance;
- R1: resistor-divider (recommended value: \(1-10 \mathrm{k} \Omega\))

Take the standard PTC thermistor as example: if protection level is \(1330 \Omega\), the voltage between \(+10 \mathrm{~V}-\mathrm{ACM}\) is 10.5 V and resistor-divider R 1 is \(4.4 \mathrm{k} \Omega\).

Refer to following calculation for Pr.06-30 setting:
\(1330 / / 20000=(1330 * 20000) /(1330+20000)=1247.07\)
\(10.5 \times 1247.07 /(4400+1247.07)=2.32(\mathrm{~V}) \fallingdotseq 2.3(\mathrm{~V})\)
Pr. \(06-30\) should be set to \(2.3 / 10 \mathrm{~V} * \%=23 \%\)

\section*{06-31 Frequency Command for Malfunction}

Default: Read only
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
When a malfunction occurs, check the current Frequency command. If it happens again, it overwrites the previous record.

\section*{06-32 Output Frequency at Malfunction}

Default: Read only
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
When a malfunction occurs, check the current output frequency. If it happens again, it overwrites the previous record.

\section*{06-33 Output Voltage at Malfunction}

Default: Read only
Settings \(0.0-6553.5 \mathrm{~V}\)
1 When a malfunction occurs, check the current output voltage. If it happens again, it overwrites the previous record.

\section*{06-34 DC bus Voltage at Malfunction}

Default: Read only
Settings \(0.0-6553.5 \mathrm{~V}\)
1 When a malfunction occurs, check the current DC voltage. If it happens again, it overwrites the previous record.

\section*{06-35 Output Current at Malfunction}

Default: Read only
Settings 0.00-655.35 Amp
1 When a malfunction occurs, check the current output current. If it happens again, it overwrites the previous record.

\section*{06-36 IGBT Temperature at Malfunction}

Default: Read only
Settings \(\quad-3276.7-3276.7^{\circ} \mathrm{C}\)
When a malfunction occurs, check the current IGBT temperature. If it happens again, it overwrites the previous record.

\section*{06-38 Motor Speed in rpm at Malfunction}

Default: Read only
Settings -32767-32767 rpm
[1] When a malfunction occurs, check the current motor speed in rpm. If it happens again, it overwrites the previous record.

\section*{06-39 Torque Command at Malfunction}

Default: Read only
Settings -32767-32767\%
When a malfunction occurs, check the current torque command. If it happens again, it overwrites the previous record.

\section*{06-40 Status of the Multi-function Input Terminal at Malfunction}

Default: Read only
Settings 0000h-FFFFh
06-41 Status of the Multi-function Output Terminal at Malfunction
Default: Read only
Settings 0000h-FFFFh
When a malfunction occurs, check the current status of the multi-function input/output terminals. If it happens again, it overwrites the previous record.

\section*{06-42 Drive Status at Malfunction}

Default: Read only
Settings 0000h-FFFFh
[a] When a malfunction occurs, check the current drive status (communication address 2101H). If it happens again, it overwrites the previous record.

\section*{06-44 STO Latch Selection}

Default: 0
Settings 0: STO Latch
1: STO no Latch
(1) Pr.06-44 = 0: STO Alarm Latch. After you clear the cause of the STO Alarm, use a Reset command to clear the STO Alarm.
1 Pr.06-44 = 1: STO Alarm no Latch. After you clear the cause of the STO Alarm, the STO Alarm clears automatically.
All All the STL1-STL3 errors are "Alarm Latch" mode (in STL1-STL3 mode, the Pr.06-44 function is not effective).

\section*{06-45 Output Phase Loss Detection Action (OPHL)}

Default: 3
Settings 0: Warn and continue operation
1: Fault and ramp to stop
2: Fault and coast to stop
3: No warning
[1] The OPHL protect function is active when the setting is not 3 .

\section*{06-46 Detection Time for Output Phase Loss}

Default: 0.500
Settings \(0.000-65.535 \mathrm{sec}\).

\section*{06-47 Current Detection Level for Output Phase Loss}

Default: 1.00
Settings 0.00-100.00\%

\section*{06-48 DC Brake Time for Output Phase Loss}

Default: 0.000
Settings \(0.000-65.535 \mathrm{sec}\).
(1) Setting Pr.06-48 to 0 disables the OPHL detection function.

10 The statuses of output phase loss detection are as following:
- Status 1: The drive is in operation

When any phase is less than the Pr.06-47 setting, and exceeds the Pr.06-46 setting time, the drive executes according to the Pr.06-45 setting.

- \(\quad\) Status 2: The drive is in STOP; Pr.06-48 = 0; Pr.07-02 \(=0\)

After the drive starts, the DC brake operates according to Pr.07-01 and Pr.07-02. During this period, OPHL detection is not active. After the DC brake action is completed, the drive starts to run, and enables the OPHL protection as mentioned above for status 1.

- Status 3: The drive is in STOP; Pr.06-48 \(\neq 0 ;\) Pr.07-02 \(\neq 0\)

When the drive starts, it executes Pr.06-48 first, and then executes Pr.07-02 (DC brake). The DC brake current level in this state includes two parts: one is 20 times the Pr.06-47 setting value in Pr.06-48 setting time; the other is the Pr.07-01 setting value in Pr.07-02 setting time. In this period.

Status 3-1: Pr. 06-48 \(=0\), Pr.07-02 \(\neq 0\) (No OPHL detected before operation)

Status 3-2: Pr. 06-48 \(=0\), Pr. 07-20 \(=0\) (OPHL detected before operation)
In this period, if an OPHL occurs within the time for Pr.06-48, the drive executes the Pr.0645 setting after the drive starts counting for half the time of Pr.06-48.

Status 4: The drive is in STOP; Pr.06-48 \(=0\); \(\operatorname{Pr} .07-02=0\)
When the drive starts, it executes Pr.06-48 as the DC brake. The DC brake current level is 20 times the Pr.06-47 setting value.

Status 4-1: Pr.06-48 \(=0\), Pr.07-02 \(=0\) (No OPHL detected before operation)

Status 4-2: Pr.06-48 = 0, Pr.07-02 = 0 (OPHL detected before operation)
In this period, if an OPHL occurs within the time for Pr.06-48, the drive executes the Pr.0645 setting after the drive starts counting for half the time of Pr.06-48.

\section*{06-49 LvX Auto-reset}

Default: 0
Settings 0: Disable
1: Enable

\section*{06-53 Treatment for Phase Loss Protection (OrP)}

Default: 0
\[
\begin{array}{ll}
\text { Settings } & 0: \text { Fault and ramp to stop } \\
& \text { 1: Fault and coast to stop }
\end{array}
\]

Ila The drive executes the input phase loss protection according to Pr.06-53.

\section*{06-55 Derating Protection}

Default: 0
Settings 0: Constant rated current and limit carrier wave by load current and temperature
1: Constant carrier frequency and limit load current by setting carrier wave
2. Constant rated current (same as setting 0), but close current limit
@ Allowable maximum output frequency and the minimum carrier wave limit in control mode: For VF, SVC, VFPG modes: Maximum operation frequency (Pr.01-00) x 10 minimum sampling point limit

For FOCPG, FOC Sensorless modes: Maximum operation frequency (Pr.01-00) x 20 minimum sampling point limit
[1] Setting 0 :
- Actual over-current stall prevention level \(=\) derating ratio \(\times\) over-current stall prevention level (Pr.06-03 and Pr.06-04).
- Rated current derating level: derating ratio \(\times\) rated current (Pr.00-01).
- When the operating point is greater than the derating curve, the carrier frequency (Fc) output by the drive decreases automatically according to the ambient temperature, overload output current and time.
- Applicable conditions: If overloads are not frequent, and the concern is only about the carrier frequency operating with the rated current for a long time, and changes to the carrier wave due to short overload are acceptable, set to 0 .
- Take VFD9A0MH43ANSAA normal duty for example: ambient temperature \(50^{\circ} \mathrm{C}\), UL Open Type, and independent installation. When the carrier frequency is set to 10 kHz , it corresponds to \(75 \%\) of the derating ratio. When the output current is higher than the value, it automatically decreases the carrier frequency according to the ambient temperature, output current and overload time. At this time, the over-current stall prevention level is \(150 \%\).
[1] Setting 1:
- Actual over-current stall prevention level \(=\) derating ratio \(\times\) over-current stall prevention level (Pr.06-03 and Pr.06-04).
- When the operating point is greater than the derating curve 1, the carrier frequency (Fc) output by the drive is fixed to the default value.
- Applicable conditions: Select this mode if the change of carrier frequency and motor noise caused by ambient temperature and frequent overload are not acceptable. Refer to Pr.00-17.
- Take VFD9A0MH43ANSAA normal duty for example: ambient temperature \(50^{\circ} \mathrm{C}\), UL Open Type, and independent installation. When the carrier frequency is set to 10 kHz , it
corresponds to \(75 \%\) of the derating ratio. When the output current is higher than the value, the carrier frequency will not be reduced by this, but if the overload continues for a long time, the oH1 fault (IGBT overheating) or oL fault (the inverter is overloaded) will be triggered due to the IGBT temperature rise, and the motor will eventually stop.
- The oL protection executes when the current is \(120 \% \times 75 \%=90 \%\) for one minute; therefore, it must operate by the curve to keep the carrier frequency.
Setting 2 :
- Actual over-current stall prevention level \(=\) derating ratio \(\times\) over-current stall prevention level (Pr.06-03 and Pr.06-04).
- Rated current derating level: derating ratio \(\times\) rated current (Pr.00-01).
- The protection method and action are set to 0 , but this disables the current limit when output current is the derating ratio \(\times 120 \%\) of output current in normal load, and derating ratio x \(180 \%\) of output current in light load.
The advantage: it can provide a higher starting output current (Pr.06-55 = 0) when the carrier frequency (Pr.00-17) setting is higher than the default value.

The disadvantage: the carrier frequency derates easily when it overloads.
- For example: when Pr.06-55 = 0 or 1, the over-current stall prevention level \(=\) Ratio \(\times\) Pr.0603. When Pr.06-55 = 2, the over-current stall prevention level \(=\) Pr.06-03.

Ud Use with the settings for Pr.00-16 and Pr.00-17.The ambient temperature also affects the derating; refer to Section 9-6 Derating for Ambient Temperature, Altitude and Carrier Frequency.

\section*{Example:}

Take VFD9A0MH43ANSAA in normal duty for example: ambient temperature \(50^{\circ} \mathrm{C}\), UL open-type, and independent installation. When the carrier frequency is set to 10 kHz , it corresponds to \(75 \%\) of the rated output current. The ambient temperature \(60^{\circ} \mathrm{C}\) corresponds to \(75 \%\) * \(75 \%\) of the rated output current.

\section*{06-56 PT100 Voltage Level 1}

Default: 5.000
Settings \(0.000-10.000 \mathrm{~V}\)

\section*{06-57 PT100 Voltage Level 2}

Default: 7.000
Settings \(0.000-10.000 \mathrm{~V}\)
Condition settings: Pr.06-57 > Pr.06-56.

\section*{06-58 PT100 Level 1 Frequency Protection}

Default: 0.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)

\section*{06-59 PT100 activation level 1 protection frequency delay time}

Default: 60
Settings 0-6000 sec.
[1] PT100 operation instructions
1. Use voltage type analog input (AVI, ACI voltage \(0-10 \mathrm{~V}\)) and select PT 100 mode.
2. Select one of the voltage type analog inputs below:
(a) Pr.03-00 \(=11\)
(b) Pr.03-01 \(=11\) and Pr.03-29 \(=1\)
3. When selecting Pr.03-01 = 11 and Pr. \(03-29=1\), you must switch AFM to \(0-10 \mathrm{~V}\).
4. The AFM outputs constant voltage or current, then Pr.03-20 \(=23\). You must switch ACM to \(0-20 \mathrm{~mA}\), and set AFM output level to \(45 \%\) (Pr.03-32 = 45\%) of \(20 \mathrm{~mA}=9 \mathrm{~mA}\).
5. Use Pr.03-32 to adjust the constant voltage or constant current of the AFM output; the setting range is \(0-100.00 \%\).
6. There are two types of action levels for PT100. The diagram below shows the PT100 protecting action.

[0] When Pr.06-58 \(=0.00 \mathrm{~Hz}\), PT100 function is disabled.

\section*{Example:}

When using PT100, if the motor temperature is higher than \(135^{\circ} \mathrm{C}\left(275^{\circ} \mathrm{F}\right)\), the drive starts to count the delay time for auto-deceleration (Pr.06-59). The drive decreases the motor frequency to the setting for Pr.06-58 when it reaches the delay time count value. The drive operates at the frequency set for \(\mathrm{Pr} .06-58\) until the motor temperature is lower than \(135^{\circ} \mathrm{C}\left(275^{\circ} \mathrm{F}\right)\). If the motor temperature is higher than \(150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)\), the drive automatically decelerates to STOP and displays the warning "OH3".
Set up process:
1. Switch AFM to \(0-20 \mathrm{~mA}\) on the control board.
2. Wiring:

Connect external terminal AFM to " + "
Connect external terminal ACM to "-"
Connect AFM and AVI to "short-circuit"
3. Pr. \(03-00=11\), Pr. \(03-20=23\), Pr. \(03-32=45 \%(9 \mathrm{~mA})\)
4. Refer to the RTD temperature and resistance comparison table

Temperature \(=135^{\circ} \mathrm{C}\), resistance \(=151.71 \Omega\), input current: 9 mA , voltage: about \(1.37 \mathrm{~V}_{\mathrm{DC}}\)
Temperature \(=150^{\circ} \mathrm{C}\), resistance \(=157.33 \Omega\), input current: 9 mA , voltage: about \(1.42 \mathrm{~V}_{\mathrm{DC}}\)
5. When the RTD temperature \(>135^{\circ} \mathrm{C}\), the drive decelerates to the specified operation frequency automatically. Then, Pr.06-56 \(=1.37\) and Pr. \(06-58=10 \mathrm{~Hz}\). When Pr.06-58 \(=0\), it disables the specified operation frequency.
6. When RTD temperature \(>150^{\circ} \mathrm{C}\), the drive outputs a fault, decelerates to STOP, and displays the warning "OH3". Then, Pr.06-57 = 1.42 and Pr.06-29 \(=1\) (fault and ramp to stop).

\section*{06-60 Software Detection GFF Current Level}

Default: 60.0
Settings 0.0-6553.5\%

\section*{06-61 Software Detection GFF Filter Time}

Default: 0.10
Settings \(0.00-655.35 \mathrm{sec}\).
10 When the drive detects that the unbalanced three-phase output current is higher than the setting for Pr.06-60, GFF protection activates. The drive then stops output.
\begin{tabular}{|c|l}
\hline 06-63 & Operation Time of Fault Record 1 (Day) \\
\hline \(06-65\) & Operation Time of Fault Record 2 (Day) \\
\hline 06-67 & Operation Time of Fault Record 3 (Day) \\
\hline \(06-69\) & Operation Time of Fault Record 4 (Day) \\
\hline \(06-90\) & Operation Time of Fault Record 5 (Day) \\
06-92 & Operation Time of Fault Record 6 (Day)
\end{tabular}

Default: Read only
Settings 0-65535 days
\begin{tabular}{c|c}
06-64 & Operation Time of Fault Record 1 (Min.) \\
06-66 & Operation Time of Fault Record 2 (Min.) \\
06-68 & Operation Time of Fault Record 3 (Min.) \\
06-70 & Operation Time of Fault Record 4 (Min.) \\
06-91 & Operation Time of Fault Record 5 (Min.) \\
\hline 06-93 & Operation Time of Fault Record 6 (Min.)
\end{tabular}

Default: Read only
Settings 0-1439 min.
1 If there is any malfunction when the drive operates, Pr.06-17-06-22 records the malfunctions, and Pr.06-63-06-70 records the operation time for four sequential malfunctions. Check if there is any problem with the drive according to the interval of the recorded fault.

Example:
The first error: ocA occurs after motor drive operates for 1000 minutes.
The second error: ocd occurs after another 1000 minutes.
The third error: ocn occurs after another 1000 minutes.
The fourth error: ocA occurs after another 1000 minutes.

The fifth error: ocd occurs after another 1000 minutes.
The sixth error: ocn occurs after another 1000 minutes.
Then Pr.06-17-06-22 and Pr.06-63-06-70 are recorded as follows:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(1^{\text {st }} f a u l t\) & \(2^{\text {nd }} f a u l t\) & \(3^{\text {rd }}\) fault & \(4^{\text {th }}\) fault & \(5^{\text {th }}\) fault & \(6^{\text {th }} f a u l t\) \\
\hline Pr.06-17 & ocA & ocd & ocn & ocA & ocd & ocn \\
\hline Pr.06-18 & 0 & ocA & ocd & ocn & ocA & ocd \\
\hline Pr.06-19 & 0 & 0 & ocA & ocd & ocn & ocA \\
\hline Pr.06-20 & 0 & 0 & 0 & ocA & ocd & ocn \\
\hline Pr.06-21 & 0 & 0 & 0 & 0 & ocA & ocd \\
\hline Pr.06-22 & 0 & 0 & 0 & 0 & 0 & ocA \\
\hline Pr.06-63 & 1000 & 560 & 120 & 1120 & 680 & 240 \\
\hline Pr.06-64 & 0 & 1 & 2 & 2 & 3 & 4 \\
\hline Pr.06-65 & 0 & 1000 & 560 & 120 & 1120 & 680 \\
\hline Pr.06-66 & 0 & 0 & 1 & 2 & 2 & 3 \\
\hline Pr.06-67 & 0 & 0 & 1000 & 560 & 120 & 1120 \\
\hline Pr.06-68 & 0 & 0 & 0 & 1 & 2 & 2 \\
\hline Pr.06-69 & 0 & 0 & 0 & 1000 & 560 & 120 \\
\hline Pr.06-70 & 0 & 0 & 0 & 0 & 1 & 2 \\
\hline
\end{tabular}
※ By examining the time record, you can see that that the last fault (Pr.06-17) happened after the drive ran for 4 days and 240 minutes.

\section*{06-71 Low Current Setting Level}

Default: 0.0
Settings 0.0-100.0\%

\section*{06-72 Low Current Detection Time}

Default: 0.00
Settings \(0.00-360.00 \mathrm{sec}\).

\section*{06-73 Low Current Action}

Default: 0
Settings 0: No function
1: Fault and coast to stop
2: Fault and ramp to stop by the second deceleration time
3: Warn and continue operation
[1] The drive operates according to the setting for Pr.06-73 when the output current is lower than the setting for Pr.06-71 and when the time of the low current exceeds the detection time for Pr.06-72. Use this parameter with the external multi-function output terminal 44 (for low current output).
떼 The low current detection function does not execute when drive is in sleep or standby status.

\section*{07 Special Parameters}

You can set this parameter during operation.

\section*{07-00 Software brake chopper action level}

Default: 370.0 / 740.0
\[
\begin{array}{ll}
\text { Settings } & 115 \mathrm{~V} / 230 \mathrm{~V} \text { models: } 350.0-450.0 \mathrm{~V} \mathrm{VC} \\
& 460 \mathrm{~V} \text { models: } 700.0-900.0 \mathrm{~V} \mathrm{DC}
\end{array}
\]

1 Sets the brake transistor level for the DC bus voltage. Choose a suitable brake resistor to achieve the best deceleration. Refer to Chapter 7 Optional Accessories for information about brake resistors.

\section*{07-01 DC Brake Current Level}

Default: 0

> Settings 0-100\%

1 Sets the level of the DC brake current output to the motor during start-up and stop. When you set the DC brake current percentage, the rated current is regarded as \(100 \%\). Start with a low DC brake current level, and increase it slowly until the proper brake torque is reached. However, to avoid burning the motor, the DC brake current can NOT exceed the rated current. Therefore, DO NOT use the DC brake for mechanical retention, otherwise injury or accident may occur.

\section*{07-02 DC Brake Time at Start-up}

Default: 0.0
Settings \(0.0-60.0 \mathrm{sec}\).The motor may continue rotating after the drive stops output due to external forces or the inertia of the motor itself. If you use the drive with the motor rotating, it may cause motor damage or trigger drive protection due to over-current. This parameter outputs DC current, generating torque to force the motor stop to get a stable start before motor operation. This parameter determines the duration of the DC brake current output to the motor when the drive starts up. Setting this parameter to 0.0 disables the DC brake at start-up.

\section*{07-03 DC Brake Time at STOP}

Default: 0.0
Settings \(0.0-60.0 \mathrm{sec}\).The motor may continue rotating after the drive stops output due to external forces or the inertia of the motor itself. This parameter outputs DC current, generating torque to force the drive stop after the drive stops output to make sure that the motor stops.
凹 This parameter determines the duration of the DC Brake current output to the motor when braking. To enable DC brake at STOP, set Pr.00-22 (Stop Method) to 0 (ramp to stop).
[a] Related parameters:
- Pr.00-22 Stop Method
- Pr.07-04 DC Brake Frequency at Start

\title{
07-04 DC Brake Frequency at STOP
}

Default: 0.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
[1] This parameter determines the start frequency of the DC brake before the drive ramps to stop. When this setting is less than Pr.01-09 (Start-up Frequency), the start frequency of the DC brake starts from the minimum frequency.

1 U. Use the DC brake before running the motor when the load is movable at stop, such as with fans and pumps. The motor is in free operating status and in unknown rotation direction before the drive starts up. Execute the DC brake before you start the motor.
1 Use DC Brake at STOP when you need to brake the motor quickly or to control the positioning, such as with cranes or cutting machines.

\section*{07-05 Voltage Increasing Gain}

Default: 100
Settings 1-200\%
1 When using speed tracking, adjust Pr.07-05 to slow down the increasing voltage gain if there are errors such as oL or oc; however, the speed tracking time will be longer.

\section*{07-06 Restart after Momentary Power Loss}

Default: 0

> \begin{tabular}{ll} Settings & \(0:\) Stop operation \\ & 1: Speed tracking by the speed before the power loss \\ & 2: Speed tracking by the minimum output frequency \\ \hline \end{tabular}
[1] Determines the operation mode when the drive restarts from a momentary power loss.
[1] The power system connected to the drive may power off momentarily for many reasons. This function allows the drive to keep outputting after the drive is repowered and does not cause the drive to stop.
@l 1: Frequency tracking begins before momentary power loss and accelerates to the master Frequency command after the drive output frequency and motor rotator speed are synchronous. Use this setting when there is a lot of inertia with little resistance on the motor load. For example, in equipment with a large inertia flywheel, there is NO need to wait until the flywheel stops completely after a restart to execute the operation command; therefore, it saves time.
1 2: Frequency tracking starts from the minimum output frequency and accelerates to the master Frequency command after the drive output frequency and motor rotator speed are synchronous. Use this setting when there is little inertia and large resistance.In PG control mode, the AC motor drive executes the speed tracking function automatically according to the PG speed when this setting is NOT set to 0 .

\section*{07-07 Allowed Power Loss Duration}

Default: 2.0
Settings \(0.0-20.0 \mathrm{sec}\).
1 Determines the maximum time of allowable power loss. If the duration of a power loss exceeds this parameter setting, the AC motor drive stops output.

Pr.07-06 is valid when the maximum allowable power loss time is \(\leq 20\) seconds and the AC motor drive displays "LU". If the AC motor drive is powered off due to overload, even if the maximum allowable power loss time is \(\leq 20\) seconds, the operation mode set in Pr.07-06 does not execute.

\section*{07-08 Base Block Time}

Default: 0.5
Settings \(0.1-5.0 \mathrm{sec}\).
When momentary power loss is detected, the AC motor drive blocks its output and then waits for a specified period of time (determined by Pr.07-08, called Base Block Time) before resuming operation. Set this parameter to the time that allows the residual voltage at the output side to decrease to 0 V before activating the drive again.

1 This parameter is not only for the B.B. time, but also is the re-start delay time after free run.
1 The RUN command during a free run operation is memorized, and runs or stops with the last frequency command after the delay time.

This delay time is only applicable in "Re-start after coast to stop" status, and does not limit ramp to stop. The coast to stop can be caused by various control command source, or by errors.
[1] Following table is the recommended setting for re-start delay time of each model power. You must set Pr.07-08 according to this table (the default of each model power is based on this table as well).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline kW & 0.75 & 1.5 & 2.2 & 3.7 & 5.6 & 7.5 & 11.0 & 15.0 \\
\hline HP & 1 & 2 & 3 & 5 & 7.5 & 10 & 15 & 20 \\
\hline Delay time (sec.) & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline kW & 18.5 & 22.0 & 30.0 & 37.0 & 45.0 & 55.0 & 75.0 \\
\hline HP & 25 & 30 & 40 & 50 & 60 & 75 & 100 \\
\hline Delay time (sec.) & 1.1 & 1.2 & 1.3 & 1.4 & 1.5 & 1.6 & 1.7 \\
\hline
\end{tabular}

\section*{07-09 Current Limit of Speed Tracking}

Default: 100
Settings 20-200\%
In The AC motor drive executes speed tracking only if the output current is greater than the value set in Pr.07-09.
[1] The maximum current for speed tracking affects the synchronous time. The larger the parameter setting is, the faster the synchronization occurs. However, if the parameter setting is too large, the overload protection function may be activated.

\section*{07-10 Restart after Fault Action}

Default: 0

\section*{Settings 0: Stop operation}

1: Speed tracking by current speed
2: Speed tracking by minimum output frequency
Ind In PG control mode, the AC motor drive executes the speed tracking function automatically according to the PG speed when this setting is NOT set to 0 .
[1] Faults include: bb, oc, ov, occ. To restart after oc, ov, occ, you can NOT set Pr.07-11 to 0 .

\section*{07-11 Number of Times of Auto-restart after Fault}

Default: 0

\section*{Settings \(0-10\)}
\(\square \mathbb{1}\) After fault (allowed fault: oc, ov, occ) occurs, the AC motor drive can reset and restart automatically up to 10 times.
Ifl If the number of faults exceeds the Pr.07-11 setting, the drive does not reset and restart until you press "RESET" manually and execute the operation command again.

\section*{07-12 Speed Tracking during Start-up}

Default: 0

> \begin{tabular}{ll} Settings & \(0:\) Disable \\ & 1: Speed tracking by maximum output frequency \\ & 2: Speed tracking by motor frequency at start \\ & 3: Speed tracking by minimum output frequency \\ \hline \end{tabular}

Speed tracking is suitable for punch, fans and other large inertia loads. For example, a mechanical punch usually has a large inertia flywheel, and the general stop method is coast to stop. If it needs to be restarted again, the flywheel may take 2-5 minutes or longer to stop. This parameter setting allows you to start the flywheel operating again without waiting until the flywheel stops completely.
Ill In PG control mode, the AC motor drive executes the speed tracking function automatically according to the PG speed when this setting is NOT set to 0 .

\section*{07-13 dEb Function Selection}

Default: 0
Settings 0: Disable
1: dEb with auto-acceleration / auto-deceleration, the drive does not output the frequency after the power is restored.
2: dEb with auto-acceleration / auto-deceleration, the drive outputs the frequency after the power is restored.

3: dEb low-voltage control, then the drive's voltage increases to 350 V Dc \(/ 700\)
\(V_{D C}\) and ramps to stop after low frequency
4: dEb high-voltage control of \(350 \mathrm{~V}_{\mathrm{DC}} / 700 \mathrm{~V}_{\mathrm{DC}}\), and the drive ramps to stop
dEb (Deceleration Energy Backup) lets the motor decelerate to stop when momentary power loss occurs. When the power loss is instantaneous, use this function to let the motor decelerate to zero speed. If the power recovers at this time, the drive restarts the motor after the dEb return time.
[a] Lv return level: Default value depends on the drive power model.
Frame A, B, C, D = Pr.06-00 + \(60 \mathrm{~V} / 30 \mathrm{~V}\) (230V models)
Frame E and above \(=\) Pr. \(06-00+80 \mathrm{~V} / 40 \mathrm{~V}\) (230 V models)
\(\square\) Lv level: Default is Pr.06-00.
During dEb operation, other protection, such as ryF, ov, oc, occ, and EF may interrupt it, and these error codes are recorded.
1 The STOP (RESET) command does not work during the dEb auto-deceleration, and the drive continues decelerating to stop. To make the drive coast to stop immediately, use another function (EF) instead.
(1) The B.B. function does not work when executing dEb. The B.B. function is enabled after the dEb function finishes.

1 Even though the Lv warning does not display during dEb operation, if the DC bus voltage is lower than the Lv level, MO = 10 (Low voltage warning) still operates.The following explains the dEb action:
When the DC voltage drops below the dEb setting level, the dEb function starts to work (soft start relay remains closed), and the drive executes auto-deceleration.
- Situation 1: Momentary power loss, or power current too low and unstable, or power supply sliding down because of sudden heavy load.
Pr.07-13=1, "dEb active, DC bus voltage returns, output frequency does not return" and power recovers.

When the power recovers and DC bus voltage exceeds the dEb return level, the drive linearly decelerates to 0 Hz and stops. The keypad displays the "dEb" warning until you manually reset it, so that you can see the reason for the stop.

- Situation 2: Momentary power loss, or power current too low and unstable, or power supply sliding down because of sudden heavy load.

Pr.07-13=2 "dEb active, DC bus voltage returns, output frequency returns" and power recovers.
During the dEb deceleration (includes 0 Hz run), if the power recovers higher than dEb return level, the drive maintains the frequency for three seconds and then accelerates again. The dEb warning on the keypad clears automatically.

Chapter 12 Description of Parameter Settings | MH300

- Situation 3: Power supply unexpected shut down or power loss.

Pr.07-13=1 "dEb active, DC bus voltage returns, the output frequency does not return" and the power does not recover.

The keypad displays the "dEb" warning and stops after decelerating to the lowest running frequency. When the DC bus voltage is lower than the Lv level, the drive disconnects the soft start relay until the power completely runs out.

\section*{- Situation 4:}

Pr.07-13=2 "dEb active, DC bus voltage returns, the output frequency returns" and power does not recover.

The drive decelerates to 0 Hz . The DC bus voltage continues to decrease until the voltage is lower than the Lv level, and then the drive disconnects the soft start relay. The keypad displays "dEb" warning until the drive completely runs out of power.

\section*{07-15 Dwell Time at Acceleration}

Default: 0.00
Settings 0.00-600.00 sec.

\section*{07-17 Dwell Time at Deceleration}

Default: 0.00
Settings \(0.00-600.00 \mathrm{sec}\).

\section*{07-16 Dwell Frequency at Acceleration}

Default: 0.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)

\section*{07-18 Dwell Frequency at Deceleration}

Default: 0.00
Settings \(0.00-599.00 \mathrm{~Hz}\)
1 In heavy load situations, the Dwell temporarily maintains stable output frequency. Use this parameter for cranes, elevators, and so on.

When the load is heavier, use Pr.07-15-Pr.07-18 to avoid ov or oc protection.

\section*{07-19 Fan Cooling Control}

Default: 3
Settings 0: Fan is always ON
1: Fan is OFF after the AC motor drive stops for one minute.
2: Fan is ON when AC motor drive runs; fan is OFF when AC motor drive stops.
3: Fan turns ON when the temperature (IGBT) reaches around \(60^{\circ} \mathrm{C}\)Use this parameter to control the fan.0 : Fan runs immediately when the drive power is turned ON.1: Fan runs when AC motor drive runs. One minute after AC motor drive stops, the fan is OFF.2: Fan runs when AC motor drive runs and stops immediately when AC motor drive stops.3: Fan is ON when the IGBT or capacitance temperature is higher than \(60^{\circ} \mathrm{C}\).
Fan is OFF when the the IGBT and capacitance temperature are both lower than \(40^{\circ} \mathrm{C}\), and the drive stops running.

\section*{07-20 Emergency stop (EF) \& force to stop selection}

Settings 0: Coast to stop
1: Stop by the \(1^{\text {st }}\) deceleration time
2: Stop by the \(2^{\text {nd }}\) deceleration time
3: Stop by the \(3^{\text {rd }}\) deceleration time
4: Stop by the \(4^{\text {th }}\) deceleration time
5: System deceleration
6: Automatic deceleration
[1] When the multi-function input terminal is set to EF input (setting 10) or forced to stop (setting 18) and the terminal contact is ON , the drive stops according to the setting of this parameter.

\section*{07-21 Automatic Energy-saving Setting}

Default: 0

\author{
Settings 0: Disable \\ 1: Enable
}

When energy-saving is enabled, the motor acceleration operates with full voltage. During constant speed operation, it automatically calculates the best voltage value according to the load power. This function is not suitable for fluctuating loads or loads which are nearly full during operation.
When the output frequency is constant (that is, constant operation), the output voltage decreases automatically as the load decreases. Therefore, the drive operates with minimum multiplication of voltage and current (electric power).

\section*{07-22 Energy-saving Gain}

Default: 100
Settings 10-1000\%
When Pr.07-21 is set to 1 , use this parameter to adjust the energy-saving gain. The default is \(100 \%\). If the result is not satisfactory, adjust it by decreasing the setting value. If the motor oscillates, then increase the setting value.
1 In certain applications such as high speed spindles, the temperature rise in the motor is a major concern. When the motor is not in working state, reduce the motor current to a lower level. Reduce this parameter setting to meet this requirement.

\section*{07-23 Automatic Voltage Regulation (AVR) Function}

Default: 0

\author{
Settings 0: Enable AVR \\ 1: Disable AVR \\ 2: Disable AVR during deceleration
}
[1] The rated voltage of a 220 V motor is usually \(\mathrm{AC} 200 \mathrm{~V}, 60 \mathrm{~Hz} / 50 \mathrm{~Hz}\), and the input voltage of the AC motor drive may vary from AC 180 V to \(264 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}\). Therefore, when the AC motor drive is used without the AVR function, the output voltage is the same as the input voltage. When the motor runs at the voltage exceeding \(12 \%-20 \%\) of the rated voltage, it causes higher temperatures, damaged insulation, and unstable torque output, which result in losses due to shorter motor lifetime.
(1) The AVR function automatically regulates the output voltage of the AC motor drive to the motor rated voltage. For example, if the V/F curve is set at \(A C 200 \mathrm{~V}, 50 \mathrm{~Hz}\) and the input voltage is at AC 200-264 V, then the drive automatically reduces the output voltage to the motor to a maximum of AC \(200 \mathrm{~V}, 50 \mathrm{~Hz}\). If the input voltage is at AC \(180-200 \mathrm{~V}\), the output voltage to motor and input power are in direct proportion.
10 : When the AVR function is enabled, the drive calculates the output voltage according to the actual DC bus voltage. The output voltage does NOT change when the DC bus voltage changes.
1: When the AVR function is disabled, the drive calculates the output voltage according to the actual DC bus voltage. The DC bus voltage changes the output voltage, and may cause insufficient or over-current or shock.
[1] 2: The drive disables the AVR function when decelerating to stop, and may accelerate to brake.
When the motor ramps to stop, the deceleration time is shorter when setting this parameter to 2 with auto-acceleration and deceleration, and the deceleration is quicker and more stable.

\section*{07-24 Torque Command Filter Time}

Default: 0.050
Settings \(0.001-10.000 \mathrm{sec}\).
\(\square\) IMVF and PMSVC control modes only.
When the setting is too long, the control is stable but the control response is delayed. When the setting is too short, the response is quicker but the control may be unstable. Adjust the setting according to the stability of the control and response times.

\section*{07-25 Slip Compensation Filter Time}

Default: 0.100
Settings \(0.001-10.000 \mathrm{sec}\).
[a] IMSVC control mode only.
1 Change the compensation response time with Pr.07-24 and Pr.07-25.
[1] If you set Pr.07-24 and Pr.07-25 to 10 seconds, the compensation response time is the slowest; however, the system may be unstable if you set the time too short.

\title{
07-26 Torque Compensation Gain \\ 07-71 Torque Compensation Gain (Motor 2) \\ 07-73 Torque Compensation Gain (Motor 3) \\ 07-75 Torque Compensation Gain (Motor 4)
}

Default: 1
Settings IM: 0-10 (when Pr.05-33 = 0)
PM: 0-5000 (when Pr.05-33 = 1 or 2)
IM IMVF and PMSVC control modes only.
W. With a large motor load, a part of drive output voltage is absorbed by the stator winding resistor; therefore, the air gap magnetic field is insufficient. This causes insufficient voltage at motor induction and results in excessive output current but insufficient output torque. Auto-torque compensation can automatically adjust the output voltage according to the load and keep the air gap magnetic fields stable to get the optimal operation.
Ind In the V/F control, the voltage decreases in direct proportion with decreasing frequency. It reduces the torque decrease at low speed due to the AC while the DC resistor is unchanged. The autotorque compensation function increases the output voltage at low frequency to get a higher starting torque.
When the compensation gain is set too high, it may cause motor over-flux and result in a too large output current, overheating the motor or triggering the protection function.
\(\square\) This parameter affects the output current during operation. The low-speed zone has less impact.
[1] When the compensation gain is set too large, it may cause motor over-flux and result in a too large output current of the drive, motor overheating or trigger the drive's protection function.

\title{
07-27 Slip Compensation Gain \\ 07-72 Slip Compensation Gain (Motor 2) \\ 07-74 Slip Compensation Gain (Motor 3) \\ 07-76 Slip Compensation Gain (Motor 4)
}

Default: 0.00
(Default value is 1 in SVC mode)
Settings 0.00-10.00
[1] IMSVC control mode only.
[1 The induction motor needs constant slip to produce magnetic torque. It can be ignored at higher motor speeds, such as rated speed or 2-3 \% of slip.
[D] In operation, the slip and the synchronous frequency are in reverse proportion to produce the same magnetic torque. The slip is larger with the reduction of the synchronous frequency. The motor may stop when the synchronous frequency decreases to a specific value. Therefore, the slip seriously affects the motor speed accuracy at low speed.
1 In another situation, when you use an induction motor with the drive, the slip increases when the load increases. It also affects the motor speed accuracy.
10 Use this parameter to set the compensation frequency, and reduce the slip to maintain the synchronous speed when the motor runs at the rated current in order to improve the accuracy of the drive. When the drive output current is higher than Pr.05-05 (No-load Current of Induction Motor 1 (A)), the drive compensates the frequency with this parameter.
\(\square\) This parameter is set to 1.00 automatically when Pr.00-11 (Speed Control Method) is changed from V/F mode to vector mode. Apply the slip compensation after load and acceleration. Increase the compensation value from small to large gradually; add the output frequency with motor rated slip x Pr.07-27 (Slip Compensation Gain) when the motor is at the rated load. If the actual speed ratio is slower than expected, increase the parameter setting value; otherwise, decrease the setting value.

\section*{07-29 Slip Deviation Level}

\section*{Default: 0}

Settings 0.0-100.0\%
0: No detection

\section*{07-30 Slip Deviation Detection Time}

Default: 1.0
Settings \(0.0-10.0 \mathrm{sec}\).

\section*{07-31 Slip Deviation Action}

Default: 0
Settings 0: Warn and continue operation
1: Fault and ramp to stop
2: Fault and coast to stop
3: No warning
Parameters Pr.07-29-Pr.07-31 set the allowable slip level/time and the over-slip action when the drive is running.

\section*{07-32 Motor Shock Compensation Factor}

Default: 1000
Settings 0-10000If there are current wave motions in the motor in some specific area, setting this parameter can effectively improve this situation.

When the current wave motion occurs in low frequency and high-power, increase the value for Pr.07-32.

\section*{07-33 Auto-restart Interval of Fault}

Default: 60.0
Settings \(0.0-6000.0 \mathrm{sec}\).
When a reset / restart occurs after a fault, the drive uses Pr.07-33 as a timer and starts counting the number of faults within this time period. Within this period, if the number of faults does not exceed the setting for Pr.07-11, the counting clears and starts from 0 when the next fault occurs.

\section*{07-38 PMSVC Voltage Feed Forward Gain}

Default: 1.00
Settings 0.50-2.00
Adjusts the PMSVC voltage feedback forward gain, and to meet the demand of rapid feedback application.Pr.07-38 \(=1.00\) means forward feedback \(=K e \times\) motor rotor speedRefer to Section 12-2 "PMSVC adjustment" for details.

\section*{07-62 dEb Gain (Kp)}

Default: 8000
Settings 0-65535

\section*{07-63 dEb Gain (Ki)}

Default: 150
Settings 0-65535Sets the PI gain of DC bus voltage controller when the dEb function activates.If the DC bus voltage drops too fast, or the speed oscillation occurs during deceleration after the dEb function activates, adjust Pr.07-62 and Pr.07-63. Increase the Kp setting to quicken the control response, but the oscillation may occur if the setting is too large. Use Ki parameter to decrease the steady-state error to zero, and increase the setting to quicken the response speed.

\section*{08 High-function PID Parameters}

You can set this parameter during operation.

\section*{08-00 Terminal Selection of PID Feedback}

Default: 0
\begin{tabular}{|c|c|}
\hline Settings & 0 : No function \\
\hline & 1: Negative PID feedback: by analog input (Pr.03-00) \\
\hline & 2: Negative PID feedback: by single-phase pulse input (MI7), without direction (Pr.10-16) \\
\hline & 3: Negative PID feedback: by single -phase pulse input (MI7), with direction (Pr.10-16) \\
\hline & 4: Positive PID feedback: by analog input (Pr.03-00) \\
\hline & 5: Positive PID feedback: by single -phase pulse input (MI7), without direction (Pr. 10-16) \\
\hline & 6: Positive PID feedback: by single -phase pulse input (MI7), with direction (Pr.10-16) \\
\hline & 7: Negative PID feedback: by communication protocol \\
\hline & 8: Positive PID feedback: by communication protocol \\
\hline
\end{tabular}

1 [1] Negative feedback means: Error = Target value - Feedback.
The detection value increases by increasing the output frequency.Positive feedback means: Error = Feedback - Target value.
The detection value decreases by increasing the output frequency.When \(\operatorname{Pr} .08-00 \neq 7\) neither \(\neq 8\), the input value is disabled. The value of the setting does not remain the same after the drive is off.The related applicable parameters to set Pr.08-00 include:
- Pr.00-20 (Master frequency command source (AUTO)
- Pr.03-00-03-01:

When Pr.00-20 \(=2\), set Pr.03-00-03-01 =4 (PID target value)
When Pr.08-00 \(=1\) or 4 , set Pr.03-00-03-01 = 5 (PID feedback signal)
Refer to the following description for details.
\begin{tabular}{|l|}
\hline PID Disable: \\
Pr.08-00 \(=0\) or \\
Pr.02-01- Pr.02-06=21(PID Disable) \\
\hline
\end{tabular}

\section*{00-20 Master Frequency Command Source (AUTO, REMOTE)}

Default: 0
Settings 0: Inputs from digital keypad
1: Inputs from RS-485 communication
2: Inputs from external analog (refer to Pr.03-00, Pr.03-01)
3: Inputs from external UP / DOWN terminals (multi-function input terminals)
4: Pulse inputs without direction command (refer to Pr.10-16 without direction)

5: Pulse inputs with direction command (refer to Pr.10-16)
6: CANopen communication card
8: Communication cards (CANopen card not included)
9: PID function (Pr.08-65 should be set as 1)
NOTE:
HOA (Hand-Off-Auto) function is valid only when you use with MO function setting 42 and 56 or with KPC-CC01 (optional).

\section*{03-00 AVI Analog Input Selection \\ 03-01 ACI Analog Input Selection}

Default: 0
Settings 4: PID target value
5: PID feedback signal
1. Common applications for PID control:
- Flow control: Use a flow sensor to feedback the flow data and perform accurate flow control.
- Pressure control: Use a pressure sensor to feedback the pressure data and perform precise pressure control.
- Air volume control: Use an air volume sensor to feedback the air volume data to achieve excellent air volume regulation.
- Temperature control: Use a thermocouple or thermistor to feedback temperature data for comfortable temperature control.
- Speed control: Use a speed sensor to feedback motor shaft speed or input another machine speed as a target value for synchronous control.
2. PID control loop:

\(K_{P}\) Proportional Gain (P), \(T_{i}\) Integral Time (I), \(T_{d}\) Differential Time (D), S Calculation
3. Concept of PID control:
[1] Proportional gain (P):
The output is proportional to input. With only proportional gain control, there is always a steady-state error.
(1) Integral time (I):

The controller output is proportional to the integral of the controller input. To eliminate the steady-state error, add an "integral part" to the controller. The integral time controls the relation between the integral part and the error. The integral part increases over time even if the error is small. It gradually increases the controller output to eliminate the error until it is zero. This stabilizes the system without a steady-state error by using proportional gain control and integral time control.
[10] Differential control (D):
The controller output is proportional to the differential of the controller input. During elimination of the error, oscillation or instability may occur. Use the differential control to suppress these effects by acting before the error. That is, when the error is near 0 , the differential control should be 0 . Use proportional gain (P) and differential control (D) to improve the system state during PID adjustment.
4. Using PID control in a constant pressure pump feedback application:

Set the application's constant pressure value (bar) to be the set point of PID control. The pressure sensor sends the actual value as the PID feedback value. After comparing the PID set point and PID feedback, an error displays. The PID controller calculates the output by using proportional gain (P), integral time (I) and differential time (D) to control the pump. It controls the drive to use a different pump speed and achieves constant pressure control by using a \(4-20 \mathrm{~mA}\) signal corresponding to \(0-10\) bar as feedback to the drive.

- Pr.00-04 = 10 (display PID feedback (b) (\%))
- Pr.01-12 Acceleration Time is set according to actual conditions.
- Pr.01-13 Deceleration Time is set according to actual conditions.
- Pr.00-21 \(=0\) to operate through the digital keypad
- Pr.00-20 = 0, the digital keypad controls the set point.
- Pr.08-00 = 1 (negative PID feedback from analog input)
- ACI analog input Pr.03-01 \(=5\), PID feedback signal.
- Pr.08-01-08-03 is set according to actual conditions. If there is no vibration in the system, increase Pr.08-01 (Proportional Gain (P)) If there is no vibration in the system, decrease Pr.08-02 (Integral Time (I)) If there is no vibration in the system, increase Pr.08-03 (Differential Time (D))
- Refer to Pr.08-00-08-21 for PID parameter settings.

\section*{08-01 Proportional Gain (P)}

Default: 1.00
\[
\begin{array}{ll}
\text { Settings } & 0.0-5000.0(\text { When Pr. } 08-23 \text { bit1 }=0) \\
& 0.00-500.00(\text { When Pr. } 08-23 \text { bit1 }=1) \\
\hline
\end{array}
\]

■1.0: Kp gain is \(100 \%\); if the setting is \(0.5, \mathrm{Kp}\) gain is \(50 \%\).
Eld Eliminates the system error; usually used to decrease the error and get faster response speed. If you set the value too high, it may cause system oscillation and instability.
Ill If you set the other two gains (I and D) to zero, proportional control is the only effective parameter.

\section*{08-02 Integral Time (I)}

Default: 1.00
Settings \(0.00-100.00 \mathrm{sec}\).
1 Use the integral controller to eliminate the error during stable system operation. The integral control does not stop working until the error is zero. The integral is affected by the integral time. The smaller the integral time, the stronger the integral action. It is helpful to reduce overshoot and oscillation for a stable system. Accordingly, the speed to lower the steady-state error decreases. The integral control is often used with the other two controls for the PI controller or PID controller.
Sets the integral time of the I controller. When the integral time is long, there is a small I controller gain, with slower response and slow external control. When the integral time is short, there is a large I controller gain, with faster response and rapid external control.

1 When the integral time is too short, it may cause system oscillation.
[1] Set Integral Time to 0.00 to disable the parameter Pr.08-02.

\section*{08-03 Differential Time (D)}

Default: 0.00
Settings \(0.00-1.00 \mathrm{sec}\).
1 Use the differential controller to show the system error change, as well as to preview the change in the error. You can use the differential controller to eliminate the error in order to improve the system state. Using a suitable differential time can reduce overshoot and shorten adjustment time;
however, the differential operation increases noise interference. Note that a too large differential causes more noise interference. In addition, the differential shows the change and the differential output is 0 when there is no change. Note that you cannot use the differential control independently. You must use it with the other two controllers to for the PD controller or PID controller.Sets the \(D\) controller gain to determine the error change response. Using a suitable differential time reduces the P and I controllers overshoot to decrease the oscillation for a stable system. A differential time that is too long may cause system oscillation.
\(\mathbb{1}\) The differential controller acts on the change in the error and cannot reduce the interference. Do not use this function when there is significant interference.

\section*{08-04 Upper Limit of Integral Control}

Default: 100.0
Settings 0.0-100.0\%
1 Defines an upper bound for the integral gain (I) and therefore limits the master frequency. The formula is:
[1] Integral upper bound = Maximum Operation Frequency (Pr.01-00) x (Pr.08-04\%). An excessive integral value causes a slow response due to sudden load changes and may cause motor stall or machine damage.

\section*{08-05 PID Output Command Limit (Positive Limit)}

Default: 100.0
Settings 0.0-100.0\%Defines the percentage of the output frequency limit during the PID control. The formula is Output Frequency Limit \(=\) Maximum Operation Frequency (Pr.01-00) \(\times\) Pr.08-05\%.

\section*{08-06 PID Feedback Value by Communication Protocol}

Default: 0.00
Settings -200.00-200.00\%
[ad Use communication to set the PID feedback value when the PID feedback input is set to communication (Pr.08-00 = 7 or 8).

\section*{08-07 PID Delay Time}

Default: 0.0
Settings \(0.0-2.5 \mathrm{sec}\).
08-20 PID Mode Selection
Default: 0
Settings 0: Serial connection
1: Parallel connection
(1) Use conventional PID control structure.

1: The proportional gain, integral gain and differential gain are independent. You can customize the P, I and D value to fit your application.

1 Pr.08-07 determines the primary low pass filter time when in PID control. Setting a large time constant may slow down the drive's response rate.PID control output frequency is filtered with a primary low pass function. This function can filter a mix of frequencies. A long primary low pass time means the filter degree is high and a short primary low pass time means the filter degree is low.
[a] Inappropriate delay time setting may cause system error.PI Control:
Controlled only by the P action, so the deviation cannot be entirely eliminated. In general, to eliminate residual deviations, use the \(\mathrm{P}+\mathrm{I}\) control. When you use the PI control, it eliminates the deviation caused by the targeted value changes and the constant external interferences. However, if the I action is too powerful, it delays the response when there is rapid variation. You can use the P action by itself to control the loading system with the integral components.
\(\mathbb{D}\) PD Control:
When deviation occurs, the system immediately generates an operation load that is greater than the load generated only by the \(D\) action to restrain the deviation increment. If the deviation is small, the effectiveness of the P action decreases as well. The control objects include applications with integral component loads, which are controlled by the P action only. Sometimes, if the integral component is functioning, the whole system may vibrate. In this case, use the PD control to reduce the P action's vibration and stabilize the system. In other words, this control is useful with no brake function's loading over the processes.
[1] PID Control:
Use the I action to eliminate the deviation and the D action to reduce vibration; then combine this with the P action for the PID control. Use the PID method for a control process with no deviations, high accuracy, and a stable system.

\section*{Serial connection}

\section*{Parallel connection}

\section*{08-08 Feedback Signal Detection Time}

Default: 0.0
Settings \(0.0-3600.0 \mathrm{sec}\).
\(\square\) Pr.08-08 is valid only for \(\mathrm{ACl} 4-20 \mathrm{~mA}\).
[1] This parameter sets the detection time for abnormal PID signal feedback. Setting the detection time to 0.0 disables the detection function.

\section*{08-09 Feedback Signal Fault Treatment}

Default: 0
Settings 0: Warn and continue operation
1: Fault and ramp to stop
2: Fault and coast to stop
3: Warn and operate at last frequency
This parameter is valid only for ACI \(4-20 \mathrm{~mA}\).The AC motor drive acts when the analog PID feedback is abnormal.

\section*{08-10 Sleep Level}

Default: 0.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz} / 0.00 \sim 200.00 \%\)
08-11 Wake-up Level
Default: 0.00
Settings \(0.00-599.00 \mathrm{~Hz} / 0.00 \sim 200.00 \%\)
Determines the sleep frequency, and if the sleep time and the wake-up frequency are enabled or disabled.

Pr.08-10 = 0: Disabled
Pr.08-10 = \(=0\) : Enabled

When Pr.08-18 = 0, the unit for Pr.08-10 and that for Pr.08-11 switch to frequency. The settings are between \(0-599.00 \mathrm{~Hz}\).
When Pr.08-18 = 1, the unit for Pr.08-10 and that for Pr.08-11 switch to percentage. The settings then are between 0-200.00\%.
[1] The percentage is based on the current command value, not the maximum value. For example, if the maximum value is 100 kg , and the current value is 30 kg , then if \(\operatorname{Pr} .08-11=40 \%\), the value is 12 kg .

\section*{08-12 Sleep Delay Time}

Default: 0.0
Settings \(0.0-6000.0 \mathrm{sec}\).
When the Frequency command is smaller than the sleep frequency and less than the sleep time, the Frequency command is equal to the sleep frequency. However, the Frequency command remains at 0.00 Hz until the Frequency command becomes equal to or larger than the wake-up frequency.

\section*{08-13 PID Feedback Signal Error Deviation Level}

Default: 10.0
Settings 1.0-50.0\%

\section*{08-14 PID Feedback Signal Error Deviation Time}

Default: 5.0
Settings \(0.1-300.0 \mathrm{sec}\).

\section*{08-15 PID Feedback Signal Filter Time}

Default: 5.0
Settings \(0.1-300.0 \mathrm{sec}\).
@ When the PID control function is normal, it should calculate the value within a period of time that is close to the target value.
Refer to the PID control diagram for details. When executing PID feedback control, if |PID reference target value - detection value| > Pr.08-13 PID Deviation Level and exceeds Pr.08-14 setting, it is judged as a PID control fault, and the multi-function output MO \(=15\) (PID feedback error) activates.

\section*{08-16 PID Compensation Selection}

Default: 0

\section*{Settings 0: Parameter setting}

1: Analog input
0 : The setting for Pr.08-17 gives the PID compensation value.

\section*{08-17 PID Compensation}

Default: 0
Settings -100.0-100.0\%
[al The PID compensation value \(=\) maximum PID target value \(\times\) Pr.08-17. For example, if the maximum operation frequency Pr. \(01-00=60 \mathrm{~Hz}\), and \(\operatorname{Pr} .08-17=10.0 \%\), the PID compensation value increases the output frequency \(6.00 \mathrm{~Hz} .60 .00 \mathrm{~Hz} \times 100.00 \% \times 10.0 \%=6.00 \mathrm{~Hz}\)

\section*{08-18 Sleep Mode Function Setting}

Default: 0

\section*{Settings 0: Refer to PID output command \\ 1: Refer to PID feedback signal}

0: The unit for Pr.08-10 and that for Pr.08-11 switch to frequency. The settings then are between \(0.00-599.00 \mathrm{~Hz}\).

1: The unit for Pr.08-10 and that for Pr.08-11 switch to percentage. The settings then are between 0.00-200.00\%.

\section*{08-19 Wake-up Integral Limit}

Default: 50.0
Settings 0.0-200.0\%
Reduces the reaction time from sleep to wake-up.
The wake-up integral limit for the drive prevents suddenly running at high speed when the drive wakes up. The wake-up integral frequency limit \(=(\operatorname{Pr} .01-00 \times \operatorname{Pr} .08-19 \%)\)

\section*{08-21 Enable PID to Change the Operation Direction}

Default: 0
Settings 0: Operation direction can be changed
1: Operation direction cannot be changed

\section*{08-22 Wake-up Delay Time}

Default: 0.00
Settings \(\quad 0.00-600.00 \mathrm{sec}\).Refer to Pr.08-18 for more information.

\section*{08-23 PID Control Flag}

Default: 2
Settings bit \(0=1\), PID running in reverse follows the setting for Pr.00-23.
bit \(0=0\), PID running in reverse refers to PID's calculated value.
bit \(1=1\), two decimal place of PID Kp
bit \(1=0\), one decimal place of PID Kp
bit \(0=1\) : Enable PID running in reverse.
[1] bit \(0=0\) : If the PID calculated value is positive, the direction is forward. If the PID calculated value is negative, the direction is reverse.

When the setting of bit 1 changes, the Kp gain does not change. For example: \(\mathrm{Kp}=6\), when Pr. \(08-23\) bit \(1=0, K p=6.0\); when Pr. \(08-23\) bit \(1=1, K p=6.00\).

There are three scenarios for sleep and wake-up frequency.
1) Frequency Command (PID is not in use, Pr. \(08-00=0\), only works in VF mode)

When the output frequency \(\leq\) the sleep frequency, and the drive reaches the preset sleep time, then the the drive is in sleep mode \((0 \mathrm{~Hz})\). When the frequency command reaches the wakeup frequency, the drive starts to count the wake-up delay time. When the drive reaches the wakeup delay time, it starts to catch up to reach the frequency command value by the acceleration time.

2) Frequency Command Calculation of the Internal PID (Use PID, Pr.08-00 \(=0\) and Pr.08-18 \(=0\))

When the PID calculation Frequency command reaches the sleep frequency, the drive starts to count the sleep time and the output frequency starts to decrease. If the drive exceeds the preset sleep time, then the drive is in sleep mode \((0 \mathrm{~Hz})\). If the drive does not reach the preset sleep time, it remains at the lower frequency limit (if there is a preset lower limit.), or it remains at the minimum output frequency set at Pr.01-07 and waits until it reaches the sleep time before it going into sleep mode \((0 \mathrm{~Hz})\). When the PID calculated Frequency command reaches the wakeup frequency, the drive starts to count the wake-up delay time. Once it reaches the wake-up delay time, the drive starts to catch up to reach the PID Frequency command value by the acceleration time.

\section*{3) PID Feedback Rate Percentage (Use PID, Pr.08-00 \(=0\) and Pr.08-18 = 1)}

When the PID feedback value reaches the sleep level percentage, the drive starts to count the sleep time and the output frequency starts to decrease. If the drive exceeds the preset sleep time, then the drive is in sleep mode (0 Hz). If the drive does not reach the preset sleep time, it remains at the lower frequency limit (if there is a preset of lower limit.), or it remains at the minimum output frequency set for Pr.01-07 and waits until it reaches the sleep time before going into sleep mode \((0 \mathrm{~Hz})\).

When the PID feedback value reaches the wake-up percentage, the drive starts to count the wake-up delay time. Once it reaches the wake-up delay time, the drive starts to catch up to reach the PID Frequency command value by the acceleration time.

\section*{Example 01: PID negative feedback}
- Pr.08-10 must > Pr.08-11
- 30 kg is the reference
- Set the parameter:

Pr.03-00 = 5 (AVI is PID feedback)
Pr.08-00 = 1 (PID negative feedback: AVI simulation input function select)
Pr.08-10 = 40\% (Sleep reference:
\[
12 \mathrm{~kg}=40 \% * 30 \mathrm{~kg})
\]

Pr.08-11 = 20\% (Wake-up reference:
\[
6 \mathrm{~kg}=20 \% * 30 \mathrm{~kg})
\]

Case 01: If feedback \(>12 \mathrm{~kg}\), frequency decreases.
Case 02: If feedback <6kg, frequency increases.
\begin{tabular}{|c|l|}
\hline Area & \multicolumn{1}{c|}{\begin{tabular}{c}
PID \\
Physical quantity
\end{tabular}} \\
\hline Sleep area & \begin{tabular}{l}
\(>12 \mathrm{~kg}\), the drive \\
goes into sleep, the \\
motor goes into sleep
\end{tabular} \\
\hline \begin{tabular}{c}
Excessive \\
area
\end{tabular} & \begin{tabular}{l}
between 6 kg and 12 \\
kg , the drive remains \\
in current state
\end{tabular} \\
\hline \begin{tabular}{c}
Wake-up \\
area
\end{tabular} & \begin{tabular}{l}
\(<6\) kg, the drive \\
wakes-up, the motor \\
wakes-up
\end{tabular} \\
\hline
\end{tabular}

Example 02: PID positive feedback
- Pr.08-10 must < Pr.08-11
- 30 kg is the reference
- Set the parameter:

Pr.03-00 = 5 (AVI is PID feedback)
Pr.08-00 = 4 (PID positive feedback: AVI
simulation input function select)
Pr.08-10 = 110\% (Sleep reference:
\(33 \mathrm{~kg}=110 \% * 30 \mathrm{~kg})\)
Pr.08-11 = 120\% (Wake-up reference:
\[
36 \mathrm{~kg}=120 \% * 30 \mathrm{~kg})
\]

Case 01: If feedback \(<33 \mathrm{~kg}\), frequency decreases.
\begin{tabular}{|c|l|}
\hline Area & \multicolumn{1}{c|}{\begin{tabular}{c}
PID \\
Physical quantity
\end{tabular}} \\
\hline Sleep area & \begin{tabular}{l}
\(>36 \mathrm{~kg}\), the drive \\
goes into sleep, the \\
motor goes into sleep
\end{tabular} \\
\hline \begin{tabular}{c}
Excessive \\
area
\end{tabular} & \begin{tabular}{l}
between 33 kg and 36 \\
kg, the drive remains \\
in the current state
\end{tabular} \\
\hline Wake-up & \begin{tabular}{l}
\(<33 \mathrm{~kg}\), the drive \\
wakea
\end{tabular} \\
\hline
\end{tabular}

Case 02: If feedback \(>36 \mathrm{~kg}\), frequency increases.

\section*{08-26 PID Output Command Limit (Reverse Limit)}

Default: 100.0
Settings 0.0-100.0\%
When PID enables the reverse direction, the PID output amount is a negative value, and the PID output value is limited by the setting for Pr.08-26. Use this function with Pr.08-21.

\section*{08-27 PID Command Acceleration / Deceleration Time}

Default: 0.00
Settings \(0.00-655.35 \mathrm{sec}\).0.00 seconds: Disables the PID acceleration/deceleration command, and the target value is equal to the PID command.

Not equal to 0.00 seconds: Enables the PID acceleration / deceleration command. For PID acceleration and deceleration, when the PID target value changes, the command value increment / decrement is executed according to this parameter.

\section*{08-29 Frequency Base Corresponding to 100.00\% PID}

Default: 0.00
Settings 0: PID control output 100.00\%, corresponding to maximum operation frequency (Pr.01-00)

1: PID control output 100.00\%, corresponding to the input value of the auxiliary frequency
Valid when you enable the auxiliary and master frequency functions.
When Pr.08-29 = 0, PID control output 100.00\% corresponding to the maximum output frequency; When Pr. \(08-29=1\), PID control output \(100.00 \%\) corresponding to the input value of the auxiliary frequency. If the auxiliary frequency changes, the PID output frequency also changes.

\section*{08-31 Proportional gain 2}

Default: 1.00

> \begin{tabular}{ll} Settings & \(0.0-5000.0(\) when Pr.08-23 setting bit1 \(=0)\) \\ & \(0.00-500.00(\) when Pr. \(08-23\) setting bit1 \(=1)\) \\ \hline \end{tabular}

\section*{08-32 Integral time 2}

Default: 1.00
Settings \(0.00-100.00 \mathrm{sec}\).

\section*{08-33 Differential time 2}

Default: 0.00
Settings \(0.00-1.00 \mathrm{sec}\).

\section*{08-65 Source of PID Target Value}

Default: 0
Settings 0: From frequency command (Pr.00-20, 00-30)
1: From Pr.08-66
2: From RS-485
3: From external analog (refer to Pr.03-00, 03-01)
4: From CANopen
6: From communication cards (CANopen card not included)
7: By the digital dial on the keypad
[1] Selects the target value source for PID controller.
[1] When Pr.08-65 = 0, the maximum operating frequency \(01-00\) is 60 Hz , the error is \(100 \%\), and Pr.08-01 \(=1.00\), the output frequency is "' 1 " times of the Pr.01-00 maximum operating frequency, therefore, the output frequency \(=60 \times 100 \% \times 1=60 \mathrm{~Hz}\).
Calculation formula:
Output frequency \(=\) Fmax (Pr.01-00) \(\times\) error\% ((PID reference value (Pr.00-20 / Pr.00-30) - PID feedback (Pr.08-00)) \(\times\) Pr.08-01.
[1] When Pr.08-65 \(\neq 0\), the internal calculation of Proportional gain will be reduced by 100 times, that is, when Pr.01-00 Fmax \(=60 \mathrm{~Hz}\), error \(=100 \%\), \(\operatorname{Pr} .08-01=1.00\), the output frequency is Pr.01-00 Fmax " 0.01 " times, therefore, the output frequency \(=60 \times 100 \% \times 0.01=0.6 \mathrm{~Hz}\).
Calculation formula:
Output frequency \(=\) Fmax (Pr.01-00) \(\times\) error\% ((PID reference value (Pr.08-66) - PID feedback value (Pr.08-00)) \(\times\) Pr.08-01 \(\times 0.01\).
[1] When Pr.08-65=0, the PID controller architecture shows as the diagram below:

When Pr. \(08-65 \neq 0\), the PID controller architecture shows as the diagram below:

When Pr.08-65 is not set to 0, Pr.00-20 is automatically set to 9 .
(1) When Pr.08-65 is set to 1 , set the PID command through Pr.08-66; when Pr.08-65 is not set to 1, Pr.08-66 displays the PID command.
\(\square\) When Pr.08-65 is set to 2 , 4 , and 6, the corresponding communication address is C 2003 H .

\section*{08-66 PID Target Value Setting}

Default: 50.00
Settings -100.00-100.00\%
[1] The target value setting of PID controller (Pr.08-66) is a relative value

\title{
08-67 Master and Auxiliary Reverse Running Cutoff Frequency
}

Default: 10.0
Settings \(0.0-100.0 \%\)
[1] 100\% corresponds to Pr.01-00 the Maximum operation frequency
1 In some cases, it is only possible for the PID to control the value setting and the feedback in the same situation when the PID output frequency is negative (the motor is reversed). However, an excessively high reversal frequency is not allowed in some cases, and Pr.08-67 is used to determine the upper limit of the reversal frequency

\section*{08-68 PID Deviation Limit}

Default: 0.00
Settings 0.00-100.00\%
[1] When Pr.08-68 is not set to 0 , the PID deviation limit function is enabled.
When PID deviation \(\leq\) PID deviation limit, PID stops adjusting action. It means the PID output frequency maintains the previous value and this function is effective for some closed-loop control applications.

\section*{08-69 Integral Separation Level}

Default: 0.00
Settings 0.00-100.00\%
\(\square\) Reduces overshoot when overshoot occurs in the PID feedback at start-up.
When Pr.08-69 is not set to 0 , the integral separation function is enabled.
[1] The benchmark for the integral separation level is the PID error\%.
The integral separation function activates only once at start-up.
When PID deviation \(\geq\) Pr.08-69, the integral effect is cancelled to avoid the increasing system overshoot due to the integral effect. When PID deviation is smaller than Pr.08-69, the integral effect is activated to eliminate the steady-state error.

\section*{08-70 Smart Start-up Level}

Default: 5.00
Settings 0.00-100.00\%
08-71 Smart Start-up Frequency Command
Default: 0.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)

\section*{08-72 Smart Start-up Acceleration Time}

Default: 3.00
Settings \(0.00-600.00 \mathrm{sec}\).
lid When Pr.08-71 is not set to 0 , the smart start function is enabled.
1 The benchmark for the smart start level is the percentage of PID deviation.
1 Use the smart start-up function to reduce overshoot when overshoot occurs in the PID feedback at start-up. The smart start-up activates only once at start-up.

1 When the smart start-up function is enabled, it starts with the Pr.08-71 frequency and Pr.08-72 acceleration time (Pr.08-72 acceleration time is the time that it accelerates to Pr.08-71).

When the PID deviation is smaller than Pr.08-70, it switches to the normal PID control (the smart start-up frequency is filled into the PID integral when switching to PID control to avoid discontinuous frequency).

\section*{08-75 PID2 Parameter Switch Condition}

Default: 0
Settings 0: No switching (refer to Pr.08-01-Pr.08-03)
1: Auto-switch is based on the output frequency
2: Auto-switch is based on the deviation

\section*{08-76 PID2 Parameter Switch Deviation 1}

Default: 10.00
Settings 0.00-Pr.08-77\%

\section*{08-77 PID2 Parameter Switch Deviation 2}

Default: 40.00
Settings Pr.08-76-100.00\%
A set of PID parameters cannot meet the requirements of the entire running process in some applications. Use Pr.08-75 to switch to the second group of PID parameter Pr.08-31-Pr.08-33. The setting method for Pr.08-31-08-33 is the same as that for Pr.08-01-08-03.
[10] The two sets of PID parameters switch automatically according to the frequency and deviation. Switch according to the output frequency:
- When the output frequency is between Pr.01-07 and Pr.01-00, the PID parameter is the linear interpolation value between the two PID parameter groups.

Switch according to the deviation:
- When the deviation absolute value between the set point and feedback is smaller than Pr.08-76 (PID2 Parameter Switch Deviation 1), the first group PID parameters are used.
- When the deviation absolute value between the set point and feedback is larger than Pr.0877 (PID2 Parameter Switch Deviation 2), the second group PID parameters are used.
- When the deviation absolute value between the set point and feedback is between Pr.0876 and Pr.08-77, the PID parameter is the linear interpolation value between the two PID parameter groups.

\section*{08-78 Allowed reverse running time after start-up}

Default: 0.0
Settings \(0.0-6553.5 \mathrm{sec}\).
1 When Pr.08-78 is not set to 0 , allowed reverse running time after start-up is enabled.
When it set to 1 second, the PID control is not allowed to change the running direction within \(0-\) 1 seconds of starting time (Pr.08-21 = 0), and is allowed to change after 1 second of starting time (Pr.08-21 = 1).

\section*{08-79 WireBreak detected upper level}

Default: 0
Settings 0-100\%

\section*{08-80 WireBreak detected lower level}

Default: 0
Settings 0-100\%
08-81 WireBreak detected Time
Default: 0.000
Settings \(0.000-65.535 \mathrm{sec}\).
08-82 WireBreak treatment
Default: 0
Settings 0: Warn and do not stop
1: ramp to stop
2: coast to stop
3: Warn, PID hold
Since the tension control may be activated during unwinding, there must be a mechanism to determine the material cutoff after rewind.As shown in the figure, the breaking section is set at the lower level. When WireBreak starting, the pendulum is at the lower level that the winding condition is not established. When the pendulum is greater than the command value, the WireBreak condition is established. When the pendulum reaches the lower level and the count value reaches the setting, the drive stopped according to Pr.00-22.

[This page intentionally left blank]

\section*{09 Communication Parameters}

When using the communication interface, the diagram on the right shows the communication port pin definitions. We recommend that you connect the AC motor drive to your PC by using Delta IFD6530 or IFD6500 as a communication converter.

Modbus RS-485
PIN 1: CAN_H PIN 2: CAN \({ }^{-}\)L
PIN 3, 7: SḠND
PIN 4: SG-
PIN 5: SG+
PIN 6: Reserved PIN 8: +10VS
\(\wedge\) You can set this parameter during operation.

\section*{09-00 Communication Address}

Default: 1

\section*{Settings 1-254}

If RS-485 serial communication controls the AC motor drive, you must set the communication address for this drive in this parameter. Each AC motor drive's communication address must be different.

\section*{09-01 COM1 Transmission Speed}

Default: 9.6

\section*{Settings \(4.8-115.2 \mathrm{Kbps}\)}
[10] Sets the transmission speed of the computer and the drive.
Options are 4.8 Kbps, 9.6 Kbps, 19.2 Kbps, 38.4 Kbps, 57.6 Kbps, or 115.2 Kbps; otherwise, the transmission speed is set to the default 9.6 Kbps .

\section*{09-02 COM1 Transmission Fault Treatment}

Default: 3
\[
\begin{array}{ll}
\text { Settings } & 0: \text { Warn and continue operation } \\
& \text { 1: Fault and ramp to stop } \\
& \text { 2: Fault and coast to stop } \\
& \text { 3: No warning, no fault, and continue operation }
\end{array}
\]
[1] Sets the response for Modbus communication errors in with the host. Set the detection time in Pr.09-03.When a transmission error occurs (for example, the error code CE10 is displayed), the error remains even if the transmission status returns to normal, and does not clear automatically. In this case, set a reset command (Reset) to clear the error.

\section*{09-03 COM1 Time-out Detection}

Default: 0.0
Settings \(0.0-100.0 \mathrm{sec}\).
Sets the communication time-out.

\section*{09-04 COM1 Communication Protocol}
\[
\begin{aligned}
& \text { Settings 1:7, N, } 2 \text { (ASCII) } \\
& \text { 2: 7, E, } 1 \text { (ASCII) } \\
& \text { 3: 7, O, } 1 \text { (ASCII) } \\
& \text { 4: 7, E, } 2 \text { (ASCII) } \\
& \text { 5: 7, O, } 2 \text { (ASCII) } \\
& \text { 6: 8, N, } 1 \text { (ASCII) } \\
& \text { 7: 8, N, } 2 \text { (ASCII) } \\
& \text { 8: 8, E, } 1 \text { (ASCII) } \\
& \text { 9: 8, O, } 1 \text { (ASCII) } \\
& \text { 10: 8, E, } 2 \text { (ASCII) } \\
& \text { 11: 8, O, } 2 \text { (ASCII) } \\
& \text { 12: 8, N, } 1 \text { (RTU) } \\
& \text { 13: 8, N, } 2 \text { (RTU) } \\
& \text { 14: 8, E, } 1 \text { (RTU) } \\
& \text { 15: 8, O, } 1 \text { (RTU) } \\
& \text { 16: 8, E, } 2 \text { (RTU) } \\
& \text { 17: 8, O, } 2 \text { (RTU) }
\end{aligned}
\]

Control by PC (Computer Link)
When using the RS-485 serial communication interface, you must specify each drive's communication address in Pr.09-00. The computer then implements control using the drives' individual addresses.

Modbus ASCII (American Standard Code for Information Interchange): Each byte of data is the combination of two ASCII characters.

\section*{09-09 Communication Response Delay Time}

Default: 2.0
Settings \(\quad 0.0-200.0 \mathrm{~ms}\)
1 Sets the response delay time after the AC motor drive receives a communication command as shown in the following.

\section*{09-10 Communication Main Frequency}

Default: 60.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
[1] When you set Pr.00-20 to 1 (RS-485 serial communication), the AC motor drive saves the last Frequency command into Pr.09-10 when there is abnormal power off or momentary power loss. After the drive reboots when power is restored, it checks the frequency in Pr.09-10 if no new Frequency command is input. When a Frequency command of 485 changes (the Frequency command source must be set as Modbus), this parameter also changes.
\begin{tabular}{|c|c|}
\hline 09-11 & Block Transfer 1 \\
\hline 09-12 & Block Transfer 2 \\
\hline 09-13 & Block Transfer 3 \\
\hline 09-14 & Block Transfer 4 \\
\hline 09-15 & Block Transfer 5 \\
\hline 09-16 & Block Transfer 6 \\
\hline 09-17 & Block Transfer 7 \\
\hline 09-18 & Block Transfer 8 \\
\hline 09-19 & Block Transfer 9 \\
\hline 09-20 & Block Transfer 10 \\
\hline 09-21 & Block Transfer 11 \\
\hline 09-22 & Block Transfer 12 \\
\hline 09-23 & Block Transfer 13 \\
\hline 09-24 & Block Transfer 14 \\
\hline 09-25 & Block Transfer 15 \\
\hline 09-26 & Block Transfer 16 \\
\hline
\end{tabular}

Default: 0
Settings 0-65535
1 There is a group of block transfer parameters available in the AC motor drive (Pr.09-11-Pr.09-26). Using communication code 03H, you can store the parameters (Pr.09-11-Pr.09-26) that you want to read.

11 For example: according to the Address List (as shown in the table below), Pr.01-42 is shown as 012A. Set Pr.09-11 to 012Ah (the minimum voltage of Pr.01-42 M2 is 2.0 V), and use Pr.09-11 (communication address 090B) to read the communication parameter, the read value is 2.0.
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{c}
AC motor drive \\
parameters
\end{tabular} & GGnnH & \begin{tabular}{l}
GG is the parameter group, nn is the parameter number; for example, \\
the address of Pr.04-10 is 040AH.
\end{tabular} \\
\hline
\end{tabular}

1 Mind if the block transfer parameters are read only. If the data is written to read-only parameters from the upper unit, a communication error may occur.

\section*{09-30 Communication Decoding Method}

Default: 1
Settings 0 : Decoding method 1 (20xx)
1: Decoding method 2 (60xx)EtherCAT card only supports decoding method 2 (60xx).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Decoding Method} & Decoding Method 1 & Decoding Method 2 \\
\hline \multirow{6}{*}{Source of Operation Control} & Digital Keypad & \multicolumn{2}{|l|}{Digital keypad controls the drive action regardless of decoding method 1 or 2.} \\
\hline & External Terminal & \multicolumn{2}{|l|}{External terminal controls the drive action regardless of decoding method 1 or 2.} \\
\hline & RS-485 & \multicolumn{2}{|l|}{RS-485 controls the drive referring to index 2000h - 20FFh} \\
\hline & CANopen & Refer to index: 2020-01h-2020-FFh & Refer to index:2060-01h-2060-FFh \\
\hline & Communication Card & Refer to address: 2000h-20FFh & Refer to address: 6000h-60FFh \\
\hline & PLC & \multicolumn{2}{|l|}{PLC command controls the drive action regardless of decoding method 1 or 2.} \\
\hline
\end{tabular}

NOTE: Refer to section 15-4 CANopen Supported Index for the definition of 6000H.

\section*{09-31 Internal Communication Protocol}

\author{
Default: 0
}

Settings 0: Modbus 485
-1: Internal communication slave 1
-2: Internal communication slave 2
-3: Internal communication slave 3
-4: Internal communication slave 4
-5: Internal communication slave 5
-6: Internal communication slave 6
-7: Internal communication slave 7
-8: Internal communication slave 8
-10: Internal communication master
-12: Internal PLC control
When it is defined as internal communication, refer to Section 16-10 for Main Control Terminal of Internal Communication.

When it is defined as internal PLC control, refer to Section 16-11 for Remote IO control application (using MODRW).

\section*{09-33 PLC Command Force to 0}

Default: 0
Settings 0-65535
Defines whether the Frequency command or the Speed command must be cleared to zero or not before the PLC starts the next scan.
\begin{tabular}{|c|l|}
\hline bit & \multicolumn{1}{c|}{ Explanation } \\
\hline bit 0 & Before PLC scan, set the PLC target frequency \(=0\) \\
\hline bit 1 & Before PLC scan, set the PLC target torque \(=0\) \\
\hline bit 2 & Before PLC scan, set the speed limit of torque control mode \(=0\) \\
\hline
\end{tabular}

\section*{09-35 PLC Address}

Default: 2
Settings 1-254
09-36 CANopen Slave Address
Default: 2
Settings 0: Disable
1-127

\section*{09-37 CANopen Speed}

Default: 0
Settings \(0: 1 \mathrm{Mbps}\)
1: 500 kbps
2: 250 kbps
3: 125 kbps
4: 100 kbps (Delta only)
5: 50 kbps

\section*{09-39 CANopen Warning Record}

Default: 0
Settings bit 0: CANopen software disconnection 1 (CANopen Guarding Time-out) bit 1: CANopen software disconnection 2 (CANopen Heartbeat Time-out)
bit 3: CANopen SDO time-out
bit 4: CANopen SDO buffer overflow
bit 5: CANopen hardware disconnection warning (Can Bus OFF)
bit 6: Error protocol for CANopen

\section*{09-40 CANopen Decoding Method}

Default: 1
Settings 0: Use Delta-defined decoding method 1: Use CANopen Standard DS402 protocol

\section*{09-41 CANopen Communication Status}

Default: Read Only
Settings 0: Node Reset State
1: Com Reset State
2: Boot up State
3: Pre-operation State
4: Operation State
5: Stop State

\section*{09-42 CANopen Control Status}

Default: Read Only
Settings 0: Not ready for use state
1: Inhibit start state
2: Ready to switch on state
3: Switched on state
4: Enable operation state
7: Quick stop active state
13: Error reaction activation state
14: Error state

\section*{09-43 CANopen Reset Index}

Default: 65535
Settings bit 0: CANopen reset, the internal address 20XX is 0
bit 1: CANopen reset, the internal address 264X is 0
bit 2: CANopen reset, the internal address 26AX is 0
bit 3: CANopen reset, the internal address 60 XX is 0

\section*{09-60 Communication Card Identifications}

\author{
Settings 0: No communication card \\ 1: DeviceNet Slave \\ 2: PROFIBUS-DP Slave \\ 3: CANopen Slave / Master \\ 5: EtherNet/IP Slave \\ 6: EtherCAT \\ 10: Backup Power Supply \\ 12: PROFINET
}

09-61 Firmware Version of Communication Card
09-62 Product Code
09-63 Error Code
Default: Read Only
Settings Read only
09-70 Communication Card Address (for DeviceNet or PROFIBUS)
Default: 1
Settings DeviceNet: 0-63
PROFIBUS-DP: 1-125
09-71 DeviceNet Speed Setting (for DeviceNet)
Default: 2
Settings Standard DeviceNet:
0: 125 Kbps
1: 250 Kbps
2: 500 Kbps
3: 1 Mbps (Delta Only)
Non-standard DeviceNet (Delta only) :
0: 10 Kbps
1: 20 Kbps
2: 50 Kbps
3: 100 Kbps
4: 125 Kbps
5: 250 Kbps
6: 500 Kbps
7: 800 Kbps

\section*{09-72 Other DeviceNet Speed Settings (for DeviceNet)}

Default: 0
Settings 0: Disable:
In this mode, baud rate must be \(125 \mathrm{Kbps}, 250 \mathrm{Kbps}, 500 \mathrm{Kbps}\), or 1 Mbps in the standard DeviceNet speed.
1: Enable:
In this mode, DeviceNet baud rate must be same as that for CANopen baud rate (0-8).
Use this parameter with Pr.09-71.
0 : The baud rate can only be set to \(125 \mathrm{Kbps}, 250 \mathrm{Kbps}\) and 500 Kbps as a standard DeviceNet speed.
[1] 1: The DeviceNet communication rate can be the same as that for CANopen (setting 0-8).

\section*{09-75 Communication Card IP Configuration (for EtherNet)}

Default: 0

\section*{Settings 0: Static IP}

1: Dynamic IP (DHCP)0 : Set the IP address manually.1: IP address is automatically set by the host controller.
\begin{tabular}{l|c|l}
\(\mathcal{N}\) & \(09-76\) & Communication Card IP Address 1 (for EtherNet) \\
\(\mathcal{N}\) & \(09-77\) & Communication Card IP Address 2 (for EtherNet) \\
\(\mathcal{N}\) & \(09-78\) & Communication Card IP Address 3 (for EtherNet) \\
\(\mathcal{N}\) & \(09-79\) & Communication Card IP Address 4 (for EtherNet)
\end{tabular}

Default: 0
Settings 0-255
[a] Use Pr.09-76-09-79 with a communication card.
\begin{tabular}{l|l|l}
\(\mathcal{N}\) & \(\mathbf{0 9 - 8 0}\) & Communication Card Address Mask 1 (for EtherNet) \\
\(\mathcal{N}\) & \(\mathbf{0 9 - 8 1}\) & Communication Card Address Mask 2 (for EtherNet) \\
\(\mathcal{N}\) & \(\mathbf{0 9 - 8 2}\) & Communication Card Address Mask 3 (for EtherNet) \\
\(\mathcal{N}\) & \(\mathbf{0 9 - 8 3}\) & Communication Card Address Mask 4 (for EtherNet) \\
\hline
\end{tabular}

Default: 0
Settings 0-255
\begin{tabular}{c|c|l}
\(\mathcal{N}\) & 09-84 & Communication Card Gateway Address 1 (for EtherNet) \\
\(\mathcal{N}\) & \(\mathbf{0 9 - 8 5}\) & Communication Card Gateway Address 2 (for EtherNet) \\
\(\mathcal{N}\) & \(\mathbf{0 9 - 8 6}\) & Communication Card Gateway Address 3 (for EtherNet) \\
\(\mathcal{N}\) & \(\mathbf{0 9 - 8 7}\) & Communication Card Gateway Address 4 (for EtherNet)
\end{tabular}

Default: 0

\section*{09-88 Communication Card Password (low word) (for EtherNet) \\ 09-89 Communication Card Password (high word) (for EtherNet) \\ Default: 0 \\ Settings 0-99}

09-90 Reset Communication Card (for EtherNet)
Default: 0
Settings 0: Disable
1: Reset, return to default

\section*{09-91 Additional Settings for the Communication Card (for EtherNet) \\ Default: 0}
\(\begin{array}{ll}\text { Settings } & \text { bit 0: Enable IP filter } \\ & \text { bit 1: Enable Internet parameters (1 bit) }\end{array}\)
When the IP address is set, this bit is enabled. After updating the parameters for the communication card, this bit changes to be disabled.
bit 2: Enable login password (1 bit)
When you enter the login password, this bit is enabled. After updating the communication card parameters, this bit changes to be disabled.

\section*{09-92 Communication Card Status (for EtherNet)}

Default: 0
Settings bit 0: Enable password When the communication card is set with a password, this bit is enabled. When the password is cleared, this bit is disabled.

\section*{10 Speed Feedback Control Parameters}

N You can set this parameter during operation.

\section*{10-00 Encoder Type Selection}

Default: 0

\author{
Settings 0: Disabled \\ 1: ABZ \\ 3: Resolver 1x PM encoder \\ 5. Pulse input (MI7)
}

1 When you use the MI7 single-phase pulse input function, you must use it with Pr.00-20 \(=4\), Pr. 10-00 \(=5\) and Pr.10-16 \(=5\)
1 When you use the MI6 and MI7 two-phase pulse input function, you must use them with Pr.00-20 \(=4\), Pr. \(10-00=0\), Pr. \(10-16=1-4\)

1 When you use MI7 single-phase pulse input as speed feedback, you must use it with Pr. 10-00 \(=5\) and Pr.10-02 \(=5\). The drive calculates the MI7 single-phase pulse input speed when the control modes are VF, VFPG, SVC, IM / PM FOC Sensorless, or IM / PM TQC.
\(\square\) When you use MI6 and MI7 two-phase pulse input as speed feedback, you must use them with Pr. 10-00 \(=5\) and Pr.10-02 \(=1-4\). The drive calculates the MI6 and MI7 two-phase pulse input speed when the control modes are VF, VFPG, SVC, IM / PM FOC Sensorless, or IM / PM TQC.

\section*{10-01 Encoder Pulses per Revolution}

Default: 600
Settings 1-20000
10 This parameter sets the encoder pulses per revolution (ppr). It is a feedback control signal source when using PG. The encoder sets the number of pulses for the motor rotating through one rotation. The A / B phase cycle generates the pulse number.This setting is also the encoder resolution. The speed control is more accurate with higher resolution.If you set this parameter incorrectly, it may cause motor stall, drive over-current, or a magnetic pole origin detection error for the PM motor in closed-loop control. When using the PM motor, you must perform the magnetic pole origin point detection (Pr.05-00 \(=4\)) again if you modify the content of this parameter.

\section*{10-02 Encoder Input Type Setting}

Default: 0
Settings 0: Disable
1: Phases \(A\) and \(B\) are pulse inputs, forward direction if \(A-p h a s e ~ l e a d s ~ B-~\) phase by 90 degrees.

2: Phases \(A\) and \(B\) are pulse inputs, forward direction if \(B\)-phase leads \(A\) phase by 90 degrees.

3: Phase \(A\) is a pulse input and phase \(B\) is a direction input (low input = reverse direction, high input = forward direction).

4: Phase \(A\) is a pulse input and phase \(B\) is a direction input (low input = forward direction, high input = reverse direction).

5: Single-phase input (MI7)

\section*{NOTE:}

1: When the MH300 inputs the A / B phase pulse, you must connect the MI6 terminal to the A-phase pulse, and the MI7 terminal to the B-phase pulse.

2: When the MH300 uses single-phase input, it disables the MI6 function and prohibits any signal connection.
Velocity control: PG2 acts according to the setting for Pr.10-01 (PG1 ppr), and will not be affected by PG1 pulse (single-phase pulse or A / B phase pulse). When the setting for Pr.10-00, Pr.10-01 and Pr.10-02 are changed, cycle the power of the motor drive.
1. The speed formula is (input ppr) / (PG1 ppr), when PG1 ppt \(=2500, \mathrm{PG} 2\) is single-phase pulse, and the input pps is 1000 (1000 pulse per second), the speed should be \((1000 / 2500)=0.40 \mathrm{~Hz}\).
2. The same pps inputs of \(A / B\) phase pulse or single-phase pulse input should get the same frequency command.

\section*{10-03 Frequency Division Output Setting (Denominator)}

\section*{Default: 1}

Settings 1-255Sets the denominator for the frequency division of the PG card feedback and output. When you set it to 2 with feedback 1024 ppr, PG OUT (pulse output) of PG card is \(1024 / 2=512\) ppr.

\section*{10-04 Electrical Gear at Load Side A1}

10-05 Electrical Gear at Motor Side B1
10-06 Electrical Gear at Load Side A2
10-07 Electrical Gear at Motor Side B2
Default: 100
Settings 1-65535
Use Pr.10-04-10-07 with the multi-function input terminal setting 48 to switch to Pr. 10-04-10-05 or Pr.10-06-10-07, as shown in the diagram below.

A1 \(=\) Mechanical Gear A1 at Load Side (Pr. 10-04)
B1 = Mechanical Gear B1 at Motor Side (Pr.10-05)
A2 \(=\) Mechanical Gear A2 at Load Side (Pr. 10-06)
B2 \(=\) Mechanical Gear B2 at Motor Side (Pr.10-07)

\section*{10-08 Encoder Feedback Fault Treatment}

Default: 2
Settings 0: Warn and continue operation
1: Fault and ramp to stop
2: Fault and coast to stop

\section*{10-09 Encoder Feedback Fault Detection Time}

Default: 1.0
Settings \(0.0-10.0 \mathrm{sec}\). (0: disabled)
1 When there is an encoder loss, an encoder signal error, a pulse signal setting error or a signal error, if the duration exceeds the detection time for the encoder feedback fault (Pr.10-09), the encoder signal error occurs. Refer to Pr.10-08 for encoder feedback fault treatment.
1 When the speed controller signal is abnormal, if time exceeds the detection time for the encoder feedback fault (Pr.10-09), the feedback fault occurs. Refer to Pr.10-08 for the encoder feedback fault treatment.

\section*{10-10 Encoder Stall Level}

Default: 115
Settings 0-120\% (0: No function)
[1] This parameter determines the maximum encoder feedback signal allowed before a fault occurs. The maximum operation frequency for Pr.01-00 \(=100 \%\)

\section*{10-11 Encoder Stall Detection Time}

Default: 0.1
Settings 0.0-2.0 sec.

\section*{10-12 Encoder Stall Action}

Default: 2
Settings 0: Warn and continue operation
1: Fault and ramp to stop
2: Fault and coast to stop
1 When the drive output frequency exceeds the encoder stall level (Pr.10-10), the drive starts to count the time. When the error time exceeds the encoder stall detection time (Pr.10-11), the drive implements the encoder stall treatment.

\section*{10-13 Encoder Slip Range}

Default: 50
Settings \(0-50 \%\) (0 : No function)
10-14 Encoder Slip Detection Time
Default: 0.5
Settings \(0.0-10.0 \mathrm{sec}\)

\section*{10-15 Encoder Stall and Slip Error Action}

Default: 2
Settings 0: Warn and continue operation
1: Fault and ramp to stop
2: Fault and coast to stop
This parameter acts on the settings for Pr.10-13-Pr.10-15:
When the value of (rotation speed - motor frequency) exceeds the Pr.10-13 setting, and the detection time exceeds Pr.10-14; the drive starts to count the time. If the detection time exceeds Pr.10-14, the encoder feedback signal error occurs.

\section*{10-16 Pulse Input Type Setting}

\section*{Default: 0}

\section*{Settings 0: Disable}

1: Phases \(A\) and \(B\) are pulse inputs, forward direction if \(A\)-phase leads \(B-\) phase by 90 degrees.

2: Phases \(A\) and \(B\) are pulse inputs, forward direction if \(B\)-phase leads \(A-\) phase by 90 degrees.

3: Phase \(A\) is a pulse input and phase \(B\) is a direction input (low input \(=\) reverse direction, high input = forward direction).

4: Phase \(A\) is a pulse input and phase \(B\) is a direction input (low input = forward direction, high input = reverse direction).

5: Single-phase input (MI7)
A

1 When this setting is different from the Pr.10-02 setting and the source of the Frequency command is pulse input (Pr.00-20 set to 5), it causes a four-times frequency problem.
Example:
Assume that Pr. 10-01 = 1024, Pr. \(10-02=1, \operatorname{Pr} .10-16=3, \operatorname{Pr} .00-20=5, \mathrm{MI}=37\) and ON, then the pulse needed to rotate the motor one revolution is 4096 (1024*4), with a four-times frequency problem.
(1) Assume that Pr. 10-01 = 1024, Pr. 10-02 = 1, Pr. \(10-16=1, \operatorname{Pr} .00-20=5, \mathrm{Ml}=37\) and ON , the pulse needed to rotate the motor one revolution is 1024 (1024*1), without four-times frequency problem.

10 When using two-phase pulse input, you must set pulse direction to MI6, and enter the pulses to MI7.

When using single-phase pulse input, MI6 is invalid, you must enter the pulses to MI7 and forbid connecting to any signals.
1 When Pr.10-16 = 5, you cannot set Pr.10-02 as 5 (single-phase input, MI7) to execute closedloop control.

The setting steps when using the M17 single-phase pulse input as the frequency command:
1. Set Pr.00-20 = 4: Pulse inputs without direction command
2. Set Pr. \(10-00=0\) : Disabled
3. Set Pr.10-01 for motor pulse per revolution (ppr)
4. Set Pr.10-16 =5: Single-phase pulse input
5. Set Pr.00-04 \(=22\) to check if the pulse input frequency is right.

\section*{10-17 Electrical Gear A}

10-18 Electrical Gear B
Default: 100
Settings 1-65535
[1] Rotation speed = pulse frequency / encoder pulses (Pr.10-01) * Electrical Gear A/Electrical Gear B.

\section*{10-19 Positioning for Encoder Position}

Default: 0
Settings -32767-32767 pulses
[a] Determines the internal position in the position mode.
\(\mathbb{1}\) Use this with the multi-function input terminal setting \(=35\) (enable single-point position control).
[1] When set to 0 , it is the Z-phase position of the encoder.

\section*{10-20 Error Range for Encoder Position Reached}

Default: 10
Settings 0-65535 pulses
凹This parameter determines the range for the internal positioning position reached.
Example:
When you set the position for Pr.10-19 (Positioning for Encoder Position) and Pr.10-20 to 1000, it reaches the position if the position is between 990-1010 after positioning.

\section*{10-21 Filter Time (PG2)}

Default: 0.100
Settings \(0.000-65.535 \mathrm{sec}\).
\(\square\) When you set Pr.00-20 to 4, the system treats the pulse command as a Frequency command. Use this parameter to suppress the speed command jump.

\section*{10-24 FOC \& TQC Function Control}

Default: 0
Settings 0-65535
[10] Only bit = 0 is used for closed-loop, other bits are used for open-loop.
\begin{tabular}{|c|l|}
\hline bit & \multicolumn{1}{|c|}{ Description } \\
\hline 0 & ASR controller under torque control. 0: use PI as ASR; 1: use P as ASR \\
\hline \(1-10\) & NA \\
\hline 11 & Activates DC brake when executing the zero torque command. 0: ON; 1: OFF \\
\hline 12 & \begin{tabular}{l}
FOC Sensorless mode, crossing zero means the speed goes from negative to positive \\
or positive to negative (forward to reverse direction or reverse to forward direction). \\
0: determined by stator frequency; 1: determined by speed command
\end{tabular} \\
\hline 13 & NA \\
\hline 14 & NA \\
\hline 15 & \begin{tabular}{l}
Direction control in open-loop status. \\
0: Switch ON direction control; 1: Switch OFF direction control
\end{tabular} \\
\hline
\end{tabular}

\section*{10-25 FOC Bandwidth for Speed Observer}

Default: 40.0
Settings \(20.0-100.0 \mathrm{~Hz}\).
Setting the speed observer to a higher bandwidth could shorten the speed response time but creates greater noise interference during the speed observation.

\section*{10-26 FOC Minimum Stator Frequency}

Default: 2.0

\section*{Settings FOC Minimum Stator Frequency}

1 Sets the stator frequency lower limit in operation status. This setting ensures the stability and accuracy of observer and avoids interferences from voltage, current and motor parameter. fN is the motor rated frequency.

\section*{10-27 FOC Low-pass Filter Time Constant}

Default: 50
Settings \(\quad 1-1000 \mathrm{~ms}\)
Sets the low-pass filter time constant of a flux observer at start-up. If you cannot activate the motor during high speed operation, lower the setting for this parameter.

\section*{10-28 FOC Gain for Excitation Current Rise Time}

Default: 100
Settings \(33-100 \% \mathrm{Tr}\)
Sets the drive's excitation current rise time when it activates in sensorless torque mode. When the drive's activation time is too long in torque mode, adjust this parameter to a shorter time value. Tr is the rotor time constant.

\section*{10-29 Top Limit of Frequency Deviation}

Default: 20.00
Settings \(\quad 0.00-100.00 \mathrm{~Hz}\)
1 Limits the maximum frequency deviation.
■If you set this parameter too high, an abnormal feedback malfunction occurs.
[1] If the application needs a higher setting for Pr.10-29, note that a higher setting results in larger motor slip, which causes a PG Error (PGF3, PGF4). In this case, you can set Pr.10-10 and Pr.10-13 to 0 to disable PGF3 and PGF4 detection, but you must make sure the MI7 wiring and application are correct; otherwise it may lose the instant PG protection. Pr.10-29 setting too high is not commonly done.

\section*{10-30 Resolver Pole Pair}

Default: 1
Settings 1-50
凹 To use the Pr.10-30 function, you must set Pr.10-00 = 3 (Resolver Encoder) first.

\section*{10-31 I/F Mode, Current Command}

Default: 40
Settings 0-150\% rated current of the motor
1 Sets the current command for the drive in the low speed area (low speed area: Frequency command < Pr.10-39). When the motor stalls on heavy duty start-up or forward/reverse with load, increase the parameter value. If the inrush current is too high and causes oc stall, then decrease the parameter value.

\section*{10-32 PM FOC Sensorless Speed Estimator Bandwidth}

Default: 5.00
Settings \(\quad 0.00-600.0 \mathrm{~Hz}\)
Sets the speed estimator bandwidth. Adjust the parameter to change the stability and the accuracy of the motor speed.

Ifl If there is low frequency vibration (the waveform is similar to sine wave) during the process, then increase the bandwidth. If there is high frequency vibration (the waveform shows extreme vibration and is like a spur), then decrease the bandwidth.

\section*{10-34 PM Sensorless Speed Estimator Low-pass Filter Gain}

Default: 1.00
Settings 0.00-655.35
[a] Changes the response speed of the speed estimator.
(1) If there is low frequency vibration (the waveform is similar to a sine wave) during the process, then increase the gain. If there is high frequency vibration (the waveform shows extreme vibration and is like a spur), then decrease the gain.

\section*{10-35 ARM (Kp)}

Default: 1.00
Settings \(0.00-3.00\)

\section*{10-36 ARM (Ki)}

Default: 0.20
Settings 0.00-3.00

\title{
10-39 Frequency Point to Switch from I/F Mode to PM Sensorless Mode \\ Default: 20.00
}

Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
1 Sets the frequency for the switch point from low frequency to high frequency.
1 Due to the weak back-EMF in the low frequency area, PM sensorless mode cannot estimate the accurate speed and position of the rotor. Thus, using I/F mode control is more suitable. In the medium-to-high frequency area, PM sensorless can accurately estimate the back-EMF, stabilizes and control the motor with lower current.
1 If the switch point is too low and PM sensorless mode operates at a too low frequency, the motor does not generate enough back-EMF to let the speed estimator measure the rotor right position and speed, and causes stall and oc when running at the switch point frequency.
[1] If the switch point is too high, the drive easily runs in the frequency area of the I/F mode for a long time, which generates a larger current and cannot save energy. (If the current value for Pr.10-31 is too high, the high switch point makes the drive continue to output with the setting value for Pr.10-31).

\section*{10-40 Frequency Point to Switch from PM Sensorless Mode to I/F Mode}

Default: 20.00
Settings \(0.00-599.00 \mathrm{~Hz}\)Sets the switch point from high frequency to low frequency.Due to the weak back-EMF in the low frequency area, PM sensorless mode cannot estimate the accurate speed and position of the rotor. Thus, using I/F mode control is more suitable. In the medium-to-high frequency area, PM sensorless can accurately estimate the back-EMF, stabilizes and control the motor with lower current.

【】 If the switch point is too low and PM sensorless mode operates at a too low frequency, the motor does not generate enough back-EMF to let the speed estimator measure the rotor right position and speed, and causes stall and oc when running at the switch point frequency.
10. If the switch point is too high, the drive easily runs in the frequency area of the I/F mode for a long time, which generates a larger current and cannot save energy. (If the current value for Pr. 10-31 is too high, the high switch point makes the drive continue to output with the setting value for Pr.10-31).

\section*{10-42 Initial Angle Detection Pulse Value}

Default: 1.0
Settings \(0.0-3.0\)The angle detection is fixed to 3: Use the pulse injection method to start. The parameter influences the value of the pulse during the angle detection. The larger the pulse, the higher the accuracy of rotor's position. A larger pulse might cause oc.
1 Increase the parameter when the running direction and the command are opposite during startup. If oc occurs at start-up, then decrease the parameter.

1 Refer to Section 12-2 Adjustment \& Application for detailed motor adjustment procedure.

\section*{10-43 PG Card Version}

Default: Read only
Settings 0.00-655.35Corresponding version reference:
\begin{tabular}{ll}
PG02U & 21.XX \\
PG01U & \(31 . X X\) \\
PG01O / PG01L & 11.XX \\
PG02O / PG02L & 14.XX \\
PG01R & \(41 . X X\)
\end{tabular}

\title{
10-49 Zero Voltage Time During Start-up
}

Default: 00.000
Settings 00.000-60.000 sec.
[1] This parameter is valid only when the setting of Pr.07-12 (Speed Tracking during Start-up) \(=0\).
\(\mathbb{1}\) When the motor is in static state at start-up, this increases the accuracy when estimating angles. In order to put the motor in static state, set the three-phase drive output to 0 V to the motor. The Pr.10-49 setting time is the length of time for three-phase output at 0 V .It is possible that even when you apply this parameter, the motor cannot go in to the static state because of inertia or some external force. If the motor does not go into the static state in 0.2 seconds, increase this setting value appropriately.
[1] If Pr.10-49 is too high, the start-up time is longer. If it is too low, then the braking performance is weak.

\section*{10-51 Injection Frequency}

Default: 500
Settings \(0-1200 \mathrm{~Hz}\)
[ad This parameter is a high frequency injection command in PM SVC control mode, and usually you do not need to adjust it. But if a motor's rated frequency (for example, 400 Hz) is too close to the frequency setting for this parameter (that is, the Default of 500 Hz), it affects the accuracy of the angle detection. Refer to the setting for Pr.01-01 before you adjust this parameter.If the setting value for Pr.00-17 is lower than Pr.10-51*10, then increase the frequency of the carrier wave.Pr. 10-51 is valid only when Pr.10-53 \(=2\).

\section*{10-52 Injection Magnitude}

Default: 15.0 / 30.0
Settings \(0.0-200.0 \mathrm{~V}\)
[1] The parameter is the magnitude command for the high frequency injection signal in PM SVC control mode.
In Increasing the parameter can increase the accuracy of the angle estimation, but the electromagnetic noise might be louder if the setting value is too high.
1 The system uses this parameter when the motor's parameter is "Auto". This parameter influences the angle estimation accuracy.
1 When the ratio of the salient pole (\(\mathrm{Lq} / \mathrm{Ld}\)) is lower, increase Pr.10-52 to make the angle detection more accurate.
(1) Pr.10-52 is valid only when Pr. 10-53 = 2 .

\section*{10-53 Angle Detection Method}

Default: 0
Settings 0: Disabled
1: Force attracting the rotor to zero degrees
2: High frequency injection
3: Pulse injection
Set to 2 for IPM; set to 3 for SPM. If these settings cause problems, then set the parameter to 1 .

\section*{11 Advanced Parameters}

In this parameter group, ASR stands for Adjust Speed Regulator.
You can set this parameter during operation.

\section*{11-00 System Control}

Default: 0
Settings bit 0: Auto-tuning for ASR
bit 1: Inertia estimate (only in FOCPG mode)
bit 2: Zero servo
bit 3: Dead time compensation closed
bit 7: Save or do not save the frequency
[1] bit \(0=0\) : Manual adjustment for ASR gain, Pr.11-06-Pr.11-11 are valid and Pr.11-03-Pr.11-05 are invalid.
[ait bit 0 : Auto-adjustment for ASR gain, the system automatically generates an ASR setting, Pr.11-06-Pr. 11-11 are invalid and Pr.11-03-Pr.11-05 are valid.

1 When the drive needs to keep a certain torque at zero-speed, or it needs a steady frequency output at extreme low speed, increase Pr.11-05 zero-speed bandwidth appropriately. When the speed is in high-speed area, if the output current trembles seriously and makes the drive vibrate, then decrease the high-speed bandwidth.
For example:
\begin{tabular}{|c|l|}
\hline Manual gain & \(\begin{array}{l}\text { Response: } \\
{[\text { Pr.11-10, Pr.11-11 }]>}\end{array}\) Pr.11-06, Pr.11-07 \(]>[\) Pr.11-08, Pr.11-09 \(]\)
\end{tabular}\(|\)\begin{tabular}{cl}
Auto gain & Pr.11-05 \(=15 \mathrm{~Hz}\), Pr.11-03 \(=10 \mathrm{~Hz}\), Pr.11-04 \(=8 \mathrm{~Hz}\) \\
\hline
\end{tabular}

ASR adjustment- manual gain

ASR adjustment- auto gain
[1] bit1=0: no function.
bit1=1: Inertia estimation function is enabled. bit1 setting would not activate the estimation process, set Pr.05-00=12 to begin FOC / TQC Sensorless inertia estimating.

(1)] bit2 \(=0\) : no function.
bit2 \(=1\) : when frequency command is less than Fmin (Pr.01-07), it will use the zero-servo function as position control.
[1] bit \(7=0\) : Save the frequency before power is OFF. When power is ON again, the save frequency is displayed.bit \(7=1\) : Do not save the frequency before power is OFF. When power is ON again, 0.00 Hz is the displayed frequency.

\section*{11-01 Per Unit of System Inertia}

Default: 256
Settings 1-65535 (256 = 1 PU)To get the system inertia per unit from Pr.11-01, you need to set Pr.11-00 to bit1 = 1 and execute continuous forward/reverse running.
When Pr.11-01 = 256, it is 1 PU . So if you use a 2 HP motor, the 2 HP motor inertia is \(4.3 \mathrm{~kg}-\mathrm{cm}^{2}\) according to the table below. If Pr.11-01 = 10000 after tuning, the system inertia is (10000 / 256) \(x 4.3 \mathrm{~kg}-\mathrm{cm}^{2}\).
[0] Perform the operation test with load based on the inertia after tuning. Run the motor in acceleration, deceleration, and steady speed and observe the values. If values between speed feedback and speed command are close, steady-state error is small and overshoot is less, then this inertia is a better one.

10 If the Iq current command from ASR has high-frequency glitch, then decrease the setting. If the response time of sudden loading is too slow, then increase the setting.
1 When using torque mode as the control mode, perform the tuning with speed mode first to see if the tuned inertia can work normally. After verifying with speed mode, change the control mode to torque mode.

Unit of induction motor system inertia is \(\mathrm{kg}-\mathrm{cm}^{2}\) :
\begin{tabular}{|c|c|c|c|}
\hline Power & Setting & Power & Setting \\
\hline 1 HP & 0.00023 \\
\hline 2 HP & 0.00043 \\
\hline 3 HP & 0.00083 \\
\hline 5 HP & 0.00148 \\
\hline 7.5 HP & 0.0026 & 15 HP & 0.00358 \\
\hline 20 HP & 0.00743 \\
\hline 25 HP & 0.00953 \\
\hline 30 HP & 0.01428 \\
\hline
\end{tabular}

\section*{11-02 ASR1 / ASR2 Switch Frequency}

Default: 7.00
Settings \(\quad 5.00-599.00 \mathrm{~Hz}\)
\(\mathbb{L}]\) Sets the low-speed and high-speed ASR switching point in the FOC area.
[1] Provides flexibility to meet two needs: in the high-speed region of the estimator switch point it has a high response, and in the low-speed region of the estimator switch point it has a lower response.The recommended switching point is higher than Pr.10-39.A low setting does not cover Pr.10-39. If the setting is too high, high-speed range is too narrow.

\section*{11-03 ASR1 Low-speed Bandwidth}

Default: 10
Settings \(\quad 1-40 \mathrm{~Hz}(\mathrm{IM}) / 1-100 \mathrm{~Hz}\) (PM)

\section*{11-04 ASR2 High-speed Bandwidth}

Default: 10
Settings \(\quad 1-40 \mathrm{~Hz}(\mathrm{IM}) / 1-100 \mathrm{~Hz}(\mathrm{PM})\)

\section*{11-05 Zero-speed Bandwidth}

Default: 10
Settings \(\quad 1-40 \mathrm{~Hz}(\mathrm{IM}) / 1-100 \mathrm{~Hz}(\mathrm{PM})\)
1 After estimating the inertia and setting Pr.11-00 bit \(0=1\) (auto-tuning), you can adjust Pr.11-03, 11-04 and 11-05 separately according to the speed response. The larger the setting value, the faster the response. Pr.11-02 is the switch frequency for the low-speed/high-speed bandwidth.

\section*{11-06 ASR1 Gain}

Default: 10
Settings \(\quad 0-40 \mathrm{~Hz}(\mathrm{IM}) / 1-100 \mathrm{~Hz}\) (PM)
11-07 ASR1 Integral Time
Default: 0.100
Settings \(0.000-10.000 \mathrm{sec}\).
11-08 ASR2 Gain
Default: 10
Settings \(\quad 0-40 \mathrm{~Hz}(\mathrm{IM}) / 0-100 \mathrm{~Hz}\) (PM
11-09 ASR2 Integral Time
Default: 0.100
Settings \(0.000-10.000 \mathrm{sec}\).
11-10 ASR Zero Speed Gain
Default: 10
Settings \(\quad 0-40 \mathrm{~Hz}(\mathrm{IM}) / 0-100 \mathrm{~Hz}\) (PM)
11-11 ASR Zero Speed Integral Time
Default: 0.100
Settings \(0.000-10.000 \mathrm{sec}\).
11-12 Gain for ASR Speed Feed Forward
Default: 0
Settings 0-200\%
[1] This function enables when Pr. 11-00 bit0 \(=1\).
Increase the setting for Pr.11-12 to reduce the command tracking difference, and improve the speed response. Use this function for speed tracking applications.

Set Pr.11-01 correctly to get excellent improvement of the speed response.

\section*{11-13 PDFF Gain Value}

Default: 30

\section*{Settings 0-200\%}
[1] This parameter is invalid when Pr.05-24 \(=1\).
(1)] This parameter is valid only when Pr.11-00 bit0 \(=1\).
[1] After you estimate and set Pr.11-00 bit0=1 (auto-tuning), use Pr.11-13 to reduce overshoot. However, a shift of the curve may occur earlier. In this case, you can set Pr.11-13 = 0 first, and then increase the setting value to "a condition with best acceleration and without overshoot" when the acceleration time meets your application but overshoot occurs.
[】] Increasing Pr.11-13 improves the overshoot of speed tracking, but an excessive value may reduce the transient response.
[1] Increasing Pr.11-13 enhances the system stiffness in high-speed steady state, and reduce the speed transient fluctuation at a sudden loading.Ensure that you set Pr.11-01 system inertia correctly to get excellent improvement of the speed response.

\section*{11-14 ASR Output Low-pass Filter Time}

Default: 0.008
Settings \(0.000-0.350 \mathrm{sec}\).
Sets the ASR command filter time.

\section*{11-15 Notch Filter Depth}

Default: 0
Settings \(0-20 \mathrm{~dB}\)

\section*{11-16 Notch Filter Frequency}

Default: 0.0
Settings \(\quad 0.00-200.00 \mathrm{~Hz}\)
凹a Sets the resonance frequency of the mechanical system. Adjust it to a smaller value to suppress the mechanical system resonance.A larger value improves resonance suppression function.The notch filter frequency is the mechanical frequency resonance.

\section*{11-17 Forward Motor Torque Limit \\ 11-18 Forward Regenerative Torque Limit \\ 11-19 Reverse Motor Torque Limit \\ 11-20 Reverse Regenerative Torque Limit}

Default: 500
Settings 0-500\%
[1] FOCPG \& FOC Sensorless mode:
The motor rated current \(=100 \%\). The settings value for Pr. 11-17-11-20 is compare with Pr.03-00 \(=7,8,9,10\). The minimum value of the comparison result is the torque limit. The diagram below illustrates the torque limit.TQCPG and TQC Sensorless mode:
The function of Pr.11-17-11-20 is the same as FOC; however, in this case, the torque limit and the torque command executes the output torque limit at the same time. Therefore, the minimum value between Pr.11-17-11-20 and Pr.06-12 becomes the current output torque limit.Refer to Pr.11-34 for calculation equation for the motor rated torque.
All control modes are based on \(100 \%\) of the motor rated current except:
IM: VF, VFPG, SVC
PM: PMSVC

\section*{11-21 Flux Weakening Curve for Motor 1 Gain Value}

Default: 90
Settings 0-200\%

\section*{11-22 Flux Weakening Curve for Motor 2 Gain Value}

Default: 90
Settings 0-200\%
1 Adjusts the output voltage for the flux weakening curve.
[a] For the spindle application, use this adjustment method:
1. Run the motor to the highest frequency.
2. Observe the output voltage.
3. Adjust the Pr.11-21 (motor 1) or Pr.11-22 (motor 2) setting to make the output voltage reach the motor rated voltage.
4. The larger the setting value, the greater the output voltage.

\section*{11-23 Flux Weakening Area Speed Response}

Default: 65
Settings 0-150\%
Controls the speed in the flux weakening area. The larger the value set for Pr.11-23, the faster the acceleration/deceleration. In general, you do not need to adjust this parameter.

\section*{11-24 APR Gain}

Default: 10.00
Settings \(\quad 0.00-40.00 \mathrm{~Hz}\) (IM) / \(0.00-100.00 \mathrm{~Hz}\) (PM)
10 Sets the Kip gain of the internal position (\(\mathrm{Mlx}=35\)).The pulse-train position command \((\mathrm{MIX}=37)\) controls Kp gain, and this can adjust the value of Pr.11-05 directly. The larger the setting value of Pr.11-05, the smaller the static error.

\section*{11-25 Gain Value for the APR Feed Forward}

Default: 30
Settings 0-100
(1) This parameter is valid to the internal position (\(\mathrm{Mlx}=35\)) and position control pulse command (\(\mathrm{Mlx}=37\)). A larger value set can shorten the pulse-train tracking error, but it may easily to cause overshoot.

\section*{11-26 APR Curve Time}

Default: 3.00
Settings \(0.00-655.35 \mathrm{sec}\).
[1 This is valid when the multi-function input terminal is set to 35 (ON). The larger the setting value, the longer the positioning time.

\section*{11-27 Maximum Torque Command}

Default: 100
Settings 0-500\%Determines the upper limit of the torque command (motor rated torque is 100\%).Refer to Pr.11-34 for calculation equation for the motor rated torque.

\section*{11-28 Torque Offset Source}

Default: 0
Settings 0: Disable
1: Analog signal input
2: RS-485 communication (Pr.11-29)
3: Controlled by external terminal (by Pr.11-30-Pr.11-32)
1 Determines the source for the torque offset.

\begin{abstract}
or Pr.11-32 as the combination of MI setting as 31,32 or 33 commands. Refer to the following
\end{abstract} chart:

Normally open (N.O.) contact: ON = contact closed, OFF = contact open
\begin{tabular}{|c|c|c|c|}
\hline Pr.11-32 & Pr.11-31 & Pr.11-30 & \multirow{2}{*}{ Torque Offset } \\
\hline \(\mathrm{MI}=33\) (Low) & \(\mathrm{MI}=32\) (Mid) & \(\mathrm{MI}=31\) (High) & None \\
\hline OFF & OFF & OFF & Pr.11-30 \\
\hline OFF & OFF & ON & Pr.11-31 \\
\hline OFF & ON & OFF & Pr.11-30 + Pr.11-31 \\
\hline OFF & ON & ON & Pr.11-32 \\
\hline ON & OFF & OFF & Pr.11-30 + Pr.11-32 \\
\hline ON & OFF & ON & Pr.11-31 + Pr.11-32 \\
\hline ON & ON & OFF & Pr.11-30 + Pr.11-31 + Pr.11-32 \\
\hline ON & ON & ON & \\
\hline
\end{tabular}

\section*{11-29 Torque Offset Setting}

Default: 0.0
Settings -100.0-100.0\%
[a] Determines the torque offset command. The motor rated torque is \(100 \%\).
Refer to Pr.11-34 for calculation equation for the motor rated torque.

\section*{11-30 High Torque Command Compensation}

Default: 30.0
Settings -100.0-100.0\%

\section*{11-31 Middle Torque Command Compensation}

Default: 20.0
Settings -100.0-100.0\%
11-32 Low Torque Command Compensation
Default: 10.0
Settings -100.0-100.0\%
\(\square\) When Pr.11-28 is set to 3 , the torque offset source uses Pr.11-30, Pr.11-31 or
Pr.11-32 determined by the multi-function input terminals setting (31, 32 or 33). The motor rated torque is \(100 \%\).Refer to Pr.11-34 for calculation equation for the motor rated torque.

\section*{11-33 Torque Command Source}

Default: 0

\section*{Settings 0: Digital Keypad}

1: RS-485 communication (Pr.11-34)
2: Analog signal input (Pr.03-00)
3: CANopen
1 When you set Pr.11-33 to 0 or 1, set the torque command in Pr.11-34.
\(\square\) When you set Pr.11-33 to 2, 3, or 5, Pr.11-34 only displays the torque command.

\section*{11-34 Torque Command}

Default: 0.0
Settings -100.0-100.0\% (Pr.11-27 setting value \(=100 \%\))
[ad This parameter is for the torque command. When you set Pr.11-27 to \(250 \%\) and Pr.11-34 to \(100 \%\), the actual torque command \(=250 \times 100 \%=250 \%\) motor rated torque.
[I] The drive saves the setting before power is OFF.
\(\mathbb{L} \mathbb{d}\) The calculation equation for the motor rated torque:
Motor rated torque: \(T(N . M)=\frac{P(W)}{\omega(\mathrm{rad} / \mathrm{s})} ; \mathrm{P}(\mathrm{W})\) value \(=\operatorname{Pr} .05-02(\operatorname{Pr} .05-14)\);
\(\omega(\mathrm{rad} / \mathrm{s})\) value \(=\operatorname{Pr} .05-03(\operatorname{Pr} .05-15) ; \frac{R P M \times 2 \pi}{60}=\mathrm{rad} / \mathrm{s}\)

\section*{11-35 Torque Command Filter Time}

Default: 0.000
Settings \(0.000-1.000 \mathrm{sec}\).
1 When the setting is too long, the control is stable but the control response is delayed. When the setting is too short, the response is quick but the control may be unstable. Adjust the setting according to your control and response situation.

\section*{11-36 Speed Limit Selection}

Default: 0
Settings 0: Pr.11-37 (forward speed limit) and Pr.11-38 (reverse speed limit)
1: Speed limit source is Pr.00-20 (master frequency command source), and Pr.11-37 / Pr.11-38
2: Pr.00-20 (master frequency command source)
3: Speed limit source is the linear speed of tension controlSpeed limit function: when you use the torque control mode, if the torque command is greater than the load, the motor accelerates until the motor speed equals the speed limit. At this time, it switches to speed control mode to stop acceleration.
[1] Pr. \(11-36=1\) :
- When the torque command is positive, the forward speed limit is Pr.00-20 and the reverse speed limit is Pr.11-38.
- When the torque command is negative, the forward speed limit is Pr.11-37 and the reverse speed limit is Pr.00-20.
- For example:

In an unwind application, the torque command direction is different from the motor operating direction, and this indicates that the load drives the motor. The speed limit must be Pr.11-37 or Pr.11-38. In normal applications, when the motor drives the load and the torque command is in the same direction as the speed limit, only then you can set the speed limit according to Pr.00-20.

For details on the keypad display, refer to the LED Function Description in Chapter10 "Digital Keypad". In torque control mode, the F page of keypad displays the present speed limit value.

\section*{11-37 Forward Speed Limit (Torque Mode)}

Default: 10
Settings 0-120\%

\section*{11-38 Reverse Speed Limit (Torque Mode)}

Default: 10
Settings 0-120\%
Limits the speed for forward and reverse running in torque mode (Pr.01-00 maximum operation frequency \(=100 \%\)).

\section*{11-39 Zero Torque Command Mode Selection}

Default: 0

> \begin{tabular}{ll} Settings & \(0:\) Torque mode \\ & \(1:\) Speed mode \\ \hline \end{tabular}
© This parameter is only valid in TQCPG IM and TQCPG PM, and it defines the mode when the speed limit is \(0 \%\) or 0 Hz .

When you set Pr.11-39 to 0, and speed limit is \(0 \%\) or 0 Hz , the motor generates an excitation current, and the torque command Pr.11-34 limits the torque.
When you set Pr.11-39 to 1 , and speed limit is \(0 \%\) or 0 Hz , the AC motor drive can generate output torque through the speed controller (the torque limit is Pr.06-12), and the control mode changes from TQC + PG to FOC + PG mode. The motor has a holding torque. If the speed command is not 0 , the drive automatically changes it to 0 .

\section*{11-40 Position Control Command Source}

Default: 0

\section*{Settings 0: Input from internal register \\ 2: Input from external pulse \\ 3: RS-485 \\ 5: Communication card}

\section*{11-41 PWM Mode Selection}

Default: 2
Settings 0: Two-phase
2: Space vector
1 Two-phase mode: effectively reduces the drive power components losses and provides better performance in long wire applications.Space vector mode: effectively reduces the power loss and electromagnetic noise of the motor.

\section*{11-42 System Control Flag}

Default: 0000
Settings 0000-FFFFh
\begin{tabular}{|c|l|l|}
\hline bit No. & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Description } \\
\hline 0 & Reserved & \\
\hline 1 & \begin{tabular}{l}
FWD / REV action \\
control
\end{tabular} & \begin{tabular}{l}
0: FWD / REV cannot be controlled by Pr.02-12 bit \(0 \& 1\). \\
\(1: ~ F W D ~ / ~ R E V ~ c a n ~ b e ~ c o n t r o l l e d ~ b y ~ P r .02-12 ~ b i t ~\)
\end{tabular} \& 1.
\end{tabular}

\title{
11-43 Position Control Maximum Frequency
}

Default: 60.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)Set the maximum operating frequency when the drive is in position control mode.
Also sets the speed limit for pulse-train positioning position control. If the output frequency reaches the maximum frequency for position control, the system uses the maximum frequency for position control as the operating frequency and slowly executes the remaining pulse-train commands.
[1] If the multi-function input terminal \(\mathrm{MIx}=35\) (enable single-point positioning) is enabled under the speed mode, the drive executes single-point positioning according to Pr.11-43 setting. Refer to the diagram below when Pr.11-43 is set to 40 Hz and 10 Hz respectively.
If the multi-function input terminal MIx \(=89\) (position / speed mode switch) is enabled under the speed mode, the drive executes pulse-train positioning according to Pr.11-43 setting, as shown in the diagram below.
[1] When setting bit8 \(=0\) (point-to-point position control) to Pr.11-00, the speed of movement among every position is based on this parameter.

\section*{11-44 Position Control Acceleration Time \\ 11-45 Position Control Deceleration Time}

Default: 1.00
Settings \(0.00-655.35 \mathrm{sec}\).
[0] Pr.11-44 sets the required time when the drive accelerates from 0.00Hz to Pr.11-43 (Maximum Frequency for Position Control). Pr.11-45 sets the required time when the drive decelerates from Pr.11-43 (Maximum Frequency for Position Control) to 0.00 Hz
[1] The acceleration and deceleration time for position control is invalid for pulse-train position command.
[1] The acceleration and deceleration time for multi-step positioning position control is equal to Pr.11-44 and Pr.11-45.

\section*{11-46 Torque Output Filter Gain (applied to 230V / 460V models)}

Default: 0.050
Settings \(0.000-65.535 \mathrm{sec}\).
1 Set the filter gain of the torque output display (keypad display and communication read), including Pr.00-04 = 8 displays the output torque (\%) that the drive calculates, the output torque (XXX.X \%) of communication address 210B and the positive / negative output torque (\%) that 2208 drive calculates (XXX.X \%).

\section*{11-50 APR S-curve Time}

Default: 0.300
Settings 0.000-1.000Only valid when single-point positioning (\(\mathrm{Mlx}=35\)) or point-to-point positioning confirmation \((\mathrm{MIX}=88)\) is enabled The longer the Pr. 11-50 time, the longer the positioning takes.

1 This parameter smooths the position command for single-point positioning and point-to-point positioning control mode, especially the application for the operation of mechanical structure. When the load inertia increases, the inertia of motor generated during the stop also increases, further worsens the smoothness of the operation. In this case, increase Pr.11-50 to the elevate smoothness.
10. If the multi-function input terminal MIx \(=35\) (enable single-point positioning) is enabled under the speed mode, the drive executes single-point positioning according to Pr.11-50 setting. Refer to the diagram below when Pr.11-50 is set to 1 and 0.3 second respectively.

\section*{11-51 Maximum Allowable Position Error}

Default: 1000
Settings 0-65535
Define the maximum error between the allowed position command and the actual position feedback when the drive is in the position control mode.

\section*{11-52 Allowable Position Error Range}

Default: 10
Settings 0-65535 pulse

\section*{11-53 Allowable Position Error Cumulative Time}

Default: 0.500
Settings \(0.000-65.535 \mathrm{sec}\).
10 When the position error is smaller than or equal to the allowed position error tolerance, and exceeds Pr.11-53 setting time, MOx \(=39\) (position reached) outputs.
[0] If the position error is larger than the allowed position error tolerance, the drive waits until the position error is smaller than or equal to the allowed tolerance and until Pr.11-53 setting time arrives, \(\mathrm{MOx}=39\) outputs.

\section*{11-54 Treatment to the Large Position Error}

\section*{Default: 0}

Settings 0: Warn and continue operation (display oPE on keypad)
1: Fault and ramp to stop (display oPEE on keypad)
2: Fault and coast to stop (display oPEE on keypad)
1 If the position error is larger than the maximum allowed position error, the drive acts according to Pr.11-54 settings.

\section*{11-56 Software Positive Limit (High Word)}

Default: 30000
Settings -32768-32767
11-57 Software Positive Limit (Low Word)
Default: 0
Settings 0-65535
11-58 Software Negative Limit (High Word)
Default: -30000
Settings -32768-32767

\section*{11-59 Software Negative Limit (Low Word)}

Default: 0
Settings 0-65535
(1) When in position control mode, if the motor moves in the forward direction and the position command exceeds Pr.11-56 and Pr.11-57 setting values, the drive stops quickly and the warning code SPL occurs.

10 When in position control mode, if the motor moves in the reverse direction and the position command exceeds Pr.11-58 and Pr.11-59 setting values, the drive stops quickly and the warning code SnL occurs.
\(\mathbb{\square} \mathbb{1}\) This function is valid when Pr.11-60 bit2 \(=1\) under position control mode.

\section*{11-60 Position Control Bit}

Default: 000Ah
Settings bit0: Position memory function is enabled
bit1: Single revolution at the load side is calculated by PPR
bit2: Software limit switch function is enabled
\begin{tabular}{|c|l|l|}
\hline bit No. & \multicolumn{1}{|c|}{ Setting } & \multicolumn{1}{c|}{ Description } \\
\hline 0 & \begin{tabular}{l}
Position memory function \\
is enabled
\end{tabular} & \begin{tabular}{l}
bit0 = 0: Position memory function is disabled \\
bit0 = 1: Position memory function is enabled
\end{tabular} \\
\hline 1 & \begin{tabular}{l}
Single revolution at the \\
load side is calculated by \\
PPR
\end{tabular} & \begin{tabular}{l}
bit1 = 0: Calculate the single revolution at the load is by the Z- \\
phase signal.
\end{tabular} \\
bit1 = 1: Calculate the single revolution at the load side by PPR.
\end{tabular}\(|\)\begin{tabular}{l}
Software limit switch \\
function is enabled
\end{tabular}\(\quad\)\begin{tabular}{l}
bit2 = 0: Software limit switch function is disabled when the \\
drive is in multi-step positioning and pulse-train \\
positioning position control modes
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline bit No. & Setting & Description \\
\hline & & \begin{tabular}{r}
bit2 \(=1:\) Software limit switch function is enabled when the \\
drive is in multi-step positioning and pulse-train \\
positioning position control modes
\end{tabular} \\
\hline
\end{tabular}
[1] The action of software / hardware switches and control modes:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Setting } & VF & VFPG & SVC & FOCPG & FOC & TQCPG & TQC \\
\cline { 2 - 8 } & Node & \multicolumn{6}{|c|}{ IM } \\
\hline \begin{tabular}{c}
bit2: SW limit \\
switch function \\
enabled
\end{tabular} & N/A & N/A & N/A & \begin{tabular}{c}
Warning \\
displays
\end{tabular} & N/A & \begin{tabular}{c}
Warning \\
displays
\end{tabular} & N/A \\
\hline \begin{tabular}{c}
bit3: HW limit \\
switch function \\
enabled
\end{tabular} & \begin{tabular}{c}
Error \\
displays
\end{tabular} & \begin{tabular}{c}
Error \\
displays
\end{tabular} & \begin{tabular}{c}
Error \\
displays
\end{tabular} & \begin{tabular}{c}
Warning \\
displays
\end{tabular} & \begin{tabular}{c}
Error \\
displays
\end{tabular} & \begin{tabular}{c}
Warning \\
displays
\end{tabular} & \begin{tabular}{c}
Error \\
displays
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Setting } & \multicolumn{5}{|c|}{ PM } & \multirow{2}{*}{ SynRM } \\
\cline { 2 - 6 } & PMSVC & FOCPGPM & PMFOC & HFI & PMTQCPG & \\
\hline \begin{tabular}{c}
bit2: SW limit \\
switch function \\
enabled
\end{tabular} & N/A & \begin{tabular}{c}
Warning \\
displays
\end{tabular} & N/A & N/A & \begin{tabular}{c}
Warning \\
displays
\end{tabular} & N/A \\
\hline \begin{tabular}{c}
bit3: HW limit \\
switch function \\
enabled
\end{tabular} & \begin{tabular}{c}
Error \\
displays
\end{tabular} & \begin{tabular}{c}
Warning \\
displays
\end{tabular} & \begin{tabular}{c}
Error \\
displays
\end{tabular} & \begin{tabular}{c}
Error \\
displays
\end{tabular} & \begin{tabular}{c}
Warning \\
displays
\end{tabular} & \begin{tabular}{c}
Error \\
displays
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & Single-point & Pulse-train & Homing & P2P \\
\hline bit2: SW limit switch function enabled & N/A & Warning displays & N/A & Warning displays \\
\hline bit3: HW limit switch function enabled & Warning displays & Warning displays & Warning displays & Warning displays \\
\hline
\end{tabular}

1 The position memory function is available for coordinate system that remains at the mechanical origin after the drive's power-off when using incremental encoder.
For example:
For example, if the motor stops at the absolute position 100000 before power-off, then the motor's initial position remains at 100000 and homing has been completed after the drive is powered on again. With the position memory function, you do not need to do the homing again. It is time-saving and more efficient.

The position memory function is valid only when the homing has been completed. Any incomplete homing cannot work with this function.
1 The position memory function only works with motor that has braking mechanism. If you move the motor by hands or by other methods when the drive is powered off, the saved origin will be different from the actual origin after power resumes because the drive cannot realize the moving distance during power-off, further causing a risk of collision when executing position commands.
\(\square\) When Pr.11-60 bit1 = 0, the single-turn pulse number refers to encoder's Z-phase signal. But the communication type encoder does not have Z-phase signal, which makes the setting bit1 = 0 unable to position.
[1] When using a communication absolute encoder, force Pr.11-60 bit1 = 1 to calculate the singleturn revolution at the load side by PPR, and to ensure the single-point positioning function is normal.
If you need to use the hardware limitation function, enable the MIX \(=44\) (Negative limit switch) or MIx \(=45\) (Positive limit switch).
Conditions to use Pr.11-60 bit8 (Operation direction definition):
1. The position, speed and torque command source are all from CANopen.
2. The position, speed and torque command source are communication card, and the communication decoding method is CiA 402 or Delta defines 60xx.Pr.11-60 bit 8 (Operation direction definition) is valid after powering ON again.

\section*{11-62 Encoder at Load Side ppr Number (High byte)}

Default: 0
Settings 0-65535

\section*{11-63 Encoder at Load Side ppr Number (Low byte)}

Default: 2400
\[
\text { Settings } 0-65535
\]When the encoder is installed at the motor side and the Z-phase is installed at the load side, you must set the PPR number at the load side to ensure the actual number of pulses per revolution because the pulse number for single revolution relates to the mechanical gear ratio and encoder PPR.

For example:
Assume that the mechanical gear ratio of the motor side to the load side is \(10: 1\) (motor's 10 revolutions = load's 1 revolution) and Pr.10-01 = 1024:
- If the position is at zero degree of the load side, you should set Pr. 11-62 \(=0\), Pr. 11-63 \(=10240\) (= \(1024 \times 10\)).
- If the position is at 270 degrees of the load side, you should set Pr. 11-65 \(=0\), \(\operatorname{Pr} .11-68=7680\) (\(=1024 \times 3 / 4\)).Change the setting of Pr.10-01, the value of Pr.11-63 will be changed, and this may also affect the setting range of Pr.11-66 at the same time.

For example:
In the beginning, Pr.10-01 = 600, Pr.11-63 = 2400, the setting range of Pr.11-66 \(=0-2399\). If Pr. 10-01 changes to 1024, then Pr.11-63 changes to 4096 automatically, and the setting range of Pr.11-66 becomes 0-4095.

\section*{11-64 Single-point Positioning Rising Speed}

Default: 10.00
Settings 0.10-according to the settings for Pr.11-43 and Pr.11-45
1 When you perform a single-point positioning function, decelerate the system to Pr.11-64 setting speed before positioning.

The setting range for single-point positioning rising speed is calculated according to the setting of Pr.11-43 (Position control maximum frequency) and Pr.11-45 (Position control deceleration time).

\section*{11-68 Homing Method}

Default: 0008h
Settings 0000h-0128h
\(\mathbb{1}\) Used for establishing the coordinate system that uses accumulated multiple revolution for the motor encoder.
(1)

How to set Pr.11-68:
For example:
- Set Pr.11-68 \(=012 \mathrm{~h}\) when using homing method 4
- Set Pr.11-68 = 116h when using homing method 10 .
[1]
Setting and description of homing parameter design (XYZ):
\begin{tabular}{|c|c|c|}
\hline Z & Y & X \\
\hline Home Limit & Z-phase Signal Setting & Homing Mode \\
\hline 0-1 & 0-2 & 0-8 \\
\hline \multirow[b]{2}{*}{X} & \multirow[t]{4}{*}{\begin{tabular}{l}
Y = 0: Reverse the direction to locate the Z-phase signal \\
- \(Y=1\) : Continue to locate the Z-phase signal in the same direction \\
- \(Y=2\) : Do not locate the Z-phase signal
\end{tabular}} & 0: Execute homing position control in the forward direction. Use the positive limit switch as the homing reference point. \\
\hline & & 1: Execute homing position control in the reverse direction. Use the negative limit switch as the homing reference point. \\
\hline \multirow{6}{*}{\begin{tabular}{l}
When reaching home limit: \\
- \(Z=0\) : error is displayed \\
- \(Z=1\) : the direction is reversed
\end{tabular}} & & 2: Execute homing position control in the forward direction. Use the ORG switch (from 0 to 1) as the homing reference point. \\
\hline & & 3: Execute homing position control in the reverse direction. Use the ORG switch (from 0 to 1) as the homing reference point. \\
\hline & \multirow[b]{2}{*}{X} & 4: Locate the Z-phase signal in the forward direction and use the \(Z\)-phase signal as homing. \\
\hline & & 5: Locate the Z-phase signal in the reverse direction and use the Z-phase signal as homing. \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
\(\mathrm{Y}=0\) : Reverse the direction to locate the Z-phase signal \\
- \(Y=1\) : Continue to locate the Z-phase signal in the same direction \\
- \(Y=2\) : Do not locate the Z-phase signal
\end{tabular}} & 6: Execute homing position control in the forward direction. Use the ORG switch (from 1 to 0) as the homing reference point. \\
\hline & & 7: Execute homing position control in the reverse direction. Use the ORG switch (from 1 to 0) as the homing reference point. \\
\hline X & X & 8: Use the current position as the origin. \\
\hline
\end{tabular}

NOTE: Forward direction means running in the clockwise (CW) direction; reverse direction means running in the counterclockwise (CCW) direction.

1 You can use Pr.11-68-Pr.11-74 and MIx = 47 (enable the homing function) to execute homing position control.The correspondence between XYZ and CiA402 for homing mode selection:
\begin{tabular}{|c|c|c|c|c|}
\hline CiA 402 物件
\(0 \times 6098 \mathrm{H}\) & Z & Y & X & \\
\hline Homing Method & Home Limit & Z-phase Signal Setting & Homing Mode & Function Description \\
\hline 1 & X & 0 & 1 & Execute homing position control in the reverse direction until encountering the negative limit switch. Then, the direction is reversed to locate the Z-phase signal as the origin. \\
\hline 2 & X & 0 & 0 & Execute homing position control in the forward direction until encountering the positive limit switch. Then, the direction is reversed to locate the \(Z\)-phase signal as the origin. \\
\hline 3 & 0 & 0 & 2 & Execute homing position control in the forward direction until encountering the ORG switch (from 0 to 1). Then, the direction is reversed to locate the \(Z\)-phase signal as the origin. Stops when encountering the positive limit switch. \\
\hline 4 & 0 & 1 & 2 & Execute homing position control in the forward direction until encountering the ORG switch (from 0 to 1). Then, continue locating the Z-phase signal in the same direction as the origin. Stops when encountering the positive limit switch. \\
\hline 5 & 0 & 0 & 3 & Execute homing position control in the reverse direction until encountering the ORG switch (from 0 to 1). Then, the direction is reversed to locate the Z -phase signal as the origin. Stops when encountering the negative limit switch. \\
\hline 6 & 0 & 1 & 3 & Execute homing position control in the reverse direction until encountering the ORG switch (from 0 to 1). Then, continue locating the \(Z\)-phase signal in the same direction as the origin. Stops when encountering the negative limit switch. \\
\hline 7 & 1 & 0 & 2 & Execute homing position control in the forward direction until encountering the ORG switch (from 0 to 1). Then, the direction is reversed to locate the Z -phase signal as the origin. When encountering the positive limit switch, the direction is reversed to locate the origin. \\
\hline 8 & 1 & 1 & 2 & Execute homing position control in the forward direction until encountering the ORG switch (from 0 to 1). Then, continue locating the \(Z\)-phase signal in the same direction as the origin. When encountering the positive limit switch, the direction is reversed to locate the origin. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline CiA402物件
\[
0 \times 6098 \mathrm{H}
\] & Z & Y & X & \multirow[b]{2}{*}{Function Description} \\
\hline Homing Method & Home Limit & \[
\begin{array}{|c|}
\hline \text { Z-phase } \\
\text { Signal } \\
\text { Setting } \\
\hline
\end{array}
\] & Homing Mode & \\
\hline 9 & 1 & 0 & 6 & Execute homing position control in the forward direction until encountering the ORG switch (from 1 to 0). Then, the direction is reversed to locate the \(Z\)-phase signal as the origin. When encountering the positive limit switch, the direction is reversed to locate the origin. \\
\hline 10 & 1 & 1 & 6 & Execute homing position control in the forward direction until encountering the ORG switch (from 1 to 0). Then, continue locating the Z-phase signal in the same direction as the origin. When encountering the positive limit switch, the direction is reversed to locate the origin. \\
\hline 11 & 1 & 0 & 3 & Execute homing position control in the reverse direction until encountering the ORG switch (from 0 to 1). Then, the direction is reversed to locate the Z-phase signal as the origin. When encountering the negative limit switch, the direction is reversed to locate the origin. \\
\hline 12 & 1 & 1 & 3 & Execute homing position control in the reverse direction until encountering the ORG switch (from 0 to 1). Then, continue locating the Z-phase signal in the same direction as the origin. When encountering the negative limit switch, the direction is reversed to locate the origin. \\
\hline 13 & 1 & 0 & 7 & Execute homing position control in the reverse direction until encountering the ORG switch (from 1 to 0). Then, the direction is reversed to locate the \(Z\)-phase signal as the origin. When encountering the negative limit switch, the direction is reversed to locate the origin. \\
\hline 14 & 1 & 1 & 7 & Execute homing position control in the reverse direction until encountering the ORG switch (from 1 to 0). Then, continue locating the Z-phase signal in the same direction as the origin. When encountering the negative limit switch, the direction is reversed to locate the origin. \\
\hline 15 & \multicolumn{3}{|c|}{Reserved} & Reserved \\
\hline 16 & \multicolumn{3}{|c|}{Reserved} & Reserved \\
\hline 17 & X & 2 & 1 & Execute homing position control in the reverse direction and use the negative limit switch as the origin. \\
\hline 18 & X & 2 & 0 & Execute homing position control in the forward direction and use the positive limit switch as the origin. \\
\hline 19 & \multicolumn{3}{|l|}{No correspondence} & See the diagram for homing method 19 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline CiA 402 物件 0x6098H & Z & Y & X & \multirow[b]{2}{*}{Function Description} \\
\hline Homing Method & Home Limit & Z-phase Signal Setting & Homing Mode & \\
\hline 20 & 0 & 2 & 2 & Execute homing position control in the forward direction and use the ORG switch (from 0 to 1) as the origin. Stops when encountering the positive limit switch. \\
\hline 21 & \multicolumn{3}{|l|}{No correspondence} & See the diagram for homing method 21 \\
\hline 23 & \multicolumn{3}{|l|}{No correspondence} & See the diagram for homing method 23 \\
\hline 24 & 1 & 2 & 2 & Execute homing position control in the forward direction and use the ORG switch (from 0 to 1) as the origin. When encountering the positive limit switch, the direction is reversed to the locate the origin. \\
\hline 25 & \multicolumn{3}{|l|}{No correspondence} & See the diagram for homing method 25 \\
\hline 26 & 1 & 2 & 6 & Execute homing position control in the forward direction and use the ORG switch (from 1 to 0) as the origin. When encountering the positive limit switch, the direction is reversed to the locate the origin. \\
\hline 27 & \multicolumn{3}{|l|}{No correspondence} & See the diagram for homing method 27 \\
\hline 28 & 1 & 2 & 3 & Execute homing position control in the reverse direction and use the ORG switch (from 0 to 1) as the origin. When encountering the negative limit switch, the direction is reversed to locate the origin. \\
\hline 29 & \multicolumn{3}{|l|}{No correspondence} & See the diagram for homing method 29 \\
\hline 30 & 1 & 2 & 7 & Execute homing position control in the reverse direction and use the ORG switch (from 1 to 0) as the origin. When encountering the negative limit switch, the direction is reversed to locate the origin. \\
\hline 31 & \multicolumn{3}{|c|}{Reserved} & Reserved \\
\hline 32 & \multicolumn{3}{|c|}{Reserved} & Reserved \\
\hline 33 & 0 & X & 5 & Locate the Z-phase signal in the reverse direction and use the Z-phase signal as the origin. Stops when encountering the negative limit switch. \\
\hline 34 & 0 & X & 4 & Locate the Z-phase signal in the forward direction and use the Z-phase signal as the origin. Stops when encountering the positive limit switch. \\
\hline 35 & X & X & 8 & Use the current position as the origin. \\
\hline
\end{tabular}

Homing methods 19, 21, 23, 25, 27, and 29 cannot be set through the digital keypad KPC-CC01.
Set them through communications.
- Execute homing position control in the forward direction until encountering the positive limit switch. Then, the direction is reversed to locate the Z-phase signal as the origin.

(1) FWD Run for execute Homing position control function.
(2) Accelerate to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed according to Pr.11-72 Homing control acc./dec. time.
(3) Operating with Pr.11-70 Homing position control \(1^{\text {st }}\) step speed.
(4) Deceleration according to Pr.11-72 after encountering the rising edge of the PLDecelerate to OHz and change operating direction. After, accelerate to Pr.11-71 Homing control \(2^{\text {nd }}\) step speed according to Pr.11-72.
(6) Operating with Pr.11-71 Homing control \(2^{\text {nd }}\) step speed
(7) Deceleration according to Pr.11-72 after encountering the Z-phase signal.
(8) Decelerate to OHz and change operating directions for search Z-phase signal.Refer to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed and start to execute creep speed.
A) Positioning in Z-phase signal completed.
- Execute homing position control in the reverse direction until encountering the negative limit switch. Then, the direction is reversed to locate the Z-phase signal as the origin.

(1) REV Run for execute Homing position control functionAccelerate to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed according to Pr.11-72 Homing control acc./dec. timeOperating with Pr.11-70 Homing position control \(1^{\text {st }}\) step speed
(4) Deceleration according to Pr.11-72 after encountering the rising edge of the NLDecelerate to 0 Hz and change operating direction. After, accelerate to Pr.11-71 Homing control \(2^{\text {nd }}\) step speed according to Pr.11-72.
(6) Operating with Pr.11-71 Homing control \(2^{\text {nd }}\) step speedDeceleration according to Pr.11-72 after encountering the Z-phase signalDecelerate to 0 Hz and change operating directions for search Z-phase signal.
(9) Refer to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed and start to execute creep speed.
(A) Positioning in Z-phase signal completed
- Execute homing position control in the forward direction until encountering the ORG switch (from 0 to 1). Then, the direction is reversed to locate the Z-phase signal as the origin.
REV Run for execute Homing position control functionAccelerate to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed according to Pr.11-72 Homing control acc./dec. time.Operating with Pr.11-70 Homing position control \(1^{\text {st }}\) step speed
(4) Deceleration according to Pr.11-72 after encountering the rising edge of the NL
(5) Decelerate to 0 Hz and change operating direction. After, accelerate to Pr.11-71 Homing control \(2^{\text {nd }}\) step speed according to Pr.11-72.
(6) Operating with Pr.11-71 Homing control \(2^{\text {nd }}\) step speed
(7) Deceleration according to Pr.11-72 after encountering the Z-phase signal
(8) Decelerate to 0 Hz and change operating directions for search Z-phase signal
(9) Refer to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed and start to execute creep speed.
(A) Positioning in Z-phase signal completed
- Execute homing position control in the reverse direction until encountering the ORG switch (from 0 to 1). Then, the direction is reversed to locate the \(Z\)-phase signal as the origin.

(1) REV Run for execute Homing position control function.
(2) Accelerate to Pr.11-70 Homing position control \(1^{\text {si }}\) step speed according to Pr.11-72 Homing control acc./dec. time.
(3) Operating with Pr.11-70 Homing position control \(1^{\text {st }}\) step speed.
(4) Deceleration according to Pr.11-72 after encountering the ORG.
(5) Decelerate to OHz and change operating direction. After, accelerate to Pr. 11-71 Homing control \(2^{\text {nd }}\) step speed according to Pr.11-72.
(6) Operating with Pr.11-71 Homing control \(2^{\text {nd }}\) step speed.
(7) Deceleration according to Pr.11-72 after encountering the Z-phase signal.

(8)Decelerate to OHz and change operating directions for search Z-phase signal.control \(1^{\text {st }}\) step speed and start to execute creep speed.
(A) Positioning in Z-phase signal completed.
- Execute homing position control in the forward direction until encountering the ORG switch (from 0 to 1). Then, continue locating the Z-phase signal in the same direction as the origin.

(1)
FWD Run for execute Homing position control function.
(2) Accelerate to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed according to Pr.11-72 Homing control acc./dec. time.
(3) Operating with Pr.11-70 Homing position control \(1^{\text {st }}\) step speed.
(4) Deceleration according to Pr.11-72 after encountering the rising edge of the ORG.
(5) Decelerate to Pr.11-71 Homing control \(2^{\text {nd }}\) step speed.
(6) Deceleration according to Pr.11-72 after encountering the Z-phase signal.
(7) Decelerate to 0 Hz and change operating directions for search Z-phase signal.
(8) Refer to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed and start to execute creep speed.
(9) Positioning in Z-phase signal completed.
- Execute homing position control in the reverse direction until encountering the ORG switch (from 0 to 1). Then, continue locating the Z -phase signal in the same direction as the origin.
REV Run for execute Homing position control function
(2) Accelerate to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed according to Pr.11-72 Homing control acc./dec. time.
(3) Operating with Pr.11-70 Homing position control \(1^{\text {st }}\) step speed

(4)Deceleration according to Pr.11-72 after encountering the rising edge of the ORG
(5) Decelerate to Pr.11-71 Homing control \(2^{\text {nd }}\) step speed.
(6) Deceleration according to Pr.11-72 after encountering the Z-phase signal
(7) Decelerate to 0 Hz and change operating directions for search Z-phase signal.
(8) Refer to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed and start to execute creep speed.
(9) Positioning in Z-phase signal completed
- Locate the Z-phase signal in the forward direction and use the Z-phase signal as the origin.

(1) FWD Run for execute Homing position control function.
(2) Accelerate to Pr.11-71 Homing position control \(2^{\text {nt }}\) step speed according to Pr.11-72 Homing control acc./dec. time.
(3) Operating with Pr.11-71 Homing position control \(2^{\text {na }}\) step speed.Deceleration according to Pr.11-72 after encountering the Z -phase signal.Decelerate to OHz and change operating directions for search Z-phase signal.Refer to Pr. 11-70 Homing position control \({ }^{15}\) step speed and start to execute creep speed.
(7) Positioning in Z-phase signal completed.
- Locate the Z-phase signal in the reverse direction and use the Z-phase signal as the origin.
REV Run for execute Homing position control function.
(2) Accelerate to Pr.11-71 Homing position control \(2^{\text {nd }}\) step speed according to Pr.11-72 Homing control acc./dec. time.Operating with Pr.11-71 Homing position control \(2^{\text {nd }}\) step speed.
(4) Deceleration according to Pr.11-72 after encountering the Z-phase signal.
(5) Decelerate to 0 Hz and change operating directions for search Z-phase signal.
(6) Refer to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed and start to execute creep speed.
(7) Positioning in Z-phase signal completed.
- Execute homing position control in the forward direction and use the positive limit switch or the ORG switch as the origin.

(1) FWD Run for execute Homing position control function.
(2) Accelerate to Pr.11-71 Homing position control \(2^{\text {nd }}\) step speed according to Pr.11-72 Homing control acc./dec. time.Operating with Pr.11-71 Homing position control \(2^{\text {nd }}\) step speed.
(4) Deceleration according to Pr.11-72 after encountering the rising edge of the PL/ORG.
(5) Decelerate to 0 Hz and change operating directions for search PL/ORGI.Refer to Pr. 11-70 Homing position control \(1^{\text {st }}\) step speed and start to execute creep speed.Positioning in PL/ORG completed.
- Execute homing position control in the reverse direction and use the negative limit switch or the ORG switch as the origin.
REV Run for execute Homing position control function.
(2) Accelerate to Pr.11-71 Homing position control \(2^{\text {nd }}\) step speed according to Pr.11-72 Homing control acc./dec. time.

(3)Operating with Pr.11-71 Homing position control \(2^{\text {nd }}\) step speed.
(4) Deceleration according to Pr.11-72 after encountering the rising edge of the NL/ORG.Decelerate to OHz and change operating directions for search NL/ORGI.
(6) Refer to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed and start to execute creep speed.
(7) Positioning in NL/ORG completed.
- Execute homing position control in the forward direction until encountering the positive limit switch. Then, the direction is reversed to locate the Z-phase signal as the origin.

(1) FWD Run for execute Homing position control function.Accelerate to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed according to Pr.11-72 Homing control acc./dec. time.Operating with Pr.11-70 Homing position control \(1^{\text {st }}\) step speed.Deceleration according to Pr.11-72 after encountering the PL.Decelerate to OHz and change operating direction. After, accelerate to Pr.11-71 Homing control \(2^{\text {nd }}\) step speed according to Pr.11-72.Operating with Pr.11-71 Homing control \(2^{\text {nd }}\) step speed.
(7) Deceleration according to Pr.11-72 after encountering the Z-phase signal.
(8) Decelerate to OHz and change operating directions for search Z-phase signal.
(9) Refer to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed and start to execute creep speed.
(A) Positioning in Z-phase signal completed.
- Execute homing position control in the reverse direction until encountering the negative limit switch.

Then, the direction is reversed to locate the Z-phase signal as the origin.

(1) REV Run for execute Homing position control function.
(2) Accelerate to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed according to Pr.11-72 Homing control acc./dec. time.
(3) Operating with Pr.11-70 Homing position control \(1^{\text {st }}\) step speed.
(4) Deceleration according to Pr.11-72 after encountering the NL.Decelerate to 0 Hz and change operating direction. After, accelerate to Pr.11-71 Homing control \(2^{\text {nd }}\) step speed according to Pr.11-72.
(6) Operating with Pr.11-71 Homing control \(2^{\text {nd }}\) step speed.
(7) Deceleration according to Pr. 11-72 after encountering the Z-phase signal.Decelerate to 0 Hz and change operating directions for search Z-phase signal.
(9) Refer to Pr.11-70 Homing position control \(1^{\text {st }}\) step speed and start to execute creep speed.
(A) Positioning in Z-phase signal completed.

\section*{Diagram 1}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 1 & - & 0 & 1 & \begin{tabular}{l}
Execute homing position control in the reverse direction \\
until encountering the negative limit switch. Then, the \\
direction is reversed to locate the Z-phase signal as the \\
origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement is in the reverse direction.
2. When encountering the rising edge of the negative limit switch, the movement direction is reversed and waits for the falling-edge trigger of the negative limit switch.
3. Then, the movement locates the Z-phase signal in the forward direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If a positive limit switch signal is encountered when the motor moves in the forward direction, a homing failure occurs.
2. If no negative limit switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 2}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 2 & x & 0 & 0 & \begin{tabular}{l}
Execute homing position control in the forward direction \\
until encountering the positive limit switch. Then, the \\
direction is reversed to locate the Z-phase signal as the \\
origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement is in the forward direction.
2. When encountering the rising edge of the positive limit switch, the movement direction is reversed and waits for the falling-edge trigger of the positive limit switch.
3. Then, the movement locates the Z-phase signal in the reverse direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If a negative limit switch signal is encountered when the motor moves in the reverse direction, a homing failure occurs.
2. If no positive limit switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 3}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 3 & 0 & 0 & 2 & \begin{tabular}{l}
Execute homing position control in the forward direction \\
until encountering the ORG switch (from 0 to 1). Then, \\
the direction is reversed to locate the Z-phase signal as \\
the origin. Stops when encountering the positive limit \\
switch.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the reverse direction if the ORG switch is active; the initial movement is in the forward direction if the ORG switch is inactive.
2. When moving in the forward direction and encountering the rising edge of the ORG switch, the movement direction is reversed.
3. Then, the movement locates the Z-phase signal in the reverse direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If the initial motor movement is in the forward direction and no falling edge of the ORG switch is encountered, a homing failure occurs.
2. If a positive or negative limit switch signal is encountered in the process of motor movement, a homing failure occurs.
3. If no ORG switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 4}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 4 & 0 & 1 & 2 & \begin{tabular}{l}
Execute homing position control in the forward direction \\
until encountering the ORG switch (from 0 to 1). Then, \\
continue locating the Z-phase signal in the same \\
direction as the origin. Stops when encountering the \\
positive limit switch.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the reverse direction if the ORG switch is active; the initial movement is in the forward direction if the ORG switch is inactive.
2. When moving in the reverse direction and encountering the falling edge of the ORG switch, the movement direction is reversed and waits for the rising-edge trigger of the ORG switch.
3. Then, the movement locates the Z-phase signal in the forward direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If the initial motor movement is in the reverse direction and no falling edge of the ORG switch is encountered, a homing failure occurs.
2. If a positive or negative limit switch signal is encountered in the process of motor movement, a homing failure occurs.
3. If no ORG switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 5}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 5 & 0 & 0 & 3 & \begin{tabular}{l}
Execute homing position control in the reverse direction \\
until encountering the ORG switch (from 0 to 1). Then, \\
the direction is reversed to locate the Z-phase signal as \\
the origin. Stops when encountering the negative limit \\
switch.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the forward direction if the ORG switch is active; the initial movement is in the reverse direction if the ORG switch is inactive.
2. When moving in the reverse direction and encountering the rising edge of the ORG switch, the movement direction is reversed and waits for the falling-edge trigger of the ORG switch.
3. Then, the movement locates the Z-phase signal in the forward direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If the motor starts the movement in the reverse direction and no rising edge of the ORG switch is encountered, a homing failure occurs.
2. If a positive or negative limit switch signal is encountered in the process of motor movement, a homing failure occurs.
3. If no ORG switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 6}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 6 & 0 & 1 & 3 & \begin{tabular}{l}
Execute homing position control in the reverse direction \\
until encountering the ORG switch (from 0 to 1). Then, \\
continue locating the Z-phase signal in the same \\
direction as the origin. Stops when encountering the \\
negative limit switch.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the forward direction if the ORG switch is active; the initial movement is in the reverse direction if the ORG switch is inactive.
2. When moving in the forward direction and encountering the falling-edge of the ORG switch, the movement direction is reversed and waits for the rising-edge trigger of the ORG switch.
3. Then, the movement locates the Z-phase signal in the reverse direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If the initial motor movement is in the forward direction and no falling edge of the ORG switch is encountered, a homing failure occurs.
2. If a positive or negative limit switch signal is encountered in the process of motor movement, a homing failure occurs.
3. If no ORG switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 7}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 7 & 1 & 0 & 2 & \begin{tabular}{l}
Execute homing position control in the forward direction \\
until encountering the ORG switch (from 0 to 1). Then, \\
the direction is reversed to locate the Z-phase signal as \\
the origin. When encountering the positive limit switch, \\
the direction is reversed to locate the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the reverse direction if the ORG switch is active; the initial movement is in the forward direction if the ORG switch is inactive.
2. When moving in the forward direction and encountering the positive limit switch, the movement direction is reversed and waits for the falling-edge trigger of the positive limit switch.
3. When moving in the forward direction and encountering the rising edge of the ORG switch, the movement direction is reversed.
4. Then, the movement locates the Z-phase signal in the reverse direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If a negative limit switch signal is encountered when the motor moves in the reverse direction, a homing failure occurs.
2. If no positive limit switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 8}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \\
\hline 8 & 1 & 1 & 2 & \begin{tabular}{l}
Function Description
\end{tabular} \\
\hline \begin{tabular}{l}
Execute homing position control in the forward direction \\
until encountering the ORG switch (from 0 to 1). Then, \\
continue locating the Z-phase signal in the same \\
direction as the origin. When encountering the positive \\
limit switch, the direction is reversed to locate the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the reverse direction if the ORG switch is active; the initial movement is in the forward direction if the ORG switch is inactive.
2. When moving in the forward direction and encountering the positive limit switch, the movement direction is reversed and waits for the falling-edge trigger of the positive limit switch.
3. When moving in the reverse direction and encountering the falling edge of the ORG switch, the movement direction is reversed.
4. Then, the movement locates the Z-phase signal in the forward direction and uses the Z-phase signal as the origin

A homing failure occurs when the following condition happen:
1. If a negative limit switch signal is encountered when the motor moves in the reverse direction, a homing failure occurs.
2. If no positive limit switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 9}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 9 & 1 & 0 & 6 & \begin{tabular}{l}
Execute homing position control in the forward direction \\
until encountering the ORG switch (from 1 to 0). Then, \\
the direction is reversed to locate the Z-phase signal as \\
the origin. When encountering the positive limit switch, \\
the direction is reversed to locate the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement is in the forward direction.
2. When moving in the forward direction and encountering the positive limit switch, the movement direction is reversed and waits for the falling-edge trigger of the positive limit switch.
3. When moving in the forward direction and encountering the falling edge of the ORG switch, the movement direction is reversed.
4. Then, the movement locates the Z-phase signal in the reverse direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If a negative limit switch signal is encountered when the motor moves in the reverse direction, a homing failure occurs.
2. If no positive limit switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 10}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 10 & 1 & 1 & 6 & \begin{tabular}{l}
Execute homing position control in the forward direction \\
until encountering the ORG switch (from 1 to 0). Then, \\
continue locating the Z-phase signal in the same \\
direction as the origin. When encountering the positive \\
limit switch, the direction is reversed to locate the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement is in the forward direction.
2. When moving in the forward direction and encountering the positive limit switch, the movement direction is reversed and waits for the falling-edge trigger of the positive limit switch.
3. When moving in the reverse direction and encountering the rising edge of the ORG switch, the movement direction is reversed.
4. Then, the movement locates the Z-phase signal in the forward direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If a negative limit switch signal is encountered when the motor moves in the reverse direction, a homing failure occurs.
2. If no positive limit switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 11}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \\
\hline 11 & 1 & 0 & 3 & \begin{tabular}{l}
Function Description
\end{tabular} \\
\hline \begin{tabular}{l}
Execute homing position control in the reverse direction \\
until encountering the ORG switch (from 0 to 1). Then, \\
the direction is reversed to locate the Z-phase signal as \\
the origin. When encountering the negative limit switch, \\
the direction is reversed to locate the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the reverse direction if the ORG switch is active; the initial movement is in the forward direction if the ORG switch is inactive.
2. When moving in the reverse direction and encountering the negative limit switch, the movement direction is reversed and waits for the falling-edge trigger of the negative limit switch.
3. When moving in the reverse direction and encountering the rising edge of the ORG switch, the movement direction is reversed.
4. Then, the movement locates the Z-phase signal in the forward direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If a positive limit switch signal is encountered when the motor moves in the forward direction, a homing failure occurs.
2. If no negative limit switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 12}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 12 & 1 & 1 & 3 & \begin{tabular}{l}
Execute homing position control in the reverse direction \\
until encountering the ORG switch (from 0 to 1). Then, \\
continue locating the Z-phase signal in the same \\
direction as the origin. When encountering the negative \\
limit switch, the direction is reversed to locate the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the reverse direction if the ORG switch is active; the initial movement is in the forward direction if the ORG switch is inactive.
2. When moving in the reverse direction and encountering the negative limit switch, the movement direction is reversed and waits for the falling-edge trigger of the negative limit switch.
3. When moving in the forward direction and encountering the falling edge of the ORG switch, the movement direction is reversed.
4. Then, the movement locates the Z-phase signal in the reverse direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If a positive limit switch signal is encountered when the motor moves in the forward direction, a homing failure occurs.
2. If no negative limit switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 13}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 13 & 1 & 0 & 7 & \begin{tabular}{l}
Execute homing position control in the reverse direction \\
until encountering the ORG switch (from 1 to 0). Then, \\
the direction is reversed to locate the Z-phase signal as \\
the origin. When encountering the negative limit switch, \\
the direction is reversed to locate the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement is in the reverse direction.
2. When moving in the reverse direction and encountering the negative limit switch, the movement direction is reversed and waits for the falling-edge trigger of the negative limit switch.
3. When moving in the reverse direction and encountering the falling edge of the ORG switch, the movement direction is reversed.
4. Then, the movement locates the Z-phase signal in the forward direction and uses the Z-phase signal as the origin

A homing failure occurs when the following condition happen:
1. If a positive limit switch signal is encountered when the motor moves in the forward direction, a homing failure occurs.
2. If no negative limit switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 14}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \\
\hline 14 & 1 & 1 & 7 & \begin{tabular}{l}
Function Description \\
Execute homing position control in the reverse direction \\
until encountering the ORG switch (from 1 to 0). Then, \\
continue locating the Z-phase signal in the same \\
direction as the origin. When encountering the negative \\
limit switch, the direction is reversed to locate the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement is in the reverse direction.
2. When moving in the reverse direction and encountering the negative limit switch, the movement direction is reversed and waits for the falling-edge trigger of the negative limit switch.
3. When moving in the forward direction and encountering the rising edge of the ORG switch, the movement direction is reversed.
4. Then, the movement locates the Z-phase signal in the reverse direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If a positive limit switch signal is encountered when the motor moves in the forward direction, a homing failure occurs.
2. If no negative limit switch or Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 15}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \begin{tabular}{c}
Function Description
\end{tabular} \\
\hline 17 & - & 2 & 1 & \begin{tabular}{l}
Execute homing position control in the reverse direction \\
and use the negative limit switch as the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement is in the reverse direction.
2. When encountering the rising edge of the negative limit switch, the movement direction is reversed and waits for the falling-edge trigger of the negative limit switch as the origin.

A homing failure occurs when the following condition happen:
1. If a positive limit switch signal is encountered when the motor moves in the forward direction, a homing failure occurs.
2. If no negative limit switch signal is encountered in the homing process mentioned above, and timeout is triggered, then a homing failure occurs.

\section*{Diagram 16}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 18 & - & 2 & 0 & \begin{tabular}{l}
Execute homing position control in the forward direction \\
and use the positive limit switch as the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement is in the forward direction.
2. When encountering the rising edge of the positive limit switch, the movement direction is reversed and waits for the falling-edge trigger of the positive limit switch as the origin.

A homing failure occurs when the following condition happen:
1. If a negative limit switch signal is encountered when the motor moves in the reverse direction, a homing failure occurs.
2. If no positive limit switch signal is encountered in the homing process mentioned above, and timeout is triggered, then a homing failure occurs.

\section*{Diagram 17}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \\
\hline 19 & \multicolumn{2}{|c|}{ Function Description } \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the reverse direction if the ORG switch is active; the initial movement is in the forward direction if the ORG switch is inactive.
2. When moving in the forward direction and encountering the rising edge of the ORG switch, the movement direction is reversed.
3. Then, wait for the falling-edge trigger of the ORG switch as the origin.

A homing failure occurs when the following condition happen:
1. If the initial motor movement is in the forward direction and no falling edge of the ORG switch is encountered, a homing failure occurs.
2. If a positive or negative limit switch signal is encountered in the process of motor movement, a homing failure occurs.
3. If no ORG switch signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 18}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & \(Z\) & \(Y\) & \(X\) & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \begin{tabular}{c}
Function Description
\end{tabular} \\
\hline 20 & 0 & 2 & 2 & \begin{tabular}{c}
Execute homing position control in the forward direction \\
and use the ORG switch (from 0 to 1) as the origin. Stops \\
when encountering the positive limit switch.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the reverse direction if the ORG switch is active; the initial movement is in the forward direction if the ORG switch is inactive.
2. When moving in the reverse direction and encountering the falling edge of the ORG switch, the movement direction is reversed and waits for the rising-edge trigger of the ORG switch.
3. Then, wait for the rising-edge trigger of the ORG switch as the origin.

A homing failure occurs when the following condition happen:
1. If the initial motor movement is in the reverse direction and no falling edge of the ORG switch is encountered, a homing failure occurs.
2. If a positive or negative limit switch signal is encountered in the process of motor movement, a homing failure occurs.
3. If no ORG switch signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 19}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \\
\hline 21 & \multicolumn{2}{c|}{ Function Description } \\
\hline No correspondence & See the diagram for homing method 21 \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the forward direction if the ORG switch is active; the initial movement is in the reverse direction if the ORG switch is inactive.
2. When moving in the reverse direction and encountering the rising edge of the ORG switch, the movement direction is reversed and waits for the falling-edge trigger of the ORG switch.
3. Then, wait for the falling-edge trigger of the ORG switch as the origin.

A homing failure occurs when the following condition happen:
1. If the motor starts the movement in the reverse direction and no rising edge of the ORG switch is encountered, a homing failure occurs.
2. If a positive or negative limit switch signal is encountered in the process of motor movement, a homing failure occurs.
3. If no ORG switch signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 20}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 22 & 0 & 2 & 3 & \begin{tabular}{l}
Execute homing position control in the reverse direction \\
and use the ORG switch (from 0 to 1) as the origin. Stops \\
when encountering the negative limit switch.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the forward direction if the ORG switch is active; the initial movement is in the reverse direction if the ORG switch is inactive.
2. When moving in the forward direction and encountering the falling-edge of the ORG switch, the movement direction is reversed and waits for the rising-edge trigger of the ORG switch.
3. Then, wait for the rising-edge trigger of the ORG switch as the origin.

A homing failure occurs when the following condition happen:
1. If the initial motor movement is in the forward direction and no falling edge of the ORG switch is encountered, a homing failure occurs.
2. If a positive or negative limit switch signal is encountered in the process of motor movement, a homing failure occurs.
3. If no ORG switch signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 21}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \\
\hline 23 & \multicolumn{2}{|c|}{ Function Description } \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the reverse direction if the ORG switch is active; the initial movement is in the forward direction if the ORG switch is inactive.
2. When moving in the forward direction and encountering the positive limit switch, the movement direction is reversed and waits for the falling-edge trigger of the positive limit switch.
3. When moving in the forward direction and encountering the rising edge of the ORG switch, the movement direction is reversed.
4. Then, wait for the falling-edge trigger of the ORG switch as the origin.

A homing failure occurs when the following condition happen:
1. If a negative limit switch signal is encountered when the motor moves in the reverse direction, a homing failure occurs.
2. If no positive limit switch signal is encountered in the homing process mentioned above, and timeout is triggered, then a homing failure occurs.

\section*{Diagram 22}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 24 & 1 & 2 & 2 & \begin{tabular}{l}
Execute homing position control in the forward direction \\
and use the ORG switch (from 0 to 1) as the origin. When \\
encountering the positive limit switch, the direction is \\
reversed to the locate the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the reverse direction if the ORG switch is active; the initial movement is in the forward direction if the ORG switch is inactive.
2. When moving in the forward direction and encountering the positive limit switch, the movement direction is reversed and waits for the falling-edge trigger of the positive limit switch.
3. When moving in the reverse direction and encountering the falling edge of the ORG switch, the movement direction is reversed.
4. Then, wait for the rising-edge trigger of the ORG switch as the origin.

A homing failure occurs when the following condition happen:
1. If a negative limit switch signal is encountered when the motor moves in the reverse direction, a homing failure occurs.
2. If no positive limit switch signal is encountered in the homing process mentioned above, and timeout is triggered, then a homing failure occurs.

\section*{Diagram 23}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \\
\hline 25 & \multicolumn{2}{|c|}{ Function Description } \\
\hline
\end{tabular}
1. The initial movement is in the forward direction.
2. When moving in the forward direction and encountering the positive limit switch, the movement direction is reversed and waits for the falling-edge trigger of the positive limit switch.
3. When moving in the forward direction and encountering the falling edge of the ORG switch, the movement direction is reversed.
4. Then, wait for the rising-edge trigger of the ORG switch as the origin.

A homing failure occurs when the following condition happen:
1. If a negative limit switch signal is encountered when the motor moves in the reverse direction, a homing failure occurs.
2. If no positive limit switch signal is encountered in the homing process mentioned above, and timeout is triggered, then a homing failure occurs.

\section*{Diagram 24}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 26 & 1 & 2 & 6 & \begin{tabular}{l}
Execute homing position control in the forward direction \\
and use the ORG switch (from 1 to 0) as the origin. When \\
encountering the positive limit switch, the direction is \\
reversed to locate the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement is in the forward direction.
2. When moving in the forward direction and encountering the positive limit switch, the movement direction is reversed and waits for the falling-edge trigger of the positive limit switch.
3. When moving in the reverse direction and encountering the rising edge of the ORG switch, the movement direction is reversed.
4. Then, wait for the falling-edge trigger of the ORG switch as the origin.

A homing failure occurs when the following condition happen:
1. If a negative limit switch signal is encountered when the motor moves in the reverse direction, a homing failure occurs.
2. If no positive limit switch signal is encountered in the homing process mentioned above, and timeout is triggered, then a homing failure occurs.

\section*{Diagram 25}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \\
\hline 27 & \multicolumn{2}{|c|}{ Function Description } \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the forward direction if the ORG switch is active; the initial movement is in the reverse direction if the ORG switch is inactive.
2. When moving in the reverse direction and encountering the negative limit switch, the movement direction is reversed and waits for the falling-edge trigger of the negative limit switch.
3. When moving in the reverse direction and encountering the rising edge of the ORG switch, the movement direction is reversed.
4. Then, wait for the falling-edge trigger of the ORG switch as the origin.

A homing failure occurs when the following condition happen:
1. If a positive limit switch signal is encountered when the motor moves in the forward direction, a homing failure occurs.
2. If no negative limit switch signal is encountered in the homing process mentioned above, and timeout is triggered, then a homing failure occurs.

\section*{Diagram 26}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 28 & 1 & 2 & 3 & \begin{tabular}{l}
Execute homing position control in the reverse direction \\
and use the ORG switch (from 0 to 1) as the origin. When \\
encountering the negative limit switch, the direction is \\
reversed to locate the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement direction depends on the ORG switch status. The initial movement is in the forward direction if the ORG switch is active; the initial movement is in the reverse direction if the ORG switch is inactive.
2. When moving in the reverse direction and encountering the negative limit switch, the movement direction is reversed and waits for the falling-edge trigger of the negative limit switch.
3. When moving in the forward direction and encountering the falling edge of the ORG switch, the movement direction is reversed.
4. Then, wait for the rising-edge trigger of the ORG switch as the origin.

A homing failure occurs when the following condition happen:
1. If a positive limit switch signal is encountered when the motor moves in the forward direction, a homing failure occurs.
2. If no negative limit switch signal is encountered in the homing process mentioned above, and timeout is triggered, then a homing failure occurs.

\section*{Diagram 27}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \\
\hline 29 & \multicolumn{2}{|c|}{ Function Description } \\
\hline
\end{tabular}
1. The initial movement is in the reverse direction.
2. When moving in the reverse direction and encountering the negative limit switch, the movement direction is reversed and waits for the falling-edge trigger of the negative limit switch.
3. When moving in the reverse direction and encountering the falling edge of the ORG switch, the movement direction is reversed.
4. Then, wait for the rising-edge trigger of the ORG switch as the origin.

A homing failure occurs when the following condition happen:
1. If a positive limit switch signal is encountered when the motor moves in the forward direction, a homing failure occurs.
2. If no negative limit switch signal is encountered in the homing process mentioned above, and timeout is triggered, then a homing failure occurs.

\section*{Diagram 28}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 30 & 1 & 2 & 7 & \begin{tabular}{l}
Execute homing position control in the reverse direction \\
and use the ORG switch (from 1 to 0) as the origin. When \\
encountering the negative limit switch, the direction is \\
reversed to locate the origin.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement is in the reverse direction.
2. When moving in the reverse direction and encountering the negative limit switch, the movement direction is reversed and waits for the falling-edge trigger of the negative limit switch.
3. When moving in the forward direction and encountering the rising edge of the ORG switch, the movement direction is reversed.
4. Then, wait for the falling-edge trigger of the ORG switch as the origin.

A homing failure occurs when the following condition happen:
1. If a positive limit switch signal is encountered when the motor moves in the forward direction, a homing failure occurs.
2. If no negative limit switch signal is encountered in the homing process mentioned above, and timeout is triggered, then a homing failure occurs.

\section*{Diagram 29}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 H\)
\end{tabular} & \(Z\) & \(Y\) & \(X\) & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \multirow{2}{*}{ Function Description } \\
\hline 33 & 0 & - & 5 & \begin{tabular}{l}
Locate the Z-phase signal in the reverse direction and \\
use the Z-phase signal as the origin. Stops when \\
encountering the negative limit switch.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement is in the reverse direction.
2. Then, the movement locates the Z-phase signal in the reverse direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If a positive or negative limit switch signal is encountered in the process of motor movement, a homing failure occurs.
2. If no Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 30}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \begin{tabular}{c}
Function Description
\end{tabular} \\
\hline 34 & 0 & - & 4 & \begin{tabular}{l}
Locate the Z-phase signal in the forward direction and \\
use the Z-phase signal as the origin. Stops when \\
encountering the positive limit switch.
\end{tabular} \\
\hline
\end{tabular}
1. The initial movement is in the forward direction.
2. Then, the movement locates the Z-phase signal in the forward direction and uses the Z-phase signal as the origin.

A homing failure occurs when the following condition happen:
1. If a positive or negative limit switch signal is encountered in the process of motor movement, a homing failure occurs.
2. If no Z-phase signal is encountered in the homing process mentioned above, and time-out is triggered, then a homing failure occurs.

\section*{Diagram 31}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
CiA402 object \\
\(0 \times 6098 \mathrm{H}\)
\end{tabular} & Z & Y & X & \\
\hline \begin{tabular}{c}
Homing \\
Method
\end{tabular} & \begin{tabular}{c}
Home \\
Limit
\end{tabular} & \begin{tabular}{c}
Z-phase \\
Signal \\
Setting
\end{tabular} & \begin{tabular}{c}
Homing \\
Mode
\end{tabular} & \begin{tabular}{c}
Function Description \\
\hline 35
\end{tabular} \\
\hline- & - & 8 & Use the current position as the origin. \\
\hline
\end{tabular}
1. The current position is used as the origin (this function is available even when the drive is in stop status).

A homing failure occurs when the following condition happen:
1. No homing failure condition occurs.

\section*{11-69 Homing Control Time Out}

Default: 60.0
Settings \(0.0-6000.0 \mathrm{sec}\).
1 Set the time limit for completing the homing process. When executing homing position control, a fault occurs for the drive if positioning time exceeds Pr.11-69.

\section*{11-70 Homing Control First Step Speed}

Default: 8.00
Settings \(0.00-599.00 \mathrm{~Hz}\)
11-71 Homing Control Second Step Speed
Default: 2.00
```

Settings $0.00-599.00 \mathrm{~Hz}$

```
© There are two steps of speed for the homing process:
CiA402 defines:
- The first-step speed is used to locate the switch signals (positive limit switch, negative limit switch and ORG switch)
- The second-step speed is used to locate the reference point (Z-phase signal, the rising / falling edge of the ORG switch signal)Considering the braking distance when the motor encounters the switch signal, do not use a too fast first-step speed.To ensure the high repeatability of the reference point, use a low second-step speed.When executing homing control, the last rising speed refers to the setting of Pr.11-70.

\section*{11-72}

Default: 10.00
Settings \(0.00-600.00 \mathrm{sec}\).This parameter is the first-step of acceleration / deceleration time from 0 Hz to Pr. 11-70 when the homing position control function is enabled.Acceleration / deceleration time in the process of homing refers to Pr.11-72 setting value.

\section*{11-73 Homing Control Offset (Revolution)}

Default: 0
Settings -30000-30000 resolutions

\section*{11-74 Homing Control Offset (Pulse)}

Default: 0
Settings Refer to Pr.10-01 setting
10 Pr.11-73 and Pr.11-74 are the offset number of revolutions and pulses required for the coordinate system origin (mechanical origin) position determined after the homing positioning process is completed.
When Pr. 10-00 = 8, the setting range for Pr.11-73 is -16383-16383.

\section*{11-75 Position Record (Revolution)}

Default: 0
Settings -30000-30000 resolutions

\section*{11-76 Position Record (Pulse)}

Default: 0
Settings Refer to Pr.10-01 setting
1 The position memory function enables the drive to record the motor's current position and makes the coordinate system remain at the mechanical origin even after the drive's power-off when using incremental encoder. With this function, you do not need to execute the homing positioning again.The position memory function is only valid when Pr.11-60 bit0 \(=1\) (position memory function is enabled).When the drive is powered off, it records the motor's current position in Pr.11-75 and Pr.11-76. After the drive is powered ON again, the motor's initial position \(=\) Pr.11-75 \(\times\) PPR number + Pr.1176 , and the homing process is regarded as completed.
If the saved position exceeds the maximum capacity of position memory (Pr.11-75 and Pr.11-76), the warning code POF (position counting overflow) is displayed after the drive is powered ON again.

\section*{11-78 HALT Revived Selection}

\section*{Default: 0}

Settings 0: Stopped
1: Continue according to the previous position commandWhen executing multi-step positioning position control through communications: If 6000 h bit3 \(=1\), the drive stops at zero speed in a Servo ON status according to the deceleration time for position control. If 6000 h bit \(3=0\), the drive acts according to Pr.11-78 settings:
When Pr.11-78 = 0, the drive is in complete stop, and Servo ON remains.
When Pr.11-78 = 1, the drive resumes with previous position command.
\begin{tabular}{|c|c|c|c|l|}
\hline Control Source Position & bit & Value & bit name & Profile Position Control Mode (pp) \\
\hline \multirow{3}{*}{6000 h} & & 0 & & Acts according to Pr.11-78 settings \\
& 3 & 1 & \multirow{2}{*}{ HALT } & \begin{tabular}{l}
Stops according to the deceleration \\
time for position control
\end{tabular} \\
\hline
\end{tabular}

\section*{12 Tension Control Parameters}

You can set this parameter during operation.

\section*{12-00 Tension Control Selection}

Default: 0
Settings
0 : Disabled
1: Closed-loop tension, speed mode
2: Closed-loop linear speed, speed mode
3: Closed-loop tension, torque mode
4: Open-loop tension, torque mode
1 The table below shows the control modes applicable to each setting value:
\begin{tabular}{|l|c|c|c|c|}
\hline Setting value Control mode & VF & SVC & FOC & TQC \\
\hline 0: Disabled & & & & \\
\hline 1: Closed-loop tension, speed mode & 0 & 0 & O & \\
\hline 2: Closed-loop linear speed, speed mode & 0 & 0 & 0 & \\
\hline 3: Closed-loop tension, torque mode & & & & 0 \\
\hline 4: Open-loop tension, torque mode & & & & 0 \\
\hline
\end{tabular}
(1) See the following pages for the instructions of each setting value:

\section*{- Setting value 1: Closed-loop tension, speed mode}

The calculation of the main frequency in tension control:
\[
f(H z)=\frac{V}{\pi D} \cdot \frac{A}{B}
\]
\(V\) : Linear speed (\(\mathrm{m} / \mathrm{min}\).)
\(D\) : Reel diameter (m)
\(A / B\) : Mechanical gear ratio

\section*{Example:}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{A summary of the parameters - Tension closed-loop, speed mode} \\
\hline \multirow{5}{*}{Tractor (Drive 1)} & Pr. & Parameter name & Setting & Note \\
\hline & 00-20 & Master frequency command source (AUTO, REMOTE) & 2 & Inputs from external analog (refer to Pr.03-00) \\
\hline & 00-21 & Operation command source (AUTO, REMOTE) & 1 & Operates by using external terminals \\
\hline & 02-16 & Multi-function output 2 (MO1) & 1 & Indication during RUN \\
\hline & 03-20 & AFM multi-function output & 0 & Output frequency (Hz) \\
\hline \multirow{12}{*}{Winder machine (Drive 2)} & Pr. & Parameter name & Setting & Note \\
\hline & 00-21 & Operation command source (AUTO, REMOTE) & 1 & Operates by using external terminals \\
\hline & 03-00 & AVI analog input selection & 15 & Linear speed \\
\hline & 03-01 & ACI analog input selection & 14 & Tension PID feedback signal \\
\hline & 12-00 & Tension control selection & 1 & Closed-loop tension, speed mode \\
\hline & 12-02 & Mechanical gear A at load side & 100 & Depends on working condition \\
\hline & 12-03 & Mechanical gear B at motor side & 100 & Depends on working condition \\
\hline & 12-04 & PID target source & 0 & Set by parameter (Pr.12-05) \\
\hline & 12-05 & PID target value & 50 & Depends on working condition \\
\hline & 12-06 & PID feedback source selection & 0 & Analog input \\
\hline & 12-19 & Linear speed input command source & 1 & Analog input \\
\hline & 12-27 & Reel diameter source & 0 & Calculated via linear speed \\
\hline
\end{tabular}
- Setting value 2: Closed-loop linear speed, speed mode

\section*{Example:}

\begin{tabular}{|c|l|c|l|}
\hline \multicolumn{3}{|c|}{ A summary of the parameters - Closed-loop linear speed, speed mode } \\
\hline Pr. & \multicolumn{1}{|c|}{ Parameter name } & Setting & \multicolumn{1}{c|}{ Note } \\
\hline \(10-00\) & Encoder type selection & 5 & Pulse input \\
\hline \(10-16\) & Pulse input type setting & 1 & \begin{tabular}{l}
Phases A and B are pulse inputs, \\
forward direction if A-phase leads B- \\
phase by 90 degrees.
\end{tabular} \\
\hline \(12-00\) & Tension control selection & 1 & Closed-loop linear speed, speed mode \\
\hline \(12-02\) & Mechanical gear A at load side & 100 & Depends on working condition \\
\hline \(12-03\) & Mechanical gear B at motor side & 100 & Depends on working condition \\
\hline \(12-04\) & PID target source & 0 & Set by parameter (Pr.12-05) \\
\hline \(12-05\) & PID target value & 50 & Depends on working condition \\
\hline \(12-06\) & PID feedback source selection & 1 & Pulse input \\
\hline \(12-22\) & Pulses per meter & 500 & Depends on working condition \\
\hline \(12-25\) & Linear speed command acceleration time & 10 & Depends on working condition \\
\hline \(12-26\) & Linear speed command deceleration time & 10 & Depends on working condition \\
\hline \(12-27\) & Reel diameter source & 0 & Calculated via linear speed \\
\hline
\end{tabular}

\section*{- Setting value 3: Closed-loop tension, torque mode}
\[
\text { Torque }(\mathrm{N}-\mathrm{m})=\frac{F \cdot D}{2}
\]
```

F:Tension (N)
D: Reel diameter (m)

```

Pr.12-27
Reel diameter source
Pr.12-54
Tension command source selection

Pr.12-27
Reel diameter source

\section*{Example:}

Drive
\begin{tabular}{|c|l|c|l|}
\hline \multicolumn{3}{|c|}{ A summary of the parameters - Tension closed-loop, torque mode } \\
\hline Pr. & \multicolumn{1}{|c|}{ Parameter name } & Setting & \multicolumn{1}{c|}{ Note } \\
\hline \(00-21\) & Operation command source (AUTO, REMOTE) & 1 & Operates by using external terminals \\
\hline \(02-03\) & Multi-function input command 3 (MI3) & 39 & Torque command direction \\
\hline \(03-00\) & AVI analog input selection & 14 & Tension PID feedback signal \\
\hline \(10-00\) & Encoder type selection & 5 & Pulse input \\
\hline \(10-16\) & Pulse input type setting & 1 & \begin{tabular}{l}
Phases A and B are pulse inputs, \\
forward direction if A-phase leads B- \\
phase by 90 degrees.
\end{tabular} \\
\hline \(12-00\) & Tension control selection & 3 & Closed-loop tension, torque mode \\
\hline \(12-02\) & Mechanical gear A at load side & 100 & Depends on working condition \\
\hline \(12-03\) & Mechanical gear B at motor side & 100 & Depends on working condition \\
\hline \(12-06\) & PID feedback source selection & 0 & Analog input \\
\hline \(12-27\) & Reel diameter source & 4 & \begin{tabular}{l}
4: Calculated via thickness integral, the \\
encoder installed at reel side inputs \\
by MI6 / MI7 terminals
\end{tabular} \\
\hline \(12-34\) & Pulses per revolution & 1000 & Depends on working condition \\
\hline \(12-35\) & Revolutions per layer & 10 & Depends on working condition \\
\hline \(12-36\) & Material thickness & 0.01 & Depends on working condition \\
\hline \(12-54\) & Tension command source selection & 0 & RS-485 communication input \\
\hline \(12-56\) & Tension command setting value & 100 & Depends on working condition \\
\hline
\end{tabular}

\section*{- Setting value 4: Open-loop tension, torque mode}

Current reel diameter Pr.00-04 \(=53\)
Current reel diameter Pr.00-04 = 53

\section*{Example:}

\begin{tabular}{|c|l|c|l|}
\hline \multicolumn{3}{|c|}{ A summary of the parameters - Tension open-loop, torque mode } \\
\hline Pr. & \multicolumn{1}{|c|}{ Parameter name } & Setting & \multicolumn{1}{c|}{ Note } \\
\hline \(00-21\) & Operation command source (AUTO, REMOTE) & 1 & Operates by using external terminals \\
\hline \(02-03\) & Multi-function input command 3 (MI3) & 39 & Torque command direction \\
\hline \(10-00\) & Encoder type selection & 5 & Pulse input \\
\hline \(10-16\) & Pulse input type setting & 1 & \begin{tabular}{l}
Phases A and B are pulse inputs, \\
forward direction if A-phase leads B- \\
phase by 90 degrees.
\end{tabular} \\
\hline \(12-00\) & Tension control selection & 4 & Open-loop tension, torque mode \\
\hline \(12-02\) & Mechanical gear A at load side & 100 & Depends on working condition \\
\hline \(12-03\) & Mechanical gear B at motor side & 100 & Depends on working condition \\
\hline \(12-19\) & Linear speed input command source & 5 & Pulse input through MI6 / MI7 terminal \\
\hline \(12-22\) & Pulses per meter & 1000 & Depends on working condition \\
\hline \(12-27\) & Reel diameter source & 0 & Calculated via linear speed \\
\hline \(12-54\) & Tension command source selection & 0 & RS-485 communication input \\
\hline \(12-56\) & Tension command setting value & 100 & Depends on working condition \\
\hline
\end{tabular}

\section*{12-01 Winding Mode}

Default: 0
Settings 0: Rewind
1: Unwind
1 When Pr.12-01 = 1, the tension taper function is invalid.When using rewind mode, the reel diameter (D) increases gradually; when using unwind mode, the reel diameter (D) decreases gradually. See the figure below.

\section*{12-02 Mechanical Gear A at Load Side}

Default: 100
Settings 1-65535

\section*{12-03 Mechanical Gear B at Motor Side}

Default: 100
Settings 1-65535Pr.12-02 and Pr.12-03 are only for using in tension control mode.

\section*{12-04 PID Target Source}

Default: 0
Settings 0 : Set by parameter (Pr. 12-05)
1: Set by RS-485
2: Analog input
[10] This parameter is valid when Pr. \(12-00=1\) or 2 .
When Pr.12-04 \(=0\), you can adjust PID target value (Pr.12-05) via digital keypad.When Pr.12-04 = 1, you can adjust PID target value (Pr.12-05) via communication.When Pr.12-04 = 2, sets AVI / ACI analog input to be tension PID target value (Pr.03-00, Pr.03-01 \(=d 17\)), and the tension target value will only display in Pr.12-05.

\section*{12-05 PID Target Value}

Default: 50.0
Settings 0.0-100.0\%
[1] This parameter is valid when Pr. 12-00 = 1 or 2 .Under the condition of closed-loop linear speed and speed mode (Pr.12-00 = 2), sets Pr.03-00, Pr.03-01 to 15 (Linear speed) as the linear speed PID command. For other tension modes, sets Pr.03-00, Pr.03-01 to 15 (linear speed) as the actual linear speed.
\(\square\) The setting range \(0.0-100.0 \%\) corresponds to the tension feedback \(0-10 \mathrm{~V} / 0\) - the maximum linear speed (Pr.12-20).

For example:
- In tension mode, when Pr.12-00 = 1 (closed-loop tension, speed mode), the setting value 17 (tension PID target value) of Pr.03-00, Pr.03-01 corresponds to the tension feedback 0-10 V.
- In tension mode, when Pr.12-00 = 2 (closed-loop linear speed, speed mode), the setting value 15 (linear speed) of Pr.03-00, Pr.03-01 corresponds to \(0-\) the maximum linear speed (Pr.12-07).

\section*{12-06 PID Feedback Source Selection}

Default: 0
Settings 0: Analog input
1: Pulse input
When setting as 0 , the setting for \(\mathrm{AVI} / \mathrm{ACI}\) analog input selection have to be tension PID feedback signal (Pr.03-00, Pr.03-01 = d14).
(1) When setting as 1, you have to set the pulses per meter in Pr.12-22.

\section*{12-07 Tension PID Auto-tuning Selection}

Default: 0

\section*{Settings 0: Disabled}

1: Reel diameter (Pr.12-08-12-09 corresponds to Pr.12-29; Pr.12-11-12-12 corresponds to Pr. 12-28)
2: Frequency (Pr.12-08-12-09 corresponds to Pr. 01-07; Pr.12-11-12-12 corresponds to Pr.01-00)
(1) When setting as 1 :

When setting as 2 :

\section*{12-08 Tension PID P Gain 1}

Default: 50.0
Settings 0.0-1000.0

\section*{12-09 Tension PID I Integral Time 1}

Default: 1.00
Settings \(0.00-500.00 \mathrm{sec}\).

\section*{12-11 Tension PID P Gain 2}

Default: 50.0
Settings 0.0-1000.0

\section*{12-12 Tension PID I Integral Time 2}

Default: 1.00
Settings \(0.00-500.00 \mathrm{sec}\).

\section*{12-14 Tension PID Output Status Selection}

Default: 0
Settings 0: PID output is positive
1: PID outut is negative
Select the applicable method by different requirements from the following table.
Tension feedback:
\begin{tabular}{|l|c|c|}
\hline & Loose \(\leftarrow 0-100 \% \rightarrow\) Tight & Tight \(\leftarrow 0-100 \% \rightarrow\) Loose \\
\hline Rewind & Positive output & Negative output \\
\hline Unwind & Negative output & Positive output \\
\hline
\end{tabular}

\section*{12-15 Tension PID Output Limit}

Default: 20.00
Settings 0.00-100.00\%
\(\square\) The output limit range \(=\) Pr. 12-15 \(\times\) Pr.01-00

\section*{12-16 Tension PID Output Command Limit (Negative Limit)}

Default: 20.00
Settings 0.00-655.35\%
\(\square\)
Determines the percentage of output command limit in PID control.The negative output limit range \(=\) Tension PID output command limit (negative limit) \(\times\) Pr.01-00 .

\section*{12-17 Tension PID Feedback Upper Limit}

Default: 100.0
Settings 0.0-100.0\%
This parameter is valid when \(\operatorname{Pr} .12-00=1\) or 3 .

\section*{12-18 Tension PID Feedback Lower Limit}

Default: 0.0
Settings 0.0-100.0\%
This parameter is valid when Pr. 12-00 = 1 or 3 .

\section*{12-19 Linear Speed Input Command Source}

Default: 0
Settings 0: Disabled
1: Analog input
2: RS-485 communication input
3: PG card pulse input
4: DFM-DCM pulse input
5: Pulse input through MI6 / MI7 terminalThis parameter is invalid when Pr.12-00 = 2 .When the setting is not 2 , the current linear speed saved in Pr.12-23 by analog or pulse command. When the setting is 2 , the current linear speed (Pr.12-23) can be changed by using communication.When setting as 1, sets AVI / ACI analog input to be linear speed (Pr.03-00, Pr.03-01 = d15)When setting as 2 , sets the current linear speed (Pr.12-23).When setting as 3 , connects pulse signals to the PG2 of the PG card (inputs pulse command), and then sets PG type through Pr.10-16.
1 When setting as 4 , sets the digital output gain (Pr.02-21) to be the same as the tractor's, and then sets the maximum linear speed (Pr.12-20).When setting as 3,4 , or 5 , you have to set the pulses per meter in Pr.12-22.

\section*{12-20 Maximum Linear Speed}

Default: 1000.0
Settings \(\quad 0.0-3000.0 \mathrm{~m} / \mathrm{min}\).In closed-loop tension and open-loop tension modes: the maximum linear speed is the reel linear speed of the tractor that corresponds to the maximum frequency of the drive.When Pr. 12-00 \(=2\) : sets Pr. 12-20 by the requirements of mechanism.

\section*{12-21 Minimum Linear Speed}

Default: 0.0
Settings \(\quad 0.0-3000.0 \mathrm{~m} / \mathrm{min}\)
[1] If the linear speed is lower than the value set in Pr.12-21, the drive stops calculating the reel diameter and keeps the current reel diameter.

\section*{12-22 Pulses Per Meter}

Default: 0.0
Settings \(\quad 0.0-6000.0\) pulse \(/ \mathrm{m}\)
[a] When Pr.12-06 = 1, you have to set this parameter.If the command source of the linear speed input is the pulses input from PG card or the pulses input by terminal MI6 / MI7 (Pr.12-19 =3 or 5), then you have to set this parameter.

\section*{12-23 Current Linear Speed}

Default: 0.0
Settings \(\quad 0.0-3000.0 \mathrm{~m} / \mathrm{min}\)
\(\square\) The linear speed of closed-loop linear speed and speed mode refer to Pr.12-06.
凹 The range to display in this parameter is based on Pr.12-20 and Pr.12-21.
When Pr.12-19 is 1, 3, 4, or 5, the current linear speed saved in Pr.12-23 by analog or pulse command, and this parameter is read only.
Only when Pr.12-19 is 2, the setting value of the current linear speed can be changed by using communication.

\section*{12-24 Linear Speed Low Pass Filter Time}

Default: 0.10
Settings \(0.00-100.00 \mathrm{sec}\).
This parameter is valid when the command source of the linear speed input is the pulses input from PG card or the pulses input by terminal MI6 / MI7 (Pr.12-19 =3 or 5).Adjust this parameter to restrain the vibration of linear speed.
12-25 Linear Speed Command Acceleration Time
Default: 0.00
Settings \(0.00-655.35 \mathrm{sec}\).
1 This parameter is valid when closed-loop linear speed and speed mode (Pr.12-00=2).

\section*{12-26 Linear Speed Command Deceleration Time}

Default: 0.00
Settings \(0.00-655.35 \mathrm{sec}\).This parameter is valid when closed-loop linear speed and speed mode (Pr.12-00=2).

\section*{12-27 Reel Diameter Source}

Default: 0
\begin{tabular}{ll}
Settings & 0: Calculated via linear speed \\
1: Calculated via analog input selection \\
2: Calculated via thickness integral, the encoder installed at reel side inputs \\
by PG card \\
3: Calculated via thickness integral, the encoder installed at motor side inputs \\
by PG card \\
4: Calculated via thickness integral, the encoder installed at reel side inputs \\
by MI6 / MI7 terminals \\
5: Calculated via thickness integral, the encoder installed at motor side \\
inputs by MI6 / MI7 terminals
\end{tabular}
\(\mathbb{1}\) When setting as 1, sets AVI / ACI analog input to be reel diameter (Pr.03-00, Pr.03-01 = d16), 10V corresponds to the maximum reel diameter (Pr.12-28).
1 When setting as 2 , you can get the reel diameter from the encoder on the reel axle. At the moment, connects the pulse signals to the PG2 of the PG card (inputs pulse command), sets the encoder type (Pr.10-00), pulse input type (Pr.10-16), pulse per revolution (Pr.12-34), revolutions per layer (Pr.12-35), and material thickness (Pr.12-36) to calculate the reel diameter.
1 When setting as 3 , you can get the reel diameter by doing a back calculation of the motor, encoder, and gear ratio. At the moment, connects the pulse signals to the PG1 of the PG card (pulse feedback), sets the gear ratio (Pr.12-02, Pr.12-03), encoder type (Pr.10-00), encoder pulses per revolution (Pr.10-01), revolutions per layer (Pr.12-35), and material thickness (Pr.12-36) to calculate the reel diameter.

When setting as 2 , or 3 , the PG card is required.
1 When setting as 4, or 5, MI6 and MI7 are supported.
When setting as 4 , or 5 , you have to set Pr.10-16 to 5 ; if rewind / unwind mode is being changed during the operation process, you should also have to set Pr.12-01.

1 Refer to the table below for the related settings when the reel diameter source is calculated via thickness integral.

Pr.12-27 = 3 or 5

Chapter 12 Description of Parameter Settings | MH300
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position & Pulse signal & Signal interface & Parameter settings & Related parameters & Note \\
\hline \multirow{4}{*}{Motor axle} & \multirow{3}{*}{Encoder} & PG1 & Pr. \(10-00=1\) & \begin{tabular}{l}
Pr.12-27 = 3 \\
Pr.12-02, Pr.12-03, Pr.12-35, \\
Pr.12-36
\end{tabular} & The settings of Pr.10-01 and Pr.10-02 are depending on the working condition \\
\hline & & PG2 & \[
\begin{aligned}
& \text { Pr. } 10-00=1 \\
& \text { Pr. } 10-16=1,2
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pr.12-27 = } 3 \\
& \text { Pr.12-02, 12-03, 12-34, 12-35, } \\
& 12-36
\end{aligned}
\] & N/A \\
\hline & & MI6 / MI7 & \[
\begin{aligned}
& \text { Pr. } 10-00=5 \\
& \text { Pr. } 10-16=1,2
\end{aligned}
\] & \begin{tabular}{l}
Pr.12-27 = 5 \\
Pr.12-02, Pr.12-03, Pr.12-34, \\
Pr.12-35, Pr.12-36
\end{tabular} & Uses two-phase input by MI6 / MI7, and considers the direction \\
\hline & Advanced switch & MI7 & \[
\begin{aligned}
& \text { Pr. } 10-00=5 \\
& \text { Pr. } 10-16=5
\end{aligned}
\] & \begin{tabular}{l}
Pr.12-27 = 5 \\
Pr.12-02, Pr.12-03, Pr.12-34, \\
Pr.12-35, Pr.12-36
\end{tabular} & N/A \\
\hline \multirow{3}{*}{Rewind axle} & \multirow{2}{*}{Encoder} & PG2 & Pr. \(10-00=1\) & \[
\begin{aligned}
& \text { Pr.12-27 = } 2 \\
& \text { Pr.12-34, Pr.12-35, Pr.12-36 }
\end{aligned}
\] & The setting of Pr.10-16 is depending on the working condition \\
\hline & & MI6 / MI7 & \[
\begin{aligned}
& \text { Pr. 10-00 }=5 \\
& \text { Pr.10-16 }=1,2
\end{aligned}
\] & \[
\begin{aligned}
& \text { Pr.12-27 = } 4 \\
& \text { Pr.12-34, Pr.12-35, Pr. } 12-36
\end{aligned}
\] & Uses two-phase input by MI6 / MI7, and considers the direction \\
\hline & Advanced switch & MI7 & \[
\begin{aligned}
& \text { Pr. } 10-00=5 \\
& \text { Pr. } 10-16=5
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline \text { Pr.12-27 = } 4 \\
\text { Pr.12-34, Pr. } 12-35, \text { Pr.12-36 }
\end{array}
\] & N/A \\
\hline
\end{tabular}

\section*{12-28 Maximum Reel Diameter}

Default: 6000.0
Settings \(\quad 1.0-6000.0 \mathrm{~mm}\)

\section*{12-29 Empty Reel Diameter}

Default: 1.0
Settings 1.0-6000.0 mm

\section*{12-30 Initial Reel Diameter Source}

Default: 1
Settings 0: RS-485 communication input (Pr.12-31)
1: Analog input (Pr.03-00-03-01 = d16)
When setting as \(1,10 \mathrm{~V}\) corresponds to the maximum reel diameter (Pr.12-28).

\section*{12-31 Initial Reel Diameter}

Default: 1.0
Settings \(1.0-6000.0 \mathrm{~mm}\)
[a] The initial reel diameter means the reel diameter at the startup. For the rewind zone, it's the diameter of the reel axle; for the unwind zone, it's the diameter of the reel.
When Pr. 12-30 = 1, this parameter is read only.

\section*{12-32 Initial Reel Diameter 1}

Default: 1.0
Settings \(1.0-6000.0 \mathrm{~mm}\)

\section*{12-33 Initial Reel Diameter 2}

Default: 1.0
Settings \(1.0-6000.0 \mathrm{~mm}\)
If If user chooses more than one type of reel diameter, you can set Pr.12-30 as 0 (using RS-485 communication input).

For example: To plan HMI pages or use text panel (TP series of PLC products), you can change the setting value of Pr.12-31 by using communication.
1 When the drive is stop and in tension control mode,
1 When the AC motor drive is at a standstill and in tension control mode, you can set three sections of initial reel diameter (Pr.12-31-Pr.12-33) by using multi-function terminal 87 and 88 .

After finishing the setting of \(\mathrm{MI}=87\) and \(\mathrm{MI}=88\), executes the function of \(\mathrm{MI}=86\). See the table below:
\begin{tabular}{|c|c|l|}
\hline MIx \(=88\) & MIx \(=87\) & \multicolumn{1}{c|}{ MIx \(=86\)} \\
\hline OFF & OFF & ON: the setting value of Pr.12-31 will be wrote into Pr.12-40. \\
\hline OFF & ON & ON: the setting value of Pr.12-32 will be wrote into Pr.12-40. \\
\hline ON & OFF & ON: the setting value of Pr.12-33 will be wrote into Pr.12-40. \\
\hline ON & ON & ON: the setting value of Pr.12-40 will be back to the default. \\
\hline
\end{tabular}

\section*{12-34 Pulses Per Revolution}

Default: 1
Settings \(1-60000 \mathrm{ppr}\)
1 When Pr.12-27 = 2 or 4, you have to set this parameter for setting the pulses per revolution of the reel.

\section*{12-35 Revolutions Per Layer}

Default: 1
Settings 1-10000

\section*{12-36 Material Thickness}

Default: 0.001
Settings \(\quad 0.001-65.000 \mathrm{~mm}\)
Sets the thickness of the material to wind.

\section*{12-37 Reel Diameter Filter Time}

Default: 1.00
Settings 0.00-100.00 sec.
This parameter improves the instability of the reel diameter source (Pr.12-27).

\section*{12-38 Automatic Reel Diameter Compensation}

Default: 0

\author{
Settings 0: Disabled \\ 1: Enabled
}This parameter is valid only when Pr.12-00 \(=1\) and Pr.12-19 \(\neq 0\). If the mechanical gear ratio or the linear speed is not accurate enough, you can use this parameter to compensate the reel diameter.

\section*{12-39 Reel Diameter Calculation Delay Time}

Default: 0.0
Settings \(0.0-6553.5 \mathrm{sec}\).
Starts to calculate the reel diameter after canceling the pre-startup and delaying time set in this parameter.Sets this parameter to delay the time to calculate the reel diameter, and prevents from causing inaccurate reel diameter or instability condition in a short time after the pre-startup stops.

\section*{12-40 Current Reel Diameter}

Default: 1.0
Settings \(\quad 1.0-6000.0 \mathrm{~mm}\)When the drive is not at STOP status, this parameter is read only.

\section*{12-41 Minimum Output Frequency for Reel Diameter Calculation}

Default: 1.00
Settings \(\quad 0.00 \sim 599.00 \mathrm{~Hz}\)

\section*{12-42 Pre-startup Mode Selection}

Default: 0
Settings 0: Disabled
1: Pre-startup of rewind mode
2: Pre-startup of unwind mode
When Pr.12-42 \(=2\), the output frequency limit is Pr.08-67.

\section*{12-43 Switching Level for Pre-startup and PID Enablement}

Default: 15.0
Settings \(\quad 0.0-100.0 \%\) (according to Pr. 12-05)

\section*{Example:}

The tension feedback value is \(0-100 \%\) that the lower value has loose tension and the larger value has more tight tension. If Pr. \(12-05=50 \%\), Pr. \(12-43=10 \%\), then the range to pre-startup is \(0-40 \%\).

\section*{12-44 Pre-startup Frequency}

Default: 2.00
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
12-45 Pre-startup Acceleration Time
Default: 3.00
Settings \(0.01-600.00 \mathrm{sec}\).
[1] You can set Pr.12-42 = 1 when activating the tension function, by doing this to prevent the loose rewinding / unwinding material or the value exceeds the setting range of Pr.12-45 from causing the tension convergent time to be too long
Example: Adjusts the value of Pr.12-44 and Pr.12-45 to make the tension feedback be in the setting range of Pr.12-43, and PID control is effective at this moment.
[10] When Pr.12-42 = 2 , in unwind mode, it's allowable that the motor runs reversely to tightly roll the material automatically.

\section*{12-46 Broken Belt Detection Function}

Default: 0
Settings 0: Disabled
1: Enabled

\section*{12-47 Minimum Linear Speed of Broken Belt Detection}

Default: 0.0
Settings \(\quad 0.0-3000.0 \mathrm{~m} / \mathrm{min}\)

\section*{12-48 Reel Diameter Error of Broken Belt Detection}

Default: 100.0
Settings \(1.0-6000.0 \mathrm{~mm}\)

\section*{12-49 Broken Belt Detection Time}

Default: 1.00
Settings \(0.00-100.00 \mathrm{sec}\).
[1] When Pr. \(12-21 \neq 0\) and Pr. \(12-27=0\), Pr. \(12-46\) is valid.
Ind The broken belt occurs when the linear speed is higher than Pr.12-47, the change of the reel diameter exceeds Pr.12-48, and over the time setting in Pr.12-49. When broken belt detection is enabled, if broken belt occurs, the drive shows "dEb" and ramp to stop. At the same time, you can also set MO to be 46 as the indication of broken belt.

\section*{12-50 Tension PID Feedback Error Level}

Default: 100
Settings 0-100\%

\section*{12-51 Tension PID Feedback Error Detection Time}

Default: 0.5
Settings \(0.0-10.0 \mathrm{sec}\).

\section*{12-52 Tension PID Feedback Error Treatment}

Default: 0
\begin{tabular}{ll}
Settings & \(0:\) Warn and continue operation \\
& 1: Fault and ramp to stop \\
& 2: Fault and coast to stop
\end{tabular}

1 If the difference between the tension PID target value and tension PID feedback value exceeds the tension PID feedback error level (Pr.12-50), and the error time exceeds the tension PID feedback error detection time (Pr.12-51), then the PID feedback error is abnormal. "tdEv" displays on keypad at this moment, the treatment refers to the setting in Pr.12-52.

\section*{12-54 Tension Command Source Selection}

Default: 0
Settings 0: RS-485 communication input
1: Analog input
This parameter is valid when Pr. 12-00 \(=3\) or 4 .
When Pr.12-54 = 0, you can use digital keypad, HMI page planning, or text panel (TP series of PLC products) to change the tension command setting value of Pr.12-56 by using communication.
[1] When Pr. 12-54 = 1, the setting for AVI / ACI analog input selection have to be tension setting value (Pr.03-00, Pr.03-01 = d18), and Pr.12-56 only can display the value (read only).

\section*{12-55 Maximum Tension Value}

Default: 0
Settings 0-65535 N
\(\square\) This parameter is valid when \(\operatorname{Pr} .12-00=3\) or 4 .

\section*{12-56 Tension Command Setting Value}

Default: 0
Settings 0-65535 NThis parameter is valid when Pr. 12-00 \(=3\) or 4 .When Pr.12-54 = 1, Pr.12-56 is read only. Analog input 10V corresponds to Pr.12-55.

\section*{12-57 Zero-speed Tension Setting Source}

Default: 0
Settings 0: Disabled
1: RS-485 communication input
2: Analog inputThis parameter is valid when Pr. 12-00 \(=3\) or 4 .When Pr.12-57 = 1, you can use digital keypad, HMI page planning, or text panel (TP series of PLC products) to change the zero-speed tension setting value (Pr.12-58) by using communication.When Pr.12-57 = 2, the setting for AVI / ACl analog input selection have to be zero-speed tension (Pr.03-00, Pr.03-01 = d19), and Pr.12-58 only can display the value (read only).Zero-speed parameters are using for overcoming static friction.

\section*{12-58 Zero-speed Tension Setting Value}

Default: 0
Settings 0-65535 N
\(\square\) This parameter is valid when Pr. 12-00 \(=3\) or 4 .
When Pr.12-57 =2, Pr.12-58 is read only. Analog input 10V corresponds to Pr.12-55.

\section*{12-59 Zero-speed Tension Threshold (Linear Speed)}

Default: 0
Settings 0-100.00\%
(1) This parameter is valid when Pr. 12-00 \(=3\) or 4 .When linear speed is lower than the value set in Pr.12-59, then the tension value is Pr.12-58 and reaches the static friction tension compensation.

\section*{12-60 Dynamic Friction Torque Compensation}

Default: 0.0
Settings 0.0-100.0\%
(1) This parameter is valid when Pr. \(12-00=3\) or 4 .
[10 100\% corresponds to the motor rated torque. This is mainly to be the compensation of dynamic friction.
Ex Executes inertia estimation in speed mode to get the compensation coefficient of the friction torque. Users can adjust the value by different control effects.
1 This parameter is using for overcoming dynamic friction.

\section*{12-61 Material Inertia Compensation Coefficient}

\section*{Default: 0}

Settings 0-30000
凹 This parameter is valid when Pr.12-00 \(=3\) or 4 .Compensation coefficient of material inertia \(=\) material density x material width (unit of density: \(\mathrm{kg} / \mathrm{m}^{3}\); unit of width: m). The material inertia of reel changes along with the reel diameter.

\section*{12-62 Acceleration Inertia Compensation Gain}

Default: 0.0
Settings 0.0-1000.0\%
\(110]\) This parameter is valid when Pr.12-00 \(=3\) or 4 .
[1]
This parameter is using for compensating extra torque of the moment of inertia of mechanism when the system is accelerative.

\section*{12-63 Inertia Compensation Filter Time}

Default: 5.00
Settings \(0.00-100.00\)
This parameter is valid when Pr. 12-00 \(=3\) or 4 .

\section*{12-64 Deceleration Inertia Compensation Gain}

Default: 0.0
Settings 0.0-1000.0\%
(1) This parameter is valid when Pr.12-00=3 or 4 .This parameter is using for compensating extra torque of the moment of inertia of mechanism when the system is decelerative.

\section*{12-65 Tension Taper Curve Selection}

Default: 0

\author{
Settings 0: No taper \\ 1: Curve taper \\ 2: Linear taper \\ 3: Multi-step curve taper \\ 4: Multi-step linear taper
}When Pr.12-01 = 1, this function is invalid.In some situations, users request the tension decreases along with the increasing reel diameter to ensure that the material is smoothly rewinded. To meet the goal, you can set the tension taper related parameters.When Pr. \(12-65=1\), the curve is generated by Pr.12-67, and the curve can be fine-tuning by Pr.12-68.
When Pr.12-65 = 2, the linear taper is generated by Pr.12-67.

When Pr.12-65 = 3, determines the taper of multi-curves by Pr.12-67, Pr.12-71 and Pr.12-72; and determines the turning points by Pr.12-69 and Pr.12-70.

When Pr.12-65 = 4, determines the multi-step linear taper by Pr.12-67, Pr.12-71 and Pr.12-72; and determines the turning points by Pr.12-69 and Pr.12-70.

\section*{12-66 Tension Taper Setting Source}

Default: 0
Settings 0: RS-485 communication input
1: Analog input

\section*{12-67 Tension Taper Value}

Default: 0
Settings 0-100\%When Pr.12-66 = 0, you can use digital keypad, HMI page planning, or text panel (TP series of PLC products) to change the tension taper value (Pr.12-67) by using communication.When Pr. 12-66 = 1, Pr.03-00 and Pr.03-01 = d20 (tension taper), and Pr. 12-67 only can display the value (read only).During the process of rewind, sometimes the tension needs to decrease along with the increasing reel diameter to ensure that the material is rewinded successfully.The diagram below shows the unwind control

\section*{12-68 Tension Taper Curve Compensation Value}

Default: 0
Settings 0-60000

\section*{12-69 Multi-step Taper Reel Diameter 1}

Default: 6000.0
Settings 10.0-6000.0

\section*{12-70 Multi-step Taper Reel Diameter 2}

Default: 6000.0
Settings 10.0-6000.0

\section*{12-71 Multi-step Taper Value 1}

Default: 0
Settings 0-100
12-72 Multi-step Taper Value 2
Default: 0
Settings 0-100
12-73 Pre-drive Frequency Gain
Default: 0
Settings -50.0-50.0\%
When switching the reel during the operation, the pre-drive function is to rotate the rewind axle / unwind axle in advance, and make the linear speed of the rotation and the material are the same to prevent from a huge impact. When pre-drive terminal is valid, the drive automatically calculates output frequency according to the linear speed and the reel diameter have been detected to match their linear speed.

\section*{12-74 Pre-drive Acceleration Time}

Default: 0
Settings 0-65535 sec.
12-75 Pre-drive Deceleration Time
Default: 0
Settings 0-65535 sec.

\section*{12-76 Speed Limit Gain}

Default: 0
Settings 0-65535 sec.
凹 In tension mode, when using the analog quantity of linear speed signal as the speed limit (sets Pr.11-36 = 3), you can use this parameter to adjust the value of the speed limit.

\section*{12-77 Tension Control Flag}

Default: 0
Settings bit 0: Tension closed loop speed mode, allowed changing operation direction bit 1: Start-up compensation (switching between zero-speed tension command and normal tension command)
bit 2: Acceleration and deceleration compensation (Pr.12-62 Acceleration inertia compensation gain; Pr.12-64 Deceleration inertia compensation gain)
bit 3: Reel diameter calculation by moving average method
bit 5: PID output reverse limit selection
bit 6: Material thickness range selection
\begin{tabular}{|c|c|l|}
\hline \multicolumn{3}{|c|}{ Tension related analog input functions } \\
\hline \multirow{4}{*}{} & Setting value & \multicolumn{1}{c|}{ Function name } \\
\cline { 2 - 3 } & 14 & Tension PID feedback signal \\
\cline { 2 - 3 } Pr.03-00 & 15 & Line speed \\
\cline { 2 - 3 } & 16 & Reel diameter \\
\cline { 2 - 3 } & 17 & Tension PID target value \\
\cline { 2 - 3 } & 18 & Tension setting value \\
\cline { 2 - 3 } & 19 & Zero-speed tension \\
\cline { 2 - 3 } & 20 & Tension taper \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline \multicolumn{3}{|c|}{ Tension related multi-function display (user-defined) } \\
\hline \multirow{4}{*}{ Pr.00-04 } & Setting value & \multicolumn{1}{c|}{ Function name } \\
\cline { 2 - 3 } & 53 & \begin{tabular}{l}
Display the current reel diameter under the tension \\
control (d) (unit: mm)
\end{tabular} \\
\cline { 2 - 3 } & 54 & \begin{tabular}{l}
Display the current line speed under the tension \\
control (L) (unit: \(\mathrm{m} /\) minute)
\end{tabular} \\
\cline { 2 - 3 } & 55 & \begin{tabular}{l}
Display the current tension setting value under the \\
tension control (T) (unit: N\()\)
\end{tabular} \\
\hline
\end{tabular}

\section*{13 Macro (User-defined)}
\(\mathcal{N}\) You can set this parameter during operation.

\section*{13-00 Application Selection}

Default: 00
\begin{tabular}{ll}
Settings & 00: Disabled \\
01: User-defined parameter \\
02: Compressor \\
03: Fan \\
04: Pump \\
05: Conveyor \\
06: Machine tool \\
07: Packing \\
08: Textiles \\
10: Logistics \\
11: Tension PID function \\
12: Tension PID and master / auxiliary frequency function
\end{tabular}

Note: after you select the macro, some of the default values adjust automatically according to the application selection.
\(\square\) Group setting 02: Compressor
The following table lists the compressor application related parameters.
\begin{tabular}{|c|l|l|}
\hline Pr. & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{|c|}{ Settings } \\
\hline \(00-11\) & Speed control mode & 0 (IMV/F control mode) \\
\hline \(00-16\) & Duty selection & 0 (Normal duty) \\
\hline \(00-17\) & Carrier frequency & Default setting \\
\hline \(00-20\) & \begin{tabular}{l}
Master frequency command source \\
(AUTO, REMOTE)
\end{tabular} & 2 (Inputs from external analog) \\
\hline \(00-21\) & Operation command source (AUTO, REMOTE) & 1 (External terminals) \\
\hline \(00-22\) & Stop method & 0 (Ramp to stop) \\
\hline \(00-23\) & Control of motor direction & 1 (Disable reverse) \\
\hline \(01-00\) & Motor 1 maximum operation frequency & Default setting \\
\hline \(01-01\) & Motor 1 rated / base frequency & Default setting \\
\hline \(01-02\) & Motor 1 rated / base voltage & Default setting \\
\hline \(01-03\) & Motor 1 mid-point frequency 1 & Default setting \\
\hline \(01-04\) & Motor 1 mid-point voltage 1 & Default setting \\
\hline \(01-05\) & Motor 1 mid-point frequency 2 & Default setting \\
\hline \(01-06\) & Motor 1 mid-point voltage 2 & Default setting \\
\hline \(01-07\) & Motor 1 minimum output frequency & Default setting \\
\hline \(01-08\) & Motor 1 minimum output voltage & Default setting \\
\hline \(01-11\) & Lower frequency limit & 20 (Hz) \\
\hline \(01-12\) & Acceleration time 1 & 20 (s) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Pr. & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{|c|}{ Settings } \\
\hline \(01-13\) & Deceleration time 1 & \(20(\mathrm{~s})\) \\
\hline \(03-00\) & AVI analog input selection & 0 (No function) \\
\hline \(03-01\) & ACI analog input selection & 1 (Frequency command) \\
\hline \(05-01\) & Full-load current for induction motor 1 (A) & Default setting \\
\hline \(05-03\) & Rated speed for induction motor 1 (rpm) & Default setting \\
\hline \(05-04\) & Number of poles for induction motor 1 & Default setting \\
\hline
\end{tabular}
(1) Group setting 03: Fan

The following table lists the fan setting application related parameters.
\begin{tabular}{|c|c|c|}
\hline Pr. & Parameter Name & Settings \\
\hline 00-11 & Speed control mode & 0 (IMV/F control mode) \\
\hline 00-16 & Duty selection & 0 (Normal duty) \\
\hline 00-17 & Carrier frequency & Default setting \\
\hline 00-20 & Master frequency command source (AUTO, REMOTE) & 2 (Inputs from external analog) \\
\hline 00-21 & Operation command source (AUTO, REMOTE) & 1 (External terminals) \\
\hline 00-22 & Stop method & 1 (Coast to stop) \\
\hline 00-23 & Control of motor direction & 1 (Disable reverse) \\
\hline 00-30 & Master frequency command source (HAND, LOCAL) & 0 (Digital keypad) \\
\hline 00-31 & Operation command source (HAND, LOCAL) & 0 (Digital keypad) \\
\hline 01-00 & Motor 1 maximum operation frequency & Default setting \\
\hline 01-01 & Motor 1 rated / base frequency & Default setting \\
\hline 01-02 & Motor 1 rated / base voltage & Default setting \\
\hline 01-03 & Motor 1 mid-point frequency 1 & Default setting \\
\hline 01-04 & Motor 1 mid-point voltage 1 & Default setting \\
\hline 01-05 & Motor 1 mid-point frequency 2 & Default setting \\
\hline 01-06 & Motor 1 mid-point voltage 2 & Default setting \\
\hline 01-07 & Motor 1 minimum output frequency & Default setting \\
\hline 01-08 & Motor 1 minimum output voltage & Default setting \\
\hline 01-10 & Upper frequency limit & 50 (Hz) \\
\hline 01-11 & Lower frequency limit & 35 (Hz) \\
\hline 01-12 & Acceleration time 1 & 15 (s) \\
\hline 01-13 & Deceleration time 1 & 15 (s) \\
\hline 01-43 & V/F curve selection & 2 (Second V/F curve) \\
\hline 02-05 & Multi-function input command 5 (MI5) & 16 (Rotating speed command from ACl) \\
\hline 02-16 & Multi-function output 2 (MO1) & 11 (Malfunction indication) \\
\hline 02-17 & Multi-function output 3 (MO2) & 1 (Indication during RUN) \\
\hline 03-00 & AVI analog input selection & 1 (Frequency command) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Pr. & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{c|}{ Settings } \\
\hline \(03-01\) & ACI analog input selection & 1 (Frequency command) \\
\hline \(03-28\) & AVI terminal input selection & \(0(0-10 \mathrm{~V})\) \\
\hline \(03-29\) & ACI terminal input selection & \(1(0-10 \mathrm{~V})\) \\
\hline \(03-31\) & AFM output selection & \(0(0-10 \mathrm{~V})\) \\
\hline \(03-50\) & Analog input curve selection & 1 (three-point curve of AVI) \\
\hline \(07-06\) & Restart after momentary power loss & \begin{tabular}{c}
(Speed tracking by minimum output \\
frequency \()\)
\end{tabular} \\
\hline \(07-11\) & Number of times of auto-restart after fault & 5 (times) \\
\hline \(07-33\) & Auto-restart interval of fault & 60 (s) \\
\hline
\end{tabular}
[1] Group setting 04: Pump
The following table lists the pump setting application related parameters.
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Pr. } & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{c|}{ Settings } \\
\hline \(00-11\) & Speed control mode & 0 (IMV/F control mode) \\
\hline \(00-16\) & Duty selection & 0 (Normal duty) \\
\hline \(00-20\) & \begin{tabular}{l}
Master frequency command source \\
(AUTO, REMOTE)
\end{tabular} & 2 (Inputs from external analog) \\
\hline \(00-21\) & Operation command source (AUTO, REMOTE) & 1 (External terminals) \\
\hline \(00-23\) & Control of motor direction & 1 (Disable reverse) \\
\hline \(01-00\) & Motor 1 maximum operation frequency & Default setting \\
\hline \(01-01\) & Motor 1 output frequency & Default setting \\
\hline \(01-02\) & Motor 1 output voltage & Default setting \\
\hline \(01-03\) & Motor 1 mid-point frequency 1 & Default setting \\
\hline \(01-04\) & Motor 1 mid-point voltage 1 & Default setting \\
\hline \(01-05\) & Motor 1 mid-point frequency 2 & Default setting \\
\hline \(01-06\) & Motor 1 mid-point voltage 2 & Default setting \\
\hline \(01-07\) & Motor 1 minimum output frequency & Default setting \\
\hline \(01-08\) & Motor 1 minimum output voltage & Default setting \\
\hline \(01-10\) & Upper frequency limit & 50 (Hz) \\
\hline \(01-11\) & Lower frequency limit & 35 (Hz) \\
\hline \(01-12\) & Acceleration time 1 & 15 (s) \\
\hline \(01-13\) & Deceleration time 1 & 15 (s) \\
\hline \(01-43\) & V/F curve selection & 2 (Second V/F curve) \\
\hline \(07-06\) & Restart after momentary power loss & 2 (Speed tracking by minimum output \\
frequency) \\
\hline \(07-11\) & Number of times of auto-restart after fault & 5 (times) \\
\hline \(07-33\) & Auto-restart interval of fault & 60 (s) \\
\hline
\end{tabular}

1 Group setting 05: Conveyor
The following table lists the conveyor setting application related parameters.
\begin{tabular}{|c|l|l|}
\hline Pr. & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{|c|}{ Settings } \\
\hline \(00-11\) & Speed control mode & 0 (IMV/F control mode) \\
\hline \(00-16\) & Duty selection & 0 (Normal duty) \\
\hline \(00-20\) & \begin{tabular}{l}
Master frequency command source \\
(AUTO, REMOTE)
\end{tabular} & 2 (Inputs from external analog) \\
\hline \(00-21\) & Operation command source (AUTO, REMOTE) & 1 (External terminals) \\
\hline \(01-00\) & Motor 1 maximum operation frequency & Default setting \\
\hline \(01-01\) & Motor 1 output frequency & Default setting \\
\hline \(01-02\) & Motor 1 output voltage & Default setting \\
\hline \(01-03\) & Motor 1 mid-point frequency 1 & Default setting \\
\hline \(01-04\) & Motor 1 mid-point voltage 1 & Default setting \\
\hline \(01-05\) & Motor 1 mid-point frequency 2 & Default setting \\
\hline \(01-06\) & Motor 1 mid-point voltage 2 & Default setting \\
\hline \(01-07\) & Motor 1 minimum output frequency & Default setting \\
\hline \(01-08\) & Motor 1 minimum output voltage of motor 1 & Default setting \\
\hline \(01-12\) & Acceleration time 1 & 10 (s) \\
\hline \(01-13\) & Deceleration time 1 & 10 (s) \\
\hline & \\
\hline
\end{tabular}

【 Group setting 06: Machine tool
The following table lists the machine tool setting application related parameters.
\begin{tabular}{|c|l|l|}
\hline Pr. & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{|c|}{ Settings } \\
\hline \(00-11\) & Speed control mode & 0 (IMV/F control mode) \\
\hline \(00-17\) & Carrier frequency & Default setting \\
\hline \(00-20\) & \begin{tabular}{l}
Master frequency command source \\
(AUTO, REMOTE)
\end{tabular} & 2 (External analog input) \\
\hline \(00-21\) & Operation command source (AUTO, REMOTE) & 1 (External terminals) \\
\hline \(01-00\) & Motor 1 maximum operation frequency & Default setting \\
\hline \(01-01\) & Motor 1 output frequency & Default setting \\
\hline \(01-02\) & Motor 1 output voltage & Default setting \\
\hline \(01-03\) & Motor 1 mid-point frequency 1 & 0 \\
\hline \(01-04\) & Motor 1 mid-point voltage 1 & 0 \\
\hline \(01-05\) & Motor 1 mid-point frequency 2 & 0 \\
\hline \(01-06\) & Motor 1 mid-point voltage 2 & 0 \\
\hline \(01-07\) & Motor 1 minimum output frequency & Default setting \\
\hline \(01-08\) & Motor 1 minimum output voltage & Default setting \\
\hline \(01-12\) & Acceleration time 1 & 5 (s) \\
\hline \(01-13\) & Deceleration time 1 & 5 (s) \\
\hline \(01-24\) & S-curve acceleration begin time 1 & 0 \\
\hline \(01-25\) & S-curve acceleration arrival time 2 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Pr. & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{|c|}{ Settings } \\
\hline \(01-26\) & S-curve deceleration begin time 1 & 0 \\
\hline \(01-27\) & S-curve deceleration arrival time 2 & 0 \\
\hline \(02-03\) & Multi-function input command 3 (MI3) & 1 (Multi-step speed command 1) \\
\hline \(02-04\) & Multi-function input command 4 (MI4) & 2 (Multi-step speed command 2) \\
\hline \(02-13\) & Multi-function output 1 RY1 & 11 (Malfunction indication) \\
\hline \(02-16\) & Multi-function output 2 (MO1) & 1 (Indication during RUN) \\
\hline \(02-17\) & Multi-function output 3 (MO2) & 2 (Operation speed reached) \\
\hline \(03-00\) & AVI analog input selection & 1 (Frequency command) \\
\hline \(06-01\) & Over-voltage stall prevention & 0 (Disabled) \\
\hline \(06-03\) & \begin{tabular}{l}
Over-current stall prevention during \\
acceleration
\end{tabular} & 0 (Disabled) \\
\hline \(06-04\) & Over-current stall prevention during operation & 0 (Disabled) \\
\hline \(06-05\) & \begin{tabular}{l}
Acceleration / deceleration time selection for \\
stall prevention at constant speed
\end{tabular} & 0 (By current acceleration/deceleration \\
time) \\
\hline \(07-01\) & DC brake current level & 20 (\%) \\
\hline \(07-03\) & DC brake time at stop & 0.3 (s) \\
\hline \(07-04\) & DC brake frequency at stop & 0 (Hz) \\
\hline \(07-23\) & Auto voltage regulation (AVR) function & 1 (Disable AVR) \\
\hline
\end{tabular}

\section*{[1] Group setting 07: Packing}

The following table lists the packing setting application related parameters.
\begin{tabular}{|c|l|l|}
\hline \multicolumn{1}{|c|}{ Pr. } & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{|c|}{ Settings } \\
\hline \(00-11\) & Speed control mode & 0 (IMV/F control mode) \\
\hline \(00-20\) & \begin{tabular}{l}
Master frequency command source \\
(AUTO, REMOTE)
\end{tabular} & 0 (Digital keypad) \\
\hline \(00-21\) & Operation command source (AUTO, REMOTE) & 2 (RS-485 Communication input) \\
\hline \(02-00\) & Two-wire / three-wire operation control & \begin{tabular}{c}
(two-wire mode 1, power on for \\
operation control (M1: FWD / STOP, \\
M2: REV / STOP))
\end{tabular} \\
\hline \(01-00\) & Motor 1 maximum operation frequency & Default setting \\
\hline \(01-01\) & Motor 1 output frequency & Default setting \\
\hline \(01-02\) & Motor 1 output voltage & Default setting \\
\hline \(01-03\) & Motor 1 mid-point frequency 1 & Default setting \\
\hline \(01-04\) & Motor 1 mid-point voltage 1 & Default setting \\
\hline \(01-05\) & Motor 1 mid-point frequency 2 & Default setting \\
\hline \(01-06\) & Motor 1 mid-point voltage 2 & Default setting \\
\hline \(01-07\) & Motor 1 minimum output frequency & Default setting \\
\hline \(01-08\) & Motor 1 minimum output voltage & Default setting \\
\hline \(01-12\) & Acceleration time 1 & 10 (s) \\
\hline \(01-13\) & Deceleration time 1 & 10 (s) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Pr. & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{|c|}{ Settings } \\
\hline \(01-24\) & S-curve acceleration begin time 1 & Default setting \\
\hline \(01-25\) & S-curve acceleration arrival time 2 & Default setting \\
\hline \(01-26\) & S-curve deceleration begin time 1 & Default setting \\
\hline \(01-27\) & S-curve deceleration arrival time 2 & Default setting \\
\hline \(03-00\) & AVI analog input selection & 1 (Frequency command) \\
\hline \(03-28\) & AVI terminal input selection & Default setting \\
\hline
\end{tabular}
(1) Group setting 08: Textiles

The following table lists the textile setting application related parameters.
\begin{tabular}{|c|l|l|}
\hline Pr. & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{c|}{ Settings } \\
\hline \(00-11\) & Speed control mode & 0 (IMV/F control mode) \\
\hline \(00-20\) & \begin{tabular}{l}
Master frequency command source \\
(AUTO, REMOTE)
\end{tabular} & 1 (RS-485 Communication) \\
\hline \(00-21\) & Operation command source (AUTO, REMOTE) & 1 (External terminals) \\
\hline \(01-00\) & Motor 1 maximum operation frequency & Default setting \\
\hline \(01-01\) & Motor 1 output frequency & Default setting \\
\hline \(01-02\) & Motor 1 output voltage & Default setting \\
\hline \(01-03\) & Motor 1 mid-point frequency 1 & Default setting \\
\hline \(01-04\) & Motor 1 mid-point voltage 1 & Default setting \\
\hline \(01-05\) & Motor 1 mid-point frequency 2 & Default setting \\
\hline \(01-06\) & Motor 1 mid-point voltage 2 & Default setting \\
\hline \(01-07\) & Motor 1 minimum output frequency & Default setting \\
\hline \(01-08\) & Motor 1 minimum output voltage & Default setting \\
\hline \(01-12\) & Acceleration time 1 & 10 (s) \\
\hline \(01-13\) & Deceleration time 1 & 10 (s) \\
\hline \(01-24\) & S-curve acceleration begin time 1 & 0.2 (s) \\
\hline \(01-25\) & S-curve acceleration arrival time 2 & 0.2 (s) \\
\hline \(01-26\) & S-curve deceleration begin time 1 & 0.2 (s) \\
\hline \(01-27\) & S-curve deceleration arrival time 2 & 0.2 (s) \\
\hline \(06-03\) & \begin{tabular}{l}
Over-current stall prevention during \\
acceleration
\end{tabular} & 180 (\%) \\
\hline \(06-04\) & Over-current stall prevention during operation & 180 (\%) \\
\hline \(06-07\) & Over-torque detection level (motor 1) & 200 (\%) \\
\hline \(07-19\) & Fan cooling control & 2 (When the AC motor drive runs, the \\
fan is ON. When the AC motor drive \\
stops, the fan is OFF)
\end{tabular}

1 Setting 10: Logistics
The following table lists the relevant logistics setting application parameters.
\begin{tabular}{|c|l|l|}
\hline Pr. & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{c|}{ Settings } \\
\hline \(00-20\) & \begin{tabular}{l}
Master frequency command source \\
(AUTO, REMOTE)
\end{tabular} & 7 (Digital keypad potentiometer knob) \\
\hline \(00-21\) & \begin{tabular}{l}
Operation command source \\
(AUTO, REMOTE)
\end{tabular} & 1 (External terminals) \\
\hline \(01-00\) & Motor 1 maximum operation frequency & Default setting \\
\hline \(01-01\) & Rated / base frequency of motor 1 & Default setting \\
\hline \(01-02\) & Rated / base voltage of motor 1 & 400.0 \\
\hline \(01-04\) & Mid-point voltage 1 of motor 1 & 20.0 \\
\hline \(01-06\) & Mid-point voltage 2 of motor 1 & 20.0 \\
\hline \(01-08\) & Minimum output voltage of motor 1 & 20.0 \\
\hline \(01-03\) & Mid-point frequency 1 of motor 1 & 1.50 \\
\hline \(01-07\) & Minimum output frequency of motor 1 & 1.50 \\
\hline \(01-12\) & Acceleration time 1 & 3 (sec.) \\
\hline \(01-13\) & Deceleration time 1 & 3 (sec.) \\
\hline \(01-24\) & S-curve for acceleration begin time 1 & 0.00 \\
\hline \(01-25\) & S-curve for acceleration arrival time 2 & 0.00 \\
\hline \(01-26\) & S-curve for deceleration begin time 1 & 0.00 \\
\hline \(01-27\) & S-curve for deceleration arrival time 2 & 0.00 \\
\hline \(06-03\) & Over-current stall prevention during acceleration & 200 \\
\hline \(06-04\) & Over-current stall prevention during operation & 200 \\
\hline \(06-05\) & \begin{tabular}{l}
Acceleration / deceleration time selection for \\
stall prevention at constant speed
\end{tabular} & 2 (By the second acceleration / \\
deceleration time) \\
\hline \(07-23\) & Automatic voltage regulation (AVR) function & 1 (Disable AVR) \\
\hline \(07-26\) & Torque compensation gain & 0 \\
\hline
\end{tabular}

\section*{1 Group setting 11: Tension PID function}

The following table lists the tension PID function setting application related parameters.
\begin{tabular}{|c|l|l|}
\hline Pr. & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{c|}{ Settings } \\
\hline \(00-20\) & \begin{tabular}{l}
Master frequency command source \\
(AUTO, REMOTE)
\end{tabular} & 9 (PID function) \\
\hline \(00-21\) & Operation command source (AUTO, REMOTE) & 1 (External terminals) \\
\hline \(01-00\) & Motor 1 maximum operation frequency & Default setting \\
\hline \(01-12\) & Acceleration time 1 & 3 (s) \\
\hline \(01-13\) & Deceleration time 1 & 3 (s) \\
\hline \(03-00\) & AVI analog input selection & 5 (PID feedback signal) \\
\hline \(03-50\) & Analog input curve selection & 1 (Three-point curve of AVI) \\
\hline \(03-63\) & AVI voltage lowest point & 0.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Pr. & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{c|}{ Settings } \\
\hline \(03-65\) & AVI voltage mid-point & 9.99 \\
\hline \(03-66\) & AVI voltage proportional mid-point & \(100 \%\) \\
\hline \(08-00\) & Terminal selection of PID feedback & \begin{tabular}{c}
1 (Negative PID feedback: by analog \\
input (Pr.03-00))
\end{tabular} \\
\hline \(08-01\) & Terminal selection of PID feedback & 10 \\
\hline \(08-02\) & Integral time (I) & 1 \\
\hline \(08-20\) & PID mode selection & 1 (Parallel connection) \\
\hline \(08-21\) & Enable PID to change the operation direction & 0 (Operating direction can be changed) \\
\hline \(08-65\) & Source of PID target value & 1 (From Pr.08-66) \\
\hline \(08-66\) & PID target value setting & \(50 \%\) \\
\hline
\end{tabular}
[1] Group setting 12: Tension PID and master / auxiliary frequency function
The following table lists the tension PID and master / auxiliary frequency function setting application related parameters.
\begin{tabular}{|c|l|l|}
\hline Pr. & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{c|}{ Settings } \\
\hline \(00-20\) & \begin{tabular}{l}
Master frequency command source \\
(AUTO, REMOTE)
\end{tabular} & 9 (PID function) \\
\hline \(00-21\) & Operation command source (AUTO, REMOTE) & 1 (External terminals) \\
\hline \(01-00\) & Motor 1 maximum operation frequency & Default setting \\
\hline \(01-12\) & Acceleration time 1 & 3 (s) \\
\hline \(01-13\) & Deceleration time 1 & 3 (s) \\
\hline \(00-35\) & Auxiliary frequency source & 3 (Inputs from analog input) \\
\hline \(03-00\) & AVI analog input selection & 5 (PID feedback signal) \\
\hline \(03-01\) & ACI analog input selection & 12 (Auxiliary frequency input) \\
\hline \(03-10\) & \begin{tabular}{l}
Reverse setting when analog signal input is \\
negative frequency \\
allowed. The digital keypad or \\
external terminal controls the \\
forward and reverse direction.)
\end{tabular} \\
\hline \(03-12\) & ACI analog input gain & \(100.0 \%\) \\
\hline \(03-29\) & ACI terminal input selection & 1 (0-10 V) \\
\hline \(03-50\) & Analog input curve selection & 1 (Three-point curve of AVI) \\
\hline \(03-63\) & AVI voltage lowest point & 0.00 \\
\hline \(03-65\) & AVI voltage mid-point & 9.99 \\
\hline \(03-66\) & AVI voltage proportional mid-point & \(100 \%\) \\
\hline \(08-00\) & Terminal selection of PID feedback & 1 (Negative PID feedback: by analog \\
input (Pr.03-00))
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline Pr. & \multicolumn{1}{|c|}{ Parameter Name } & \multicolumn{1}{c|}{ Settings } \\
\hline \(08-65\) & Source of PID target value & 1 (From Pr.08-66) \\
\hline \(08-66\) & PID target value setting & \(50 \%\) \\
\hline \(08-67\) & \begin{tabular}{l}
Master and auxiliary reverse running cutoff \\
frequency
\end{tabular} & \(10 \%\) \\
\hline
\end{tabular}

\section*{13-00}

Application Parameters (User-defined)
13-50
[This page intentionally left blank]

\section*{14 Protection Parameters (2)}

NYou can set this parameter during operation.

\section*{14-00 Extension Card Input Terminal Selection (AI10)}

\section*{14-01 Extension Card Input Terminal Selection (Al11)}

Default: 0
Settings
0 : No function
1: Frequency command
(in MH300 series, this function can be the torque limit in torque control mode)
2: Torque command (torque limit in speed mode)
3: Torque compensation command
4: PID target value
5: PID feedback signal
6: PTC thermistor input value
7: Positive torque limit
8: Negative torque limit
9: Regenerative torque limit
10: Positive / negative torque limit
11: PT100 thermistor input value
13: PID compensation value
[0] 1: This function can be the torque limit in torque control mode.
When you use analog input as PID reference target input, you must set Pr.00-20 to 2 (external analog input).
Setting method 1: Pr.14-00-14-01 set 1 as frequency command.
Setting method 2: Pr. 14-00-14-01 set 4 as PID reference target input.
If the setting value 1 and setting value 4 exist at the same time, Al10 input has highest priority to become the PID reference target input value.
1 When you use analog input as the PID compensation value, you must set Pr.08-16 to 1 (Source of PID compensation value is analog input). You can see the compensation value with Pr.08-17.
[】. When you use the frequency command, the corresponding value for \(0- \pm 10 \mathrm{~V} / 4-20 \mathrm{~mA}\) is \(0-\) maximum operation frequency (Pr.01-00).
1 When you use the torque command, the corresponding value for \(0- \pm 10 \mathrm{~V} / 4-20 \mathrm{~mA}\) is \(0-m a x i m u m\) output torque (Pr.11-27).When you use torque compensation, the corresponding value for \(0- \pm 10 \mathrm{~V} / 4-20 \mathrm{~mA}\) is 0 -rated torque.
When the settings for Pr.14-00 and Pr.14-01 are the same, the Al10 is selected first.

\section*{14-02 Al10 Analog Input Bias}

Default: 0.0
Settings -100.0-100.0\%
Sets the corresponding Al10 voltage for the external analog input 0 .

\section*{14-03 Al11 Analog Input Bias}

Default: 0.0
Settings -100.0-100.0\%
Sets the corresponding Al11 current for the external analog input 0.
14-04 Al10 Analog input bias
14-05 Al11 Analog input bias
Default: 0
Settings 0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Bias serves as the center
In In a noisy environment, use negative bias to provide a noise margin. Do NOT use less than 1 V to set the operation frequency.

In the diagrams below, black line is voltage-frequency curve with no bias; gray line is voltagefrequency curve with bias.

\section*{Diagram 01}

Pr. \(14-02=10 \%\)
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.14-06 Analog Input Gain (AI10) \(=100 \%\)

\section*{Diagram 02}

Pr. 14-02 = 10\%
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.14-06 Analog Input Gain (Al10) \(=100 \%\)

\section*{Diagram 03}

Pr. 14-02 = 10\%
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.14-06 Analog Input Gain (Al10) \(=100 \%\)

\section*{Diagram 04}

Diagram 05

Diagram 06

Pr. 14-02 = 10\%
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.14-06 Analog Input Gain \((\mathrm{Al} 10)=100 \%\)

Pr. 14-02 = 10\%
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.14-06 Analog Input Gain (AI10) \(=100 \%\)

Pr. 14-02 = 10\%
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr.14-06 Analog Input Gain (Al10) \(=100 \%\)

\section*{Diagram 07}

Pr.14-02 \(=10 \%\)
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive
frequency = forward run; negative
frequency = reverse run. Direction
can not be switched by digital keypad or
external teriminal control.

Pr.14-06 Analog Input Gain (AI10) \(=100 \%\)
Pr. 14-02 = 10\%

Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.14-06 Analog Input Gain (Al10) = 100\%

\section*{Diagram 09}

Pr. 14-02 = 10\%
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.14-06 Analog Input Gain \((\mathrm{Al} 10)=100 \%\)

Diagram 10

Diagram 11

Diagram 12

Pr.14-02 = -10\%
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.14-06 Analog Input Gain (Al10) \(=100 \%\)

Pr. \(14-02=-10 \%\)
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.14-06 Analog Input Gain (AI10) \(=100 \%\)

Pr. 14-02 = - \(10 \%\)
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.14-06 Analog Input Gain (AI10) \(=100 \%\)

\section*{Diagram 13}

Pr. 14-02 = -10\%
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.14-06 Analog Input Gain (AI10) = 100\%

Pr. 14-02 = -10\%
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control

Pr. 14-06 Analog Input Gain \((\mathrm{Al} 10)=100 \%\)

\section*{Diagram 15}

Diagram 16

Pr. \(14-02=-10 \%\)
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.14-06 Analog Input Gain (AI10) \(=100 \%\)

Diagram 17

Pr. \(14-02=10 \%\)
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.14-06 Analog Input Gain (AI10) \(=111.1 \%\)
\[
10 / 9=111.1 \%
\]

\section*{Diagram 18}

\section*{Diagram 19}

Pr. 14-02 = 10\%
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency \(=\) forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.
\[
\text { Pr.14-06 Analog Input Gain }(\mathrm{Al} 10)=111.1 \%
\]
\[
10 / 9=111.1 \%
\]

\section*{Diagram 20}

Pr. \(14-02=10 \%\)
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.14-06 Analog Input Gain \((\mathrm{Al} 10)=111.1 \%\)
\(10 / 9=111.1 \%\)

\section*{Diagram 21}

Pr. 14-02 = 10\%
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr.14-06 Analog Input Gain \((\mathrm{Al} 10)=111.1 \%\)
10/9 = 111.1\%

Diagram 22

Diagram 23

\section*{Diagram 24}

Pr. 14-02 = 10\%
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.14-06 Analog Input Gain \((\mathrm{Al} 10)=111.1 \%\)
10/9 = 111.1\%

Pr. 14-02 = 10\%
Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.

Pr.14-06 Analog Input Gain \((\mathrm{Al} 10)=111.1 \%\)
\(10 / 9=111.1 \%\)
\(-02=10 \%\)
Pr.14-04-14-05
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid Forward and reverse run is controlled by digital keypad or external terminal.
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.
Pr. 14-06 Analog Input Gain (AI10) \(=111.1 \%\)
\(10 / 9=111.1 \%\)

Diagram 25

\section*{Diagram 26}

n. กว ก7-n n no (Positive/Negative Bias Mode)

Pr.14-04-14-05
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative
frequency = reverse run. Direction
can not be switched by digital keypad or external teriminal control

Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive
frequency = forward run; negative frequency \(=\) reverse run. Direction can not be switched by digital keypad or external teriminal control.

\section*{Diagram 27}

Pr.14-04-14-05
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal
1: Neagtive frequency is valid. Positive
frequency = forward run; negative
frequency = reverse run. Direction
can not be switched by digital keypad or external teriminal control.

Calculate the bias: \(\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad X V=\frac{10}{-9}=-1.11 \mathrm{~V}\)
\[
\operatorname{Pr} .14-02=\frac{-1.11}{10} \times 100 \%=-11.1 \%
\]

Calculate the gain: \(\operatorname{Dr}\) ค2 11- \(\frac{10 \mathrm{~V}}{11 . \mathrm{V}} \times 100 \%=90.0 \%\) Pr.14-06= 11.1 V

Diagram 28

Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0 : Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal
1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

Calculate the bias: \(\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \quad \mathrm{XV}=\frac{10}{-9}=-1.11 \mathrm{~V}\)
\[
\operatorname{Pr} .14-02=\frac{-1.11}{10} \times 100 \%=-11.1 \%
\]
\[
\text { Calculate the gain: Pr. } 14-06=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%
\]

\section*{Diagram 29}

Pr.14-04-14-05 (Positive/Negative Bias Mode)
0: No bias
1: Lowerthanorequaltobias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Negative frequency is valid.
Positive frequency = forward run;
negative frequency \(=\) reverse run.
Direction can not be switched by digital keypad or
external terminal control.
Calculate the bias: \(\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \mathrm{XV}=\frac{10}{-9}=-1.11 \mathrm{~V}\)
Pr. \(14-02=: \frac{-1.11}{10} \times 100 \%=-11.1 \%\) \begin{tabular}{l}
Calculate the gain:Pr. \(14-06=\frac{10 \mathrm{~V}}{11.1 \mathrm{~V}} \times 100 \%=90.0 \%\)
\end{tabular}

\section*{Diagram 30}

Pr.14-04-14-05 (Positive/Negative Bias Mode)
0 : No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid.
Forward and reverse run is controlled by digital keypad or external terminal.
1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run Direction can not be switched by digital keypad or external terminal control.

\section*{Diagram 31}

Pr.14-04-14-05 Positive/Negative Bias Mode)
0: No bias
1: Lower than or equal to bias
2: Greater than or equal to bias
3: The absolute value of the bias voltage
while serving as the center
4: Serve bias as the center
Pr.03-10 (Analog Frequency Command for Reverse Run)
0: Negative frequency is not valid.
Forward and reverse run is controlled
by digital keypad or external terminal.
1: Neagative frequency is valid.
Positive frequency \(=\) forward run;
negative frequency \(=\) reverse run.
\begin{tabular}{l}
Direction can not be switched by digital keypad or \\
external terminal control.
\end{tabular}
Calculate the bias: \(\frac{60-6 \mathrm{~Hz}}{10 \mathrm{~V}}=\frac{6-0 \mathrm{~Hz}}{(0-\mathrm{XV})} \mathrm{XV}=\frac{10}{-9}=-1.11 \mathrm{~V}\)
Pr. \(14-02=\frac{-1.11}{10} \times 100 \%=-11.1 \%\)

\section*{Diagram 32}

\section*{14-06 Al10 Analog Input Gain}

14-07 Al11 Analog Input Gain
Default: 100.0
Settings -500.0-500.0\%
Use Pr.14-06-14-07 when the source of the frequency command is the analog voltage / current signal.

\section*{14-08 Al10 Analog Input Filter Time \\ 14-09 Al11 Analog Input Filter Time}

Default: 0.01
Settings \(0.00-20.00 \mathrm{sec}\).
[a] The analog signals enter via the control terminals AI1 and AI2 commonly cause interference. This might affect the stability of the analog control, use these input delays to filter a noisy analog signal.
1 When the setting for the time constant is too large, the control is stable but the control response is slow. When the setting for time constant is too small, the control response is faster but the control may be unstable. For optimal setting, adjust the setting according to the control stability or the control response.

\section*{14-10 ACI10 Analog Input 4-20 mA Signal Loss Selection \\ 14-11 ACI11 Analog Input 4-20 mA Signal Loss Selection}

Default: 0
Settings 0: Disable
1: Continue operation at the last frequency
2: Decelerate to 0 Hz
3: Stop immediately and display "ACE"
[1] Determines the treatment when the \(4-20 \mathrm{~mA}\) signal is lost (Pr.14-18 =2, Pr.14-19 = 2).
When Pr. 14-18 or Pr. 14-19 = 0, the voltage input is \(0-10 \mathrm{~V}\); when Pr. \(14-18\) or Pr. \(14-19=0\), the voltage input is \(0-20 \mathrm{~mA}\). At this moment, Pr.14-10 and 14-11 are invalid.
(1) 1 or 2: Displays the warning code "ANL" on the keypad. It continues blinking until the lost ACl signal is recovered.
1 When the drive stops, the warning condition does not continue to exist, so the warning disappears.

\section*{14-12 AO10 Extension Card Output Terminal Selection \\ 14-13 AO11 Extension Card Output Terminal Selection}

Default: 0
Settings 0-23
Function Chart
\begin{tabular}{|c|l|l|}
\hline Settings & \multicolumn{1}{|c|}{ Functions } & \multicolumn{1}{c|}{ Descriptions } \\
\hline 0 & Output frequency \((\mathrm{Hz})\) & Maximum frequency Pr.01-00 is processed as \(100 \%\). \\
\hline 1 & Frequency command \((\mathrm{Hz})\) & Maximum frequency Pr.01-00 is processed as \(100 \%\). \\
\hline 2 & Motor speed \((\mathrm{Hz})\) & Maximum frequency Pr.01-00 is processed as \(100 \%\). \\
\hline 3 & Output current \((\mathrm{rms})\) & \((2.5 \times\) rated current \()\) is processed as \(100 \%\). \\
\hline 4 & Output voltage & \((2 \times\) rated voltage \()\) is processed as \(100 \%\). \\
\hline 5 & DC bus voltage & \(450 \mathrm{~V}(900 \mathrm{~V})=100 \%\) \\
\hline 6 & Power factor & \(-1.000-1.000=100 \%\) \\
\hline 7 & Power & \((2 \times\) rated power \()\) is processed as \(100 \%\). \\
\hline 8 & Output torque & Full load torque \(=100 \%\) \\
\hline 9 & AVI & \(0-10 \mathrm{~V}=0-100 \%\) \\
\hline 10 & ACl & \(4-20 \mathrm{~mA}=0-100 \%\) \\
\hline 12 & Iq current command & \((2.5 \times\) rated current \()\) is processed as \(100 \%\). \\
\hline 13 & Iq feedback value & \((2.5 \times\) rated current \()\) is processed as \(100 \%\). \\
\hline 14 & Id current command & \((2.5 \times\) rated current \()\) is processed as \(100 \%\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Settings & Functions & \multicolumn{2}{|r|}{Descriptions} \\
\hline 15 & Id feedback value & \multicolumn{2}{|l|}{(\(2.5 \times\) rated current) is processed as \(100 \%\).} \\
\hline 16 & Vq-axis voltage command & \multicolumn{2}{|l|}{\(250 \mathrm{~V}(500 \mathrm{~V})=100 \%\)} \\
\hline 17 & Vd-axis voltage command & \multicolumn{2}{|l|}{\(250 \mathrm{~V}(500 \mathrm{~V})=100 \%\)} \\
\hline 18 & Torque command & \multicolumn{2}{|l|}{Rated current of motor \(=100 \%\)} \\
\hline 19 & PG2 frequency command & \multicolumn{2}{|l|}{Maximum frequency Pr.01-00 is processed as 100\%.} \\
\hline \multirow{5}{*}{20} & \multirow{5}{*}{CANopen analog output} & \multicolumn{2}{|l|}{For CANopen communication analog output} \\
\hline & & Terminal & Corresponding address \\
\hline & & AFM1 & 2026-A1 \\
\hline & & AO10 & 2026-AB \\
\hline & & AO11 & 2026-AC \\
\hline \multirow{5}{*}{21} & \multirow{5}{*}{RS-485 analog output} & \multicolumn{2}{|l|}{For RS-485 (Modbus) analog output} \\
\hline & & Terminal & Corresponding address \\
\hline & & AFM1 & 26A0H \\
\hline & & AO10 & 26AAH \\
\hline & & AO11 & 26ABH \\
\hline \multirow{5}{*}{22} & \multirow{5}{*}{Communication card analog output} & \multicolumn{2}{|l|}{For Communication analog output (CMM-EIP02, CMM-PD02, CMM-DN02)} \\
\hline & & Terminal & Corresponding address \\
\hline & & AFM1 & 26A0H \\
\hline & & AO10 & 26AAH \\
\hline & & AO11 & 26ABH \\
\hline 23 & Constant voltage output & \multicolumn{2}{|l|}{Pr.03-32 controls the voltage output level. \(0-100 \%\) of Pr. \(03-32\) corresponds to \(0-10 \mathrm{~V}\)} \\
\hline
\end{tabular}

\section*{14-14 AO10 Analog Output 1 Gain}

14-15 AO11 Analog Output 1 Gain
Default: 100.0
Settings 0.0-500.0\%
Adjusts the voltage level outputted to the analog meter from the analog signal (Pr.14-12, 14-13) output terminal AFM of the drive.

\section*{14-16 AVO10 Analog Output 1 in REV Direction \\ 14-17 AVO11 Analog Output 1 in REV Direction}

Default: 0
Settings 0: Absolute value of output voltage
1: Reverse output 0 V ; forward output \(0-10 \mathrm{~V}\)
2: Reverse output 5-0 V; forward output 5-10 V

Pr.14-17=2

Selections for the analog output direction

\section*{14-18 Extension Card (AI10) Input Selection}

Default: 0
Settings \(\quad 0: 0-10 \mathrm{~V}(\mathrm{AVI} 10)\)
1: \(0-20 \mathrm{~mA}(\mathrm{ACl} 10)\)
2: \(4-20 \mathrm{~mA}(\mathrm{ACl} 10)\)
14-19 Extension Card (AI11) Input Selection
Default: 0
Settings \(\quad 0: 0-10 \mathrm{~V}\) (AVI11)
1: \(0-20 \mathrm{~mA}(\mathrm{ACl} 11)\)
2: \(4-20 \mathrm{~mA}\) (ACl 11)
When you change the input mode, verify that the switch position of external terminal (Al10, Al1) is correct.

Settings 0.00-100.00\%
14-22 AVO10 Filter Output Time
14-23 AVO11 Filter Output Time
Default: 0.01
Settings \(0.00-20.00 \mathrm{sec}\).
14-24 Al10 Extension Card Lowest Point
Default: 0.00
Settings Pr.14-18 \(=0,0.00-10.00 \mathrm{~V}\)
Pr. 14-18 \(=0,0.00-20.00 \mathrm{~mA}\) or \(4-20 \mathrm{~mA}\)

\section*{14-25 Al10 Extension Card Proportional Lowest Point}

Default: 0.00
Settings 0.00-100.00\%

\section*{14-26 Al10 Extension Card Mid-point}

Default: 5.00
Settings Pr.14-18 \(=0,0.00-10.00 \mathrm{~V}\)
Pr. 14-18 \(\neq 0,0.00-20.00 \mathrm{~mA}\) or \(4-20 \mathrm{~mA}\)

\section*{14-27 Al10 Extension Card Proportional Mid-point}

Default: 50.00
Settings 0.00-100.00\%

\section*{14-28 Al10 Extension Card Highest Point}

Default: 10.00
\(\begin{array}{ll}\text { Settings } & \text { Pr. } 14-18=0,0.00-10.00 \mathrm{~V} \\ & \text { Pr. } 14-18 \neq 0,0.00-20.00 \mathrm{~mA} \text { or } 4-20 \mathrm{~mA}\end{array}\)

\section*{14-29 AI10 Extension Card Proportional Highest Point}

Default: 100.00
Settings 0.00-100.00\%
When Pr.14-18 = 0, the voltage type is \(0-10 \mathrm{~V}\) analog input and the unit is in voltage (V). When Pr. 14-18 \(\neq 0\), the current type is \(0-20 \mathrm{~mA}\) or \(4-20 \mathrm{~mA}\) and the unit is in current \((\mathrm{mA})\).
When you set the analog input Al10 to the Frequency command, 100\% corresponds to Fmax (Pr.01-00 Maximum Operation Frequency).
(1) The requirement for these three parameters (Pr.14-24, Pr.14-26 and Pr.14-28) is Pr. 14-24 < Pr. 1426 < Pr.14-28. The corresponding percentage is unlimited. There is a linear calculation between two points.
(1) The output \% becomes \(0 \%\) when the Al10 input value is lower than lowest point setting.

For example:
If Pr. 14-24 \(=2 \mathrm{~mA}\) and Pr. \(14-25=10 \%\), then the output becomes \(0 \%\) when the value is \(\leq 2 \mathrm{~mA}\). If the Al10 input swings between 2 mA and 2.1 mA , the drive's output frequency oscillates between 0\% and 10\%.

\section*{14-30 Al10 Extension Card Lowest Point}

Default: 0.00
Settings Pr. 14-19 \(=0,0.00-10.00 \mathrm{~V}\)
\[
\text { Pr. 14-19 } \neq 0,0.00-20.00 \mathrm{~mA} \text { or } 4-20 \mathrm{~mA}
\]

\section*{14-31 Al10 Extension Card Proportional Lowest Point}

Default: 0.00
Settings 0.00-100.00\%

\section*{14-32 Al10 Extension Card Mid-point}

Default: 5.00
Settings Pr. 14-19 \(=0,0.00-10.00 \mathrm{~V}\)
Pr. 14-19 \(\neq 0,0.00-20.00 \mathrm{~mA}\) or \(4-20 \mathrm{~mA}\)

\section*{14-33 Al10 Extension Card Proportional Mid-point}

Default: 50.00
Settings 0.00-100.00\%

\section*{14-34 Al10 Extension Card Highest Point}

Default: 10.00
\begin{tabular}{ll}
Settings \(\quad\) Pr. \(14-19=0,0.00-10.00 \mathrm{~V}\) \\
& Pr. \(14-19 \neq 0,0.00-20.00 \mathrm{~mA}\) or \(4-20 \mathrm{~mA}\)
\end{tabular}

\title{
14-35 Al10 Extension Card Proportional Highest Point
}

Default: 100.00
Settings 0.00-100.00\%When Pr. \(14-19=0\), the voltage type is \(0-10 \mathrm{~V}\) analog input and the unit is in voltage \((\mathrm{V})\). When \(\operatorname{Pr} .14-19 \neq 0\), the current type is \(0-20 \mathrm{~mA}\) or \(4-20 \mathrm{~mA}\) and the unit is in current (mA).When you set the analog input Al11 to the Frequency command, 100\% corresponds to Fmax (Pr.01-00 Maximum Operation Frequency).The requirement for these three parameters (Pr.14-30, Pr.14-32 and Pr.14-34) is Pr.14-30 < Pr.14-32 < 14-34. The corresponding percentage is unlimited. There is a linear calculation between two points.The output \% becomes 0\% when the Al11 input value is lower than lowest point setting. For example:
If Pr. 14-30 \(=2 \mathrm{~mA}\) and Pr.14-31 \(=10 \%\), then the output becomes \(0 \%\) when the value is \(\leq 2 \mathrm{~mA}\). If the Al11 input swings between 2 mA and 2.1 mA , the drive's output frequency oscillates between \(0 \%\) and \(10 \%\).

\section*{14-36 AO10 Terminal Analog Signal Mode}

Default: 0
\[
\begin{aligned}
\text { Settings } & 0: \text { AVO10 (analog voltage signal } 0.00-10.00 \mathrm{~V} \text {) } \\
& \text { 1: ACO10 (analog current signal } 0.0-20.0 \mathrm{~mA} \text {) } \\
& \text { 2: ACO10 (analog current signal } 4.0-20.0 \mathrm{~mA} \text {) }
\end{aligned}
\]

\section*{14-37 AO11 Terminal Analog Signal Mode}

Default: 0
Settings 0 : AVO11 (analog voltage signal \(0.00-10.00 \mathrm{~V}\))
1: ACO11 (analog current signal 0.0-20.0 mA)
2: ACO11 (analog current signal \(4.0-20.0 \mathrm{~mA}\))

\section*{14-50 Output Frequency at Malfunction 2 \\ 14-54 Output Frequency at Malfunction 3 \\ 14-58 Output Frequency at Malfunction 4 \\ 14-62 Output Frequency at Malfunction 5 \\ 14-66 Output Frequency at Malfunction 6}

Default: Read only
Settings \(\quad 0.00-599.00 \mathrm{~Hz}\)
When an error occurs, you can check the output frequency for the malfunction. If the error happens again, this parameter overwrites the previous record.

> \begin{tabular}{l|l} \hline 14-51 & DC bus Voltage at Malfunction 2 \\ \hline 14-55 & DC bus Voltage at Malfunction 3 \\ \hline 14-59 & DC bus Voltage at Malfunction 4 \\ \hline \(14-63\) & DC bus Voltage at Malfunction 5 \\ \hline \(14-67\) & DC bus Voltage at Malfunction 6 \end{tabular}

Default: Read only
\[
\text { Settings } 0.0-6553.5 \mathrm{~V}
\]

10 When an error occurs, you can check the DC voltage for the malfunction. If the error happens again, this parameter overwrites the previous record.

\section*{14-52 Output Current at Malfunction 2 \\ 14-56 Output Current at Malfunction 3 \\ 14-60 Output Current at Malfunction 4 \\ 14-64 Output Current at Malfunction 5 \\ 14-68 Output Current at Malfunction 6}

Default: Read only
Settings \(0.00-655.35\) Amps
1 When an error occurs, you can check the output current for the malfunction. If the error happens again, this parameter overwrites the previous record.

\section*{14-53 IGBT Temperature at Malfunction 2 \\ 14-57 IGBT Temperature at Malfunction 3 \\ 14-61 IGBT Temperature at Malfunction 4 \\ 14-65 IGBT Temperature at Malfunction 5 \\ 14-69 IGBT Temperature at Malfunction 6}

Default: Read only
Settings \(-3276.7-3276.7^{\circ} \mathrm{C}\)
When an error occurs, you can check the IGBT temperature for the malfunction. If the error happens again, this parameter overwrites the previous record.

\section*{14-70 Fault Record 7 \\ 14-71 Fault Record 8 \\ 14-72 Fault Record 9 \\ 14-73 Fault Record 10}

Default: 0
Display 0: No fault record
1: Over-current during acceleration (ocA)
2: Over-current during deceleration (ocd)
3: Over-current during steady operation (ocn)
4: Ground fault (GFF)
5: IGBT short circuit between upper bridge and lower bridge (occ)
6: Over-current at stop (ocS)

7: Over-voltage during acceleration (ovA)
8: Over-voltage during deceleration (ovd)
9: Over-voltage at constant speed (ovn)
10: Over-voltage at stop (ovS)
11: Low-voltage during acceleration (LvA)
12: Low-voltage during deceleration (Lvd)
13: Low-voltage at constant speed (Lvn)
14: Low-voltage at stop (LvS)
15: Phase loss protection (orP)
16: IGBT overheating (oH1)
17: Heatsink overheating (oH2)
18: IGBT temperature detection failure (tH1o)
19: Capacitor hardware error (tH2o)
21: Drive over-load (oL)
22: Electronic thermal relay protection 1 (EoL1)
23: Electronic thermal relay protection 2 (EoL2)
24: Motor overheating (PTC / PT100) (oH3)
26: Over-torque 1 (ot1)
27: Over-torque 2 (ot2)
28: Under current (uC)
29: Limit error (LiT)
31: EEPROM read error (cF2)
33: U-phase error (cd1)
34: V-phase error (cd2)
35: W-phase error (cd3)
36: cc (current clamp) hardware failure (Hd 0)
37: oc (over-current) hardware failure (Hd1)
40: Auto-tuning error (AUE)
41: PID loss ACI (AFE)
42: PG feedback error (PGF1)
43: PG feedback loss (PGF2)
44: PG feedback stall (PGF3)
45: PG slip error (PGF4)
48: ACI loss (ACE)
49: External fault (EF)
50: Emergency stop (EF1)
51: External base block (bb)
52: Enter wrong password three times and locked (Pcod)
54: Illegal command (CE1)
55: Illegal data address (CE2)
56: Illegal data value (CE3)
57: Data is written to read-only address (CE4)

58: Modbus transmission time-out (CE10)
61: Y-connection / \(\Delta\)-connection switch error (ydc)
62: Deceleration energy backup error (dEb)
63: Over-slip (oSL)
65: Hardware error of PG card (PGF5)
72: STO loss (STL1)
76: Safe torque off (STo)
77: STO loss 2 (STL2)
78: STO loss 3 (STL3)
79: U-phase Over-current before run (Aoc)
80: V-phase Over-current before run (boc)
81: W-phase Over-current before run (coc)
82: U-phase output phase loss (oPL1)
83: V-phase output phase loss (oPL2)
84: W-phase output phase loss (oPL3)
87: Low frequency overload protection (oL3)
89: Rotor position detection error (roPd)
101: CANopen guarding error (CGdE)
102: CANopen heartbeat error (CHbE)
104: CANopen bus off error (CbFE)
105: CANopen index error (CidE)
106: CANopen slave station setting error (CAdE)
107: CANopen memory error(CFrE)
111: InrCOM time-out error (ictE)
121: Internal communication error (CP20)
123: Internal communication error (CP22)
124: Internal communication error (CP30)
126: Internal communication error (CP32)
127: Firmware version error (CP33)
128: Over-torque 3 (ot3)
129: Over-torque 4 (ot4)
134: Electronic thermal relay 3 protection (EoL3)
135: Electronic thermal relay 4 protection (EoL4)
140: oc hardware error (Hd6)
141: GFF occurs before run (b4GFF)
142: Auto-tuning error 1 (DC test stage) (AUE1)
143: Auto-tuning error 2 (High frequency test stage) (AUE2)
144: Auto-tuning error 3 (Rotary test stage) (AUE3)
1 The system records the fault as long as the fault is forced to stop.Low voltage (Lv) when stopped (LvS warning, no record); low voltage (Lv) when operating (LvA, Lvd, Lvn error, recorded by the system).

Ind When the dEb function is effective and enabled, the drive starts the dEb function and also records the fault code 62 to Pr.06-17-06-22, Pr.14-70-14-73 at the same time.

\section*{14-74 Over-torque Detection Action (Motor 3) \\ 14-77 Over-torque Detection Action (Motor 4)}

Default: 0
Settings 0: No function
1: Continue operation after over-torque detection during constant speed operation
2: Stop after over-torque detection during constant speed operation
3: Continue operation after over-torque detection during RUN
4: Stop after over-torque detection during RUN
1 When Pr.14-74 and Pr.14-77 setting are 1 or 3, there is a warning message but no error record.When Pr.14-74 and Pr.14-77 setting are 2 or 4, there is an error message and an error record.

\section*{14-75 Over-torque Detection Level (Motor 3)}

14-78 Over-torque Detection Level (Motor 4)
Default: 120
Settings 10-250\% (100\% corresponds to the rated current of the drive)

\section*{14-76 Over-torque Detection Time (Motor 3)}

14-79 Over-torque Detection Time (Motor 4)
Default: 0.1
Settings \(0.0-60.0 \mathrm{sec}\).
1 When the output current exceeds the over-torque detection level (Pr.14-75 or Pr.14-78) and the over-torque detection time (Pr.14-76 or Pr.14-79), the over-torque detection follows the setting of Pr.14-74 or Pr.14-77.When Pr. 14-74 or Pr.14-77 setting is 1 or 3 , the drive displays an ot \(3 /\) ot 4 warning when the system detects over-torque. The warning remains on until the output current is smaller than \(5 \%\) of the over-torque detection level.

When Pr.14-74 or Pr.14-77 setting is 2 or 4, the drive displays an ot3/ot4 error when the system detects over-torque. The drive stops operating until you manually reset it.

\section*{14-80 Electronic Thermal Relay Selection 3 (Motor 3) 14-82 Electronic Thermal Relay Selection 4 (Motor 4)}

Default: 2
Settings 0: Inverter motor (with external forced cooling)
1: Standard motor (motor with the fan on the shaft)
2: Disable
1 To prevent a self-cooling motor from overheating during low speed operation, you can set the electronic thermal relay to limit the drive output power.0 : Suitable for an inverter motor with external forced cooling. There is no obvious correlation between the heat dissipation capability and the motor speed; therefore, the low speed electronic thermal relay remains fixed to ensure the motor load capacity at low speed.
10 Suitable for a standard motor with the fan on the shaft. The motor cooling capacity is poor at low speed; therefore, the electronic thermal relay action time is reduced appropriately to ensure the life of the motor.
1 When you cycle the power ON / OFF frequently, the thermal relay protection resets when the power is OFF; therefore, even the setting is 0 or 1 , the motor may not be protected. If several motors are connected to a drive, install an electronic thermal relay in each of the motors.

\section*{14-81 Electronic Thermal Relay Action Time 3 (Motor 3) \\ 14-83 Electronic Thermal Relay Action Time 4 (Motor 4)}
\[
\text { Default: } 60.0
\]

Settings \(30.0-600.0 \mathrm{sec}\).
[1] The electronic thermal relay is rated for \(150 \%\) of the motor rated current value and with Pr. 14-81 settings, the settings of Pr.14-83 protects the motor to avoid burnout due to motor overheating. When it reaches the setting time, the drive displays "EoL3 / EoL4", and the motor free runs to stop.
10. This parameter sets the action time of the electronic thermal relay, and the function is based on the operating characteristic curve of electronic thermal relay 12 t , the drive output frequency, current, and operation time to prevent overheating of the motor.

[1] The electronic thermal relay action condition follows the settings for Pr. 14-80/Pr. 14-82:
1. Pr.14-80 / Pr.14-82 set to 0 (inverter motor with external forced cooling):

When the drive output current is higher than \(150 \%\) of the rated current for the motor (refer to the motor independent cooling curve figure above), the drive starts to count the time. If the time exceeds the settings for Pr.14-81 / Pr.14-83, the electronic thermal relay is activated.
2. Pr.14-80 / Pr.14-82 set to 1 (standard motor with fan on the shaft):

When the drive output current is higher than \(150 \%\) of the rated current of the motor (refer to the motor coaxial cooling curve figure above), the drive starts to count the time. If the time exceeds the settings for Pr.14-81 / Pr.14-83, the electronic thermal relay activates. The electronic thermal relay action time depends on the drive output current (motor loading rate in \%) to make appropriate adjustments: short action time when the current is high, long action time when the current is low. See the figure below:

Operation time
(sec.)

\section*{12-2 Adjustment \& Application}

The followings are abbreviations for different types of motors:
- IM: Induction motor
- PM: Permanent magnet synchronous AC motor
- IPM: Interior permanent magnet synchronous AC motor
- SPM: Surface permanent magnet synchronous AC motor

12-2-1 Permanent-Magnet Synchronous Motor, Space Vector Control Adjustment Procedure (PM SVC, Pr.00-11=2)
- Control diagram

- PM SVC adjustment procedure
(The number marked on the procedure corresponds to the number of following adjustment explanations)
I. PM SVC motor parameters adjustment flowchart

[a] Basic motor parameters adjustment
1. Parameter reset:

Reset Pr. 00-02 = \(9(50 \mathrm{~Hz})\) or \(10(60 \mathrm{~Hz})\) to the default value.
2. Select PM motor type:

Pr.05-33 = 1 (SPM) or 2 (IPM)
3. Motor nameplate parameter setting:
\begin{tabular}{|c|l|}
\hline Parameter & \multicolumn{1}{|c|}{ Description } \\
\hline Pr.01-01 & Rated frequency \((\mathrm{Hz})\) \\
\hline Pr.01-02 & Rated voltage \(\left(\mathrm{V}_{\mathrm{AC}}\right)\) \\
\hline Pr.05-34 & Rated current \((\mathrm{A})\) \\
\hline Pr.05-35 & Rated power (kW) \\
\hline Pr.05-36 & Rated rotor speed (rpm) \\
\hline Pr.05-37 & Number of poles for the motor (poles) \\
\hline
\end{tabular}
4. PM parameter auto-tuning:

Set Pr.05-00 = 5 (rolling auto-tuning for PM, with no load) or 13 (static auto-tuning for PM) and press RUN key to finish motor auto-tuning, then you will get the following parameters:
\begin{tabular}{|c|l|}
\hline Parameter & \multicolumn{1}{c|}{ Description } \\
\hline Pr.05-39 & Stator resistance for a permanent magnet motor \((\Omega)\) \\
\hline Pr.05-40 & Permanent magnet motor Ld \((\mathrm{mH})\) \\
\hline Pr.05-41 & Permanent magnet motor Lq \((\mathrm{mH})\) \\
\hline Pr.05-43 & \begin{tabular}{l}
Ke parameter of a permanent magnet motor \(\left(\mathrm{V}_{\text {phase }} \cdot \mathrm{ms} / \mathrm{krpm}\right)\) \\
(When Pr.05-00 \(=5\), the Ke parameter is measured based on the \\
actual motor rotation. \()\) \\
(When Pr.05-00 \(=13\), the Ke parameter is automatically \\
calculated based on the motor power, current and rotor speed. \()\)
\end{tabular} \\
\hline
\end{tabular}

If an auto-tuning error (AUE) occurs, refer to Chapter 14 "Fault Codes and Descriptions" for further treatment.
\begin{tabular}{|c|l|}
\hline AUE Error (code) & \multicolumn{1}{|c|}{ Description } \\
\hline AUE (40) & Auto-tuning error \\
\hline AUE1 (142) & Auto-tuning error 1 (No feedback current error) \\
\hline AUE2 (143) & Auto-tuning error 2 (Motor phase loss error) \\
\hline
\end{tabular}
5. Set control mode

Control mode for the drive: Pr. 00-10 = 0: Speed mode
Control mode for the motor: Pr. 00-11 = 2: PM SVC mode
6. Re-power on after power off.
7. Measure the initial magnetic pole angle of PM

Set Pr.10-53 PM initial rotor position detection method
0 : Disabled
1: Using I/F current command (Pr.10-31) to attract the rotor to zero degrees
2: High frequency injection
3: Pulse injection
* For IPM, the setting value is suggested to be 2; for SPM, the setting value is suggested to be 3. You can choose the setting 1 if the result is not good of setting as 2 or 3 .
II. PM SVC adjustment flowchart for operation with no load / light load

Adjustment for operation with light load
8. Start the motor without load / with light load and operate to \(1 / 2\) of the rated rotor speed A1. Start operation direction:
a. If the start operation direction is wrong

SPM: increase the current proportion for Pr.10-42 (initial angle detection pulse value) to improve the accuracy of the angle detection.
IPM: Increase the voltage for Pr.10-52 (injection magnitude) to improve the accuracy of the angle detection.
b. If an ocA error occurs when pressing RUN to start the motor, decrease the current proportion for Pr.10-42 (initial angle detection pulse value).

A2. Operates the motor in \(1 / 2\) of the rated rotor speed, adjust the no-load operating current If the no-load operating current exceeds \(20 \%\) of the rated current, increase Pr.07-26 (torque compensation gain) and observe the no-load operating current.
A3. Accelerate to the rated frequency and observe if the motor operates stably.
a. If the motor output rotor speed presents periodic low-frequency wave, increase Pr.10-34 (PM sensorless speed estimator low-pass filter gain), or increase Pr.10-32 (PM FOC sensorless speed estimator bandwidth).
b. If the output frequency reflects high frequency vibration, decrease Pr.10-34 or decrease Pr.10-32.
A4. Accelerate the motor to the maximum rotor speed, and observe if it operates stably. If the motor stalls when accelerating to the maximum rotor speed, then increase Pr. 10-34 (PM sensorless speed estimator low-pass filter gain), or increase Pr.00-17 (carrier frequency, you must set the carrier frequency larger than 10 times of the maximum output frequency)
III. PM SVC adjustment flowchart for operation starts with load

(1) Adjustment for operation with heavy load
9. Load operating test

B1. Low-frequency loading performance is below \(1 / 10\) of rated frequency:
a. If the low-frequency loading performance is insufficient, or the rotor speed is not smooth, increase Pr.10-31 (current command of I/F mode).
b. If the low-frequency current is large, decrease Pr.10-31 (current command of I/F mode).

B2. Test the with-load accelerating performance:
When the motor operates in \(1 / 10\) of rotor speed and above, if the speed cannot follow the acceleration time during accelerating, or the current stalls, increase Pr.07-38 (PMSVC voltage feedback forward gain).
10. Stability test at constant speed operation: the motor operates stably at constant speed
a. If the motor output rotor speed presents periodic low-frequency wave, increase Pr.10-34 (PM sensorless speed estimator low-pass filter gain), or increase Pr.10-32 (PM FOC sensorless speed estimator bandwidth).
b. If the output frequency reflects high frequency vibration, decrease Pr.10-34 or decrease Pr.10-32.
- PM SVC related parameters

Refer to Section 12-1 Description of Parameter Settings for more details.
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter & Description & Unit & Default & Setting Range \\
\hline Pr.07-24 & Torque command filter time & sec. & 0.500 & 0.001-10.000 \\
\hline Pr.07-26 & Torque compensation gain & NA & 0 & 0-5000 \\
\hline Pr.07-38 & PMSVC voltage feedback forward gain & NA & 1.0 & 0.00-2.00 \\
\hline Pr.10-31 & I/F mode, current command & \% & 40 & 0-150 \\
\hline Pr.10-32 & PM FOC sensorless speed estimator bandwidth & Hz & 5.00 & 0.00-600.00 \\
\hline Pr.10-34 & PM sensorless speed estimator low-pass filter gain & NA & 1.00 & 0.00-655.35 \\
\hline Pr.10-39 & Frequency point to switch from I/F mode to PM sensorless mode & Hz & 20.00 & 0.00-599.00 \\
\hline Pr.10-40 & Frequency point to switch from PM sensorless mode to V/F mode & Hz & 20.00 & 0.00-599.00 \\
\hline \multicolumn{5}{|c|}{Initial Angle Estimating Parameters} \\
\hline Pr. 10-42 & Initial angle detection pulse value & NA & 1.0 & 0.0-3.0 \\
\hline Pr.10-51 & Injection frequency & Hz & 500 & 0-1200 \\
\hline Pr.10-52 & Injection magnitude & V & \[
\begin{array}{|c|}
\hline 15.0 / \\
30.0 \\
\hline
\end{array}
\] & 0.0-200.0 \\
\hline Pr.10-53 & \begin{tabular}{l}
PM initial rotor position detection method \\
0 : Disable \\
1: Force attracting the rotor to zero degrees \\
2: High frequency injection \\
3: Pulse injection
\end{tabular} & NA & 0 & 0-3 \\
\hline
\end{tabular}

12-2-2 Permanent-Magnet Synchronuous Motor, Field-Oriented Control and with Encoder Adjustment Procedure (PM FOCPG, Pr,00-11=4)
- PM FOCPG Control diagram

- PM FOCPG adjustment procedure
(The number marked on the procedure corresponds to the number of following adjustment explanations)
I. PM FOCPG motor parameters adjustment flowchart

basic motor parameters adjustment
1. Parameter reset:

Reset Pr.00-02=9 \((50 \mathrm{~Hz})\) or \(10(60 \mathrm{~Hz})\) to the default value.
2. Select IPM motor type:

Pr.05-33=1 (SPM) or 2 (IPM)
3. Motor nameplate parameter setting:
\begin{tabular}{|c|l|}
\hline Parameter & \multicolumn{1}{|c|}{ Description } \\
\hline Pr.01-01 & Rated frequency (Hz) \\
\hline Pr.01-02 & Rated voltage (V) V AC) \\
\hline Pr.05-34 & Rated current \((\mathrm{A})\) \\
\hline Pr.05-35 & Rated power \((\mathrm{kW})\) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Parameter & \multicolumn{1}{|c|}{ Description } \\
\hline Pr.05-36 & Rated rotor speed (RPM) \\
\hline Pr.05-37 & Number of poles for the motor (poles) \\
\hline
\end{tabular}
4. PM parameter auto-tuning:

Set Pr.05-00 = 5 (rolling auto-tuning for PM, with no load) or 13 (static auto-tuning for PM) and press RUN key to finish motor auto-tuning, then you will get the following parameters:
\begin{tabular}{|c|l|}
\hline Parameter & \multicolumn{1}{c|}{ Description } \\
\hline Pr.05-39 & Stator resistance for a permanent magnet motor \((\Omega)\) \\
\hline Pr.05-40 & Permanent magnet motor Ld \((\mathrm{mH})\) \\
\hline Pr.05-41 & Permanent magnet motor Lq \((\mathrm{mH})\) \\
\hline Pr.05-43 & \begin{tabular}{l}
Ke parameter of a permanent magnet motor \(\left(\mathrm{V}_{\text {phase }} \cdot \mathrm{rms} / \mathrm{krpm}\right)\) \\
(When Pr.05-00=5, the Ke parameter is measured based on the actual \\
motor rotation.) \\
(When Pr.05-00=13, the Ke parameter is automatically calculated based \\
on the motor power, current and rotor speed.)
\end{tabular} \\
\hline
\end{tabular}

If an auto-tuning error (AUE) occurs, refer to Chapter 14 "Error Codes and Descriptions" for further treatment.
\begin{tabular}{|c|l|}
\hline AUE Error (code) & \multicolumn{1}{|c|}{ Description } \\
\hline AUE (40) & Auto-tuning error \\
\hline AUE1 (142) & Auto-tuning error 1 (No feedback current error) \\
\hline AUE2 (143) & Auto-tuning error 2 (Motor phase loss error) \\
\hline AUE3 (144) & Auto-tuning error 3 (No-load current Io measuring error) \\
\hline AUE4 (148) & Auto-tuning error 4 (Leakage inductance Lsigma measuring error) \\
\hline
\end{tabular}
5. Set encoder parameter

Check the encoder power and input type, make sure it is used with correct PG card.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ PG Card Type } \\
\hline EMC-PG01L & EMC-PG01O & EMC-PG01R \\
\hline
\end{tabular}

Related parameters:
(1) Pr. 10-00: Encoder type selection
(2) Pr. 10-01: Encoder pulses per revolution
(3) Pr. 10-02: Encoder input type setting \(=1\) (A-phase and B-phase are pulse inputs, forward direction if A-phase leads B-phase by 90 degrees)
6. Measure the initial magnetic pole angle of PM
(1) Set Pr.05-00=4 (dynamic test for PM magnetic pole)
(2) Press RUN key to proceed the PM magnetic pole measurement, and to get the offset angle.
Note 1: It is suggested to measure the offset angle more than twice, to make sure the angle tolerance is within \(\pm 5\) degree.
Note 2: Verify the encoder and PG card are connected in the right order.
7. Re-power on after power off.
8. Execute inertia estimation for PM
(1) Set Pr. 00-11 = 4, PM FOCPG control.
(2) Set the operation frequency command to \(2 / 3\) of the motor's rated frequency.
(3) Set the acceleration / deceleration time (Pr. 01-12, Pr. 01-13) to \(1 / 10\) of the default time.
(adjust the acceleration / deceleration time according to the load inertia. The smaller the load inertia, the shorter the acceleration / deceleration time is set).
(4) Check if the load and the motor is connected.
(5) Set Pr. 11-00 bit1 = 1, inertia estimate (only in FOCPG mode).
(6) Press RUN key to proceed the inertia

Quickly run the motor in forward and reverse direction repeatedly, and observe the inertia estimated value of Pr. 11-01 for the keypad.
a. If the system inertial estimated value of Pr. 11-01 does not change (\(=\) default 256), it means the inertia estimation is wrong. Reduce the frequency command and estimate the inertia again.
b. If the system inertia estimated value of Pr. 11-01 is still a lot different from the estimated value of FWD/REV operation, continue the estimation in forward / reverse operating direction to restraint the estimated inertia to small difference.
(7) Press STOP key to obtain the estimated inertia value:
a. Press ENTER to confirm the input value at the displayed page of the last estimated inertia value of Pr. 11-01.
b. Set Pr.11-01 bit1 = 0, return the control mode to speed mode.
c. Set the acceleration / deceleration time (Pr.01-12, 01-13) back to the default value.
II. PM FOC+PG adjustment flowchart for operation without load / with light load

lad Adjustment for operation with no load / light load
9. No-load trial run

Set the frequency command to 10 Hz to proceed the encoder running test:
A1. If the motor starts in a reverse direction.
If the motor starts in a reverse direction, set the encoder input type Pr. 10-02 \(=2\) (A-phase and \(B\)-phase are pulse inputs, forward direction if \(B\)-phase leads A-phase by 90 degrees.)
A2. Observe if a PGFx error is displayed on the keypad, or the motor runs in an abnormal speed.
If the PGFx error is displayed or the motor runs in an abnormal speed, refer to Chapter 14
"Fault Codes and Descriptions" or the following table for PGFx error type and further treatment.
\begin{tabular}{|c|l|l|}
\hline PGF Error (code) & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{|c|}{ Solution } \\
\hline PGF1 (42) & PG feedback error & Check parameter setting of Pr.10-00-10-02 \\
\hline PGF2 (43) & PG feedback loss & Check the wiring of encoder and PG card \\
\hline PGF3 (44) & PG feedback stall & Check the wiring of encoder and PG card \\
\hline PGF4 (45) & PG slip error & \begin{tabular}{l}
Check the pulse setting of Pr.10-01 \\
Check the wiring of encoder and PG card
\end{tabular} \\
\hline PGF5 (65) & PG hardware error & \begin{tabular}{l}
Check if the PG card is installed on the \\
correct slot position \\
Check the setting parameter of the encoder
\end{tabular} \\
\hline
\end{tabular}
10. No-load / light load running test
a. Set the speed regulator (ASR) as Pr.11-00=1, and set the ASR gain as auto-tuning.
b. Start the motor with no load / light load and proceed acceleration / deceleration test.

B1. Accelerate to the rated frequency and observe if the motor runs stably.
- If the output rotor speed cannot follow the acceleration time, increase Pr.11-04 (ASR2 high-speed bandwidth) or Pr.11-03 (ASR1 low-speed bandwidth).
- If a high-frequency oscillation occurs in the output frequency, decrease Pr.11-04 (ASR2 high-speed bandwidth) or Pr.11-03 (ASR1 low-speed bandwidth).
B2. Accelerate the motor to the maximum frequency and observe if it runs stably.
If an oscillation occurs or motor stalls at maximum rotor speed during operation, increase Pr.11-04 (ASR2 high-speed bandwidth).

Setting curve of speed regulator (ASR) and related parameter:

ASR adjustment- auto gain
\begin{tabular}{|c|l|c|}
\hline Parameter & \multicolumn{1}{|c|}{ Description } & Default \\
\hline Pr.11-00 & System control & 0 \\
\hline Pr.11-01 & Per unit of system inertia & 256 \\
\hline Pr.11-02 & \begin{tabular}{l}
ASR1/ASR2 switch frequency \\
(it is suggested to set the switch frequency \\
higher than Pr.10-39)
\end{tabular} & 7.00 Hz \\
\hline Pr.11-03 & ASR1 low-speed bandwidth & 10 Hz \\
\hline Pr.11-04 & ASR2 high-speed bandwidth & 10 Hz \\
\hline Pr.11-05 & ASR zero-speed bandwidth & 10 Hz \\
\hline
\end{tabular}
III. PM FOCPG adjustment flowchart for operation starts with load

(1) Adjustment for operation with load

C1. Low-frequency load performance, when the drive operates under ASR1 / ASR2 switch frequency (Pr.11-02):
a. If the low-speed frequency cannot start-up with load or the rotor speed is not smooth, increase Pr.11-03 (ASR1 low-speed bandwidth), or increase Pr.11-01 (Per-unit system inertia).
b. If an oscillation or over current (oc) error occurs at low-speed frequency, decrease Pr.11(ASR1 low-speed bandwidth) or decrease Pr.11-01 (Per-unit system inertia).

C2. With-load accelerating performance testing in heavy-load status, accelerate the motor to the rated rotor speed according to the acceleration time.
- If the motor rotor speed cannot follow the acceleration time, and the response is too slow, increase Pr.11-04 (ASR2 high-speed bandwidth) and Pr.11-03 (ASR1 low-speed bandwidth); if the response speed is still not enough, increase \(10 \%\) of the per-unit system inertia for Pr.11-01 each time.
- If an excessive acceleration causes an oscillation or ocA error, decrease Pr.11-04 (ASR2 high-speed bandwidth) and Pr.11-03 (ASR1 low-speed bandwidth).
- PM FOCPG adjustment parameters

Refer to Section 12-1 "Description of Parameter Settings" for detailed information.
\begin{tabular}{|c|l|c|c|c|c|}
\hline Parameter & \multicolumn{1}{|c|}{ Description } & Unit & Default & \begin{tabular}{c}
Setting \\
Range
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Encoder Setting Parameters } \\
\hline Pr.10-00 & Encoder type selection & \(\mathrm{N} / \mathrm{A}\) & 0 & \(0-5\) \\
\hline Pr.10-01 & Encoder pulses per revolution & ppr & 600 & \(1-20000\) \\
\hline Pr.10-02 & Encoder input type setting & \(\mathrm{N} / \mathrm{A}\) & 0 & \(0-5\) \\
\hline \multicolumn{5}{|c|}{ Motor Performance Control Parameters } \\
\hline Pr.11-00 & System control & bit & 0 & \(0-8\) \\
\hline Pr.11-01 & Per-unit of system inertia & \(\mathrm{N} / \mathrm{A}\) & 256 & \(1-65535\) \\
\hline Pr.11-02 & ASR1 / ASR2 switch frequency & Hz & 7 & \(5.00-599\) \\
\hline Pr.11-03 & ASR1 low-speed bandwidth & Hz & 10 & \begin{tabular}{c}
\(1-100(\mathrm{PM})\) \\
\(1-40(\mathrm{IM})\)
\end{tabular} \\
\hline Pr.11-04 & ASR2 high-speed bandwidth & Hz & 10 & \begin{tabular}{c}
\(1-100(\mathrm{PM})\) \\
\(1-40(\mathrm{IM})\)
\end{tabular} \\
\hline Pr.11-05 & Zero-speed bandwidth & Hz & 10 & \begin{tabular}{c}
\(1-100(\mathrm{PM})\) \\
\(1-40(\mathrm{iM})\)
\end{tabular} \\
\hline
\end{tabular}

12-2-3 Induction Motor, Sensorless Field-Oriented Control Adjustment Procedure (IMFOC Sensorless, Pr.00-11=5)
- Control diagram

- Adjustment procedure

© Advanced settings
Parameter adjustment for common problems
Pr.10-25 FOC bandwidth of speed observer
Pr.11-01 per-unit value of inertia

[1] Basic motor parameters adjustment
1. Parameter reset:

Reset Pr.00-02 = \(9(50 \mathrm{~Hz})\) or \(10(60 \mathrm{~Hz})\) to the default value.
2. Select PM motor type:

Pr.05-33 = 0 (IM)
3. Motor nameplate parameter setting:
\begin{tabular}{|c|l|}
\hline Parameter & \multicolumn{1}{|c|}{ Description } \\
\hline Pr.01-01 & Rated frequency (Hz) \\
\hline Pr.01-02 & Rated voltage (\(\mathrm{V}_{\mathrm{AC}}\)) \\
\hline Pr.05-01 & Full-load current for induction motor 1 (A) \\
\hline Pr.05-02 & Rated power for induction motor 1 (kW) \\
\hline Pr.05-03 & Rated speed for induction motor 1 (rpm) \\
\hline Pr.05-04 & Number of poles for induction motor 1 (poles) \\
\hline
\end{tabular}
4. Press RUN to start auto-tuning of IM magnetic flux curve dynamic test for Pr.05-00 = 1 or 6 (motor is running). Make sure the motor executes auto-tuning under break-away load condition. Check if there are motor parameters after auto-tuning.
\begin{tabular}{|c|l|}
\hline Parameter & \multicolumn{1}{|c|}{ Description } \\
\hline Pr.05-06 & Stator resistance (Rs) for induction motor \(1(\Omega)\) \\
\hline Pr.05-07 & Rotor resistance (Rr) for induction motor \(1(\Omega)\) \\
\hline Pr.05-08 & Magnetizing inductance (Lm) for induction motor 1 \((\mathrm{mH})\) \\
\hline Pr.05-09 & Stator inductance (Lx) for induction motor \(1(\mathrm{mH})\) \\
\hline
\end{tabular}

If an auto-tuning error (AUE) occurs, refer to Chapter 14 "Fault Codes and Descriptions" for further treatment.
\begin{tabular}{|c|l|}
\hline AUE Error (code) & \multicolumn{1}{|c|}{ Description } \\
\hline AUE (40) & Auto-tuning error \\
\hline AUE1 (142) & Auto-tuning error 1 (No feedback current error) \\
\hline AUE2 (143) & Auto-tuning error 2 (Motor phase loss error) \\
\hline AUE3 (144) & Auto-tuning error 3 (No-load current I I measuring error) \\
\hline AUE4 (148) & Auto-tuning error 4 (Leakage inductance Lsigma measuring error) \\
\hline
\end{tabular}
5. Execute inertia estimation for \(I M\) (optional), press RUN key to start the process.

Set Pr.00-10=2, torque mode
Set Pr.00-13=2, IM TQC sensorless
Set Pr.05-00=12, FOC sensorless inertia estimation
Check if the estimated value for Pr.11-01 is reasonable (refer to the explanation of Pr.11-00) when the inertia estimation process is finished, the base value table of inertia is as below (unit: \(\mathrm{kg}-\mathrm{cm}^{2}\)).
\begin{tabular}{|c|c|}
\hline HP & Inertia \\
\hline 1 & 0.00023 \\
\hline 2 & 0.00043 \\
\hline 3 & 0.00083 \\
\hline 5 & 0.00148 \\
\hline 7.5 & 0.0026 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline HP & Inertia \\
\hline 10 & 0.00358 \\
\hline 15 & 0.00743 \\
\hline 20 & 0.00953 \\
\hline 25 & 0.01428 \\
\hline 30 & 0.01765 \\
\hline
\end{tabular}
6. Execute IMFOC Sensorless mode, set up the following parameters:

Set Pr. 00-10=0, speed mode
Set Pr.00-11=5, IMFOC Sensorless
Set Pr.11-00 bit0 =1, use ASR gain auto-tuning
Press RUN key and start the no load test. Accelerate the motor to the rated speed, and then decelerate to stop, check if the motor runs smoothly.
> If the motor runs smoothly, then the setting for IMFOC Sensorless is completed.
> If the motor does not run smoothly or fails to start at low frequency, then refer to the following steps for adjustment.
7. Select auto-tuning gain (Pr.11-00 bit0=1), adjust ASR parameters according to the speed response.

Set Pr.11-00 bit0 \(=1\), use auto-tuning for ASR
Set Pr.11-03 ASR1 low-speed bandwidth (When the acceleration of low-speed cannot follow the acceleration command, increase the low-speed bandwidth)
Set Pr.11-04 ASR2 high-speed bandwidth (When the acceleration in high speed causes vibration or cannot follow the acceleration command, increase high-speed bandwidth)
Set Pr.11-05 Zero-speed bandwidth (If the response of start-up is slow or incapable, increase zero-speed bandwidth)
\(>\) The bigger the setting value for ASR bandwidth, the faster the response.
\(>\) The low-speed bandwidth cannot be set too high, or the observer will diverge.

8. Adjust the setting of FOC speed observer and per-unit value of inertia (common problems)
> Pr.10-25: Set up FOC bandwidth of speed observer
Situation 1. Speed command changes rapidly, but speed response cannot follow.
(Speed response is too slow \(\rightarrow\) Increase the setting value)
Situation 2. The noise of the observer is too large, and causes the operation diverged. (Speed noise is too large \(\rightarrow\) Decrease)
\(>\) Pr.11-01: Set up per unit of system inertia
Situation 1. The inrush current is too high at start-up, and causes an oc error.
Situation 2. An ocn error occurs during RUN or STOP, and the motor runs randomly.
a. Check Pr.11-01 whether the JM per-unit of system inertia is too large.
b.Decrease Pr.10-25 FOC bandwidth for speed observer or Pr.11-05 zero-speed bandwidth.
- IMFOC Sensorless adjustment parameters

Refer to Section 12-1 Description of Parameter Settings for more details
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter & Description & Unit & Default & Settings \\
\hline 00-11 & Speed control mode & & 0 & 0-7 \\
\hline 01-01 & Rated frequency (Hz) & Hz & \[
\begin{gathered}
60.00 / \\
50.00
\end{gathered}
\] & 0.00-599.00 \\
\hline 01-02 & Rated voltage (\(\mathrm{V}_{\mathrm{AC}}\)) & V & Depending
on the
model
power & Depending on the model power \\
\hline 05-00 & Motor parameter auto-tuning & & 0 & 0-13 \\
\hline 05-02 & Rated power for induction motor
\[
1 \text { (kW) }
\] & kW & \[
\begin{aligned}
& \text { Depending } \\
& \text { on the } \\
& \text { model } \\
& \text { power } \\
& \hline
\end{aligned}
\] & 0.00-655.35 \\
\hline 05-03 & Rated speed for induction motor 1 (rpm) & rpm & Depending on the motor's number of poles & \begin{tabular}{l}
\(0-x x x x\) \\
(Depending on the motor's number of poles)
\end{tabular} \\
\hline 05-04 & Number of poles for induction motor 1 (poles) & & 4 & 2-64 \\
\hline 05-05 & No-load current for induction motor 1 (A) & & Depending on the model power & 0.00-Pr.05-01 default \\
\hline 05-06 & Stator resistance (Rs) for induction motor 1 (\(\Omega\)) & \(\Omega\) & Depending on the model power & 0.000-65.535 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|c|c|}
\hline Parameter & \multicolumn{1}{|c|}{ Description } & Unit & Default & Settings \\
\hline \(05-07\) & \begin{tabular}{l}
Rotor resistance (Rr) for induction \\
motor 1 \((\Omega)\)
\end{tabular} & \(\Omega\) & 0.000 & \(0.000-65.535\) \\
\hline \(05-08\) & \begin{tabular}{l}
Magnetizing inductance (Lm) for \\
induction motor 1 (mH)
\end{tabular} & mH & 0.0 & \(0.0-6553.5\) \\
\hline \(05-09\) & \begin{tabular}{l}
Stator inductance (Lx) for induction \\
motor 1 (mH)
\end{tabular} & mH & 0.0 & \(0.0-6553.5\) \\
\hline \(10-25\) & \begin{tabular}{l}
FOC bandwidth for speed \\
observer
\end{tabular} & Hz & 40.0 & \(20.0-100.0\) \\
\hline \(11-00\) & System control & & 513 & \(0-65535\) \\
\hline \(11-01\) & Per unit of system inertia & pu & 256 & \(1-65535\)
\end{tabular}\(|\)\begin{tabular}{cccc|}
\hline \(11-02\) & ASR1 / ASR2 switch frequency & Hz & 7.00 \\
\hline \(11-03\) & ASR1 low-speed bandwidth & Hz & 10 \\
\hline \(11-04\) & ASR2 high-speed bandwidth & Hz & 10 \\
\(1-100 \mathrm{~Hz}(\mathrm{IM}) /\) \\
\hline \(11-05\) & Zero-speed bandwidth & Hz & 10
\end{tabular}

12-2-4 Interior Permanent-Magnet Synchrounous, Sensorless Fieled-Oriented Control Adjustment Procedure (IPM Sensorless, Pr.00-11=7)
- Control diagram

* IPM Sensorless FOC control is the control method dedicated for IPM, it uses the high salient pole characteristic (\(\mathrm{Lq}>\mathrm{Ld}\)) of IPM to detect the positions of NS magnetic poles. By doing this, it calculates the motor's rotor position at low-speed frequency.
- IPM Sensorless adjustment procedure
(The number marked on the procedure corresponds to the number of following adjustment explanations)
I. IPM Sensorless adjustment flowchart

2. Pr.05-33 Motor type=2 (IPM)

FOC Sensorless control (For IPM motor)
3. Motor Parameter Setting

Pr.01-01 Rated Frequency
Pr.01-02 Rated Voltage
Pr.05-34 Full-load Current
Pr.05-35 Rated Power
Pr.05-36 Rated Rotor Speed
Pr.05-37 Motor Poles

4. Motor Parameter Auto-Tuning Pr.05-00=5
(PM parameters dynamic measuring) Or Pr.05-00=13
(PM parameters static measuring)
Press 'RUN'
1. AUE auto-tuning error
2. Measured resistance, inductance or back EMF error

Check Motor Parameters Pr.05-39 Rs stator resistance Pr.05-40 Permanent magnet Pr.05-41 Permanent magnet motor Lq Pr.05-43 Ke parameter

PM FOC Sensorless Control The initial angle is only detected by " 2 " high frequency injection, and cannot be changed.
8. No-load

Running

Basic motor parameters adjustment
1. Parameter reset:

Reset Pr.00-02=9 (50Hz) or \(10(60 \mathrm{~Hz})\) to the default value.
2. Select IPM motor type:

Pr.05-33=2 (IPM)
3. Motor nameplate parameter setting:
\begin{tabular}{|c|l|}
\hline Parameter & \multicolumn{1}{|c|}{ Description } \\
\hline Pr.01-01 & Rated frequency (Hz) \\
\hline Pr.01-02 & Rated voltage (V AC) \\
\hline Pr.05-33 & PM motor type (IPM or SPM) \\
\hline Pr.05-34 & Rated current (A) \\
\hline Pr.05-35 & Rated power (kW) \\
\hline Pr.05-36 & Rated rotor speed (RPM) \\
\hline Pr.05-37 & Number of poles for the motor (poles) \\
\hline
\end{tabular}
4. PM parameter auto-tuning:

Set Pr.05-00 = 5 (rolling auto-tuning for PM, with no load) or 13 (static auto-tuning for PM) and press RUN key to finish motor auto-tuning, then you will get the following parameters:
\begin{tabular}{|c|l|}
\hline Parameter & \multicolumn{1}{c|}{ Description } \\
\hline Pr.05-39 & Stator resistance for a permanent magnet motor \((\Omega)\) \\
\hline Pr.05-40 & Permanent magnet motor Ld \((\mathrm{mH})\) \\
\hline Pr.05-41 & Permanent magnet motor \(\mathrm{Lq}(\mathrm{mH})\) \\
\hline Pr.05-43 & \begin{tabular}{l}
Ke parameter of a permanent magnet motor \(\left(\mathrm{V}_{\text {phase }}\right.\). ms \(\left./ \mathrm{krpm}\right)\) \\
(When Pr.05-00 \(=5\), the Ke parameter is measured based on the actual \\
motor rotation.) \\
(When Pr.05-00=13, the Ke parameter is automatically calculated \\
based on the motor power, current and rotor speed.)
\end{tabular} \\
\hline
\end{tabular}

If an auto-tuning error (AUE) occurs, refer to Chapter 14 "Error Codes and Descriptions" for further treatment.
\begin{tabular}{|c|l|}
\hline AUE Error (code) & \multicolumn{1}{|c|}{ Description } \\
\hline AUE (40) & Auto-tuning error \\
\hline AUE1 (142) & Auto-tuning error 1 (No feedback current error) \\
\hline AUE2 (143) & Auto-tuning error 2 (Motor phase loss error) \\
\hline AUE3 (144) & Auto-tuning error 3 (No-load current Io measuring error) \\
\hline AUE4 (148) & \begin{tabular}{l}
Auto-tuning error 4 (Leakage inductance Lsigma measuring \\
error)
\end{tabular} \\
\hline
\end{tabular}
5. Set control mode

Control mode for the drive: Pr. 00-10 = 0: Speed mode
Control mode for the motor: Pr. 00-11 = 7: Interior PM FOC Sensorless
6. After auto-tuning, cycle the power.
7. Measure the initial magnetic pole angle of PM

When Pr.00-11=7 PM FOC Sensoreless mode, the initial magnetic pole angle detection method is high frequency injection.
II. IPM Sensorless adjustment flowchart for operation without load / with light load

(1) No-load / light-load operation adjustment
8. Start the motor with no-load
(a) Set Pr.11-00 \(=1\) Auto-tuning for ASR and APR
(b) Start the motor without load, and operates the motor to \(1 / 2\) of rated rotor speed
a. If the start direction is wrong, starting rotation is not smooth (ocA) or the motor salient ratio (Lq / Ld) is low, increase Pr. 10-52 (injection magnitude) and Pr. 10-42 (initial angel detection pulse value) to improve the accuracy of the angle detection.
b. If Pr. 10-51 (injection frequency) is close to the rated motor frequency (Pr. 01-01), then increase Pr.10-51 to avoid the angle detection difference caused by motor rated frequency.
9. Acceleration test with no load / light load

A1. Accelerate to rated frequency and observe if the motor operates stably.
a. If the motor output rotor speed presents periodic low-frequency wave, increase Pr. 11-04 (ASR2 high-speed bandwidth), or increase Pr. 10-32 (PM FOC sensorless speed estimator bandwidth).
b. If the output frequency reflects high-frequency vibration, decrease Pr.11-04 or decrease Pr.10-32.

A2. Accelerate the motor to the maximum frequency, and observe if it operates stably.
If the motor stalls when accelerating to the maximum rotor speed, increase Pr.10-32 (PM FOC sensoress speed estimator bandwidth) and Pr.10-34 (PM sensorless speed estimator low-pass filter gain).

Setting curve for speed regulator (ASR) and related parameters:

ASR adjustment- auto gain
\begin{tabular}{|c|l|c|}
\hline Parameter & \multicolumn{1}{|c|}{ Description } & Default \\
\hline Pr.11-00 & System control & 0 \\
\hline Pr.11-01 & Per unit of system inertia & 256 \\
\hline Pr.11-02 & \begin{tabular}{l}
ASR1 / ASR2 switch frequency \\
(it is suggested to set the switch \\
frequency higher than Pr.10-39)
\end{tabular} & 7 Hz \\
\hline Pr.11-03 & ASR1 low-speed bandwidth & 10 Hz \\
\hline Pr.11-04 & ASR2 high-speed bandwidth & 10 Hz \\
\hline Pr.11-05 & Zero-speed bandwidth & 10 Hz \\
\hline
\end{tabular}
III. IPM Sensorless adjustment flowchart for operation starts with load

[1] Load operation adjustment
1. Load operating test

B1. Low-frequency loading performance, when the switch frequency is below Pr.10-39:
a. When the low-frequency cannot start the motor with load, or the rotor speed is not smooth, increase Pr.11-03 (ASR1 low-speed bandwidth) or Pr.11-01 (per-unit of system inertia); if the above adjustment cannot meet the requirement, then increase Pr.10-32 (PM FOC sensorless speed estimator bandwidth).
b. When frequency outputs, low-frequency operating current is large or an oc error occurs, decrease Pr.11-03 and Pr.11-01; or decrease Pr.10-32.
B2. Acceleration performance test under heavy-load status, accelerate the motor to rated rotor speed according to the acceleration time:
a. If the motor cannot follow the acceleration time, and the response is too slow, increase Pr.11-04 (ASR2 high-speed bandwidth) and Pr.11-03 (ASR1 low-speed bandwidth).
b. If an excessive acceleration causes vibration or ocA error, decrease Pr.11-04 and Pr.1103.
2. Stability test at constant speed operation: if the motor operates stably at constant speed
a. If the motor output rotor speed presents periodic low-frequency wave, increase Pr. 10-34 (PM sensorless speed estimator low-pass filter gain), or increase Pr. 10-32 (PM FOC sensorless speed estimator bandwidth).
b. If the output frequency reflects high-frequency vibration, decrease Pr. 10-34 or decrease Pr. 10-32.
- IPM Sensorless adjustment parameters

Refer to Section 12-1 Description of Parameter Settings for more details.
\begin{tabular}{|c|c|c|c|c|}
\hline Parameter & Description & Unit & Default & Setting Range \\
\hline Pr.10-32 & PM FOC sensorless speed estimator bandwidth & Hz & 5.00 & 0.00-600 \\
\hline Pr.10-34 & PM sensorless speed estimator bandwidth & N/A & 1.00 & 0.00-655.35 \\
\hline Pr.10-35 & AMR (Kp) gain & N/A & 1.00 & 0.00-3.00 \\
\hline Pr.10-36 & AMR (Ki) gain & N/A & 0.20 & 0.00-3.00 \\
\hline Pr.10-39 & Frequency point to switch from I/F mode to PM sensorless mode & Hz & 20.00 & 0.00-599 \\
\hline Pr.10-40 & Frequency point to switch from PM sensorless mode to V/F mode & Hz & 20.00 & 0.00-599 \\
\hline Pr. 10-42 & Initial angle detection pulse value & N/A & 1.0 & 0.0-3.0 \\
\hline \multicolumn{5}{|c|}{Initial Angle Estimating Parameters} \\
\hline Pr.10-51 & Injection frequency (for IPM) & Hz & 500 & 0-1200 \\
\hline Pr.10-52 & Injection magnitude (for IPM) & V & \[
\begin{gathered}
15.0 / \\
30.0
\end{gathered}
\] & 0.0-200.0 \\
\hline Pr.10-53 & PM initial rotor position detection method & N/A & 0 & 0-3 \\
\hline \multicolumn{5}{|c|}{Motor Performance Control Parameters} \\
\hline Pr.11-00 & System control & bit & 0 & 0-7 \\
\hline Pr.11-02 & ASR1 / ASR2 switch frequency & Hz & 7 & 5.00-599 \\
\hline Pr.11-03 & ASR1 low-speed bandwidth & Hz & 10 & \[
\begin{gathered}
\hline 1-100(\mathrm{PM}) \\
1-40(\mathrm{IM}) \\
\hline
\end{gathered}
\] \\
\hline Pr.11-04 & ASR2 high-speed bandwidth & Hz & 10 & \[
\begin{gathered}
1-100(\mathrm{PM}) \\
1-40(\mathrm{IM}) \\
\hline
\end{gathered}
\] \\
\hline Pr.11-05 & Zero-speed bandwidth & Hz & 10 & \[
\begin{gathered}
\hline 1-100(\mathrm{PM}) \\
1-40(\mathrm{IM}) \\
\hline
\end{gathered}
\] \\
\hline
\end{tabular}
[This page intentionally left blank]

\section*{Chapter 13 Warning Codes}

\section*{Summary of Warning Codes}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Warning Name & ID No. & Warning Name \\
\hline 0 & No record & 46 & CANopen format error (CPtn) \\
\hline 1 & Communication error 1 (CE1) & 50 & PLC opposite defect (PLod) \\
\hline 2 & Communication error 2 (CE2) & 51 & PLC save memory error (PLSv) \\
\hline 3 & Communication error 3 (CE3) & 52 & Data defect (PLdA) \\
\hline 4 & Communication error 4 (CE4) & 53 & Function defect (PLFn) \\
\hline 5 & Communication error 10 (CE10) & 54 & PLC buffer overflow (PLor) \\
\hline 7 & Save error 1 (SE1) & 55 & Function defect (PLFF) \\
\hline 8 & Save error 2 (SE2) & 56 & Checksum error (PLSn) \\
\hline 9 & IGBT overheating warning (oH1) & 57 & No end command (PLEd) \\
\hline 11 & PID feedback error (PID) & 58 & PLC MCR error (PLCr) \\
\hline 12 & ACl analog signal loss (AnL) & 59 & PLC download fail (PLdF) \\
\hline 13 & Under current (uC) & 60 & PLC scan time fail (PLSF) \\
\hline 15 & PG feedback warning (PGFb) & 70 & ExCom ID fail (ECid) \\
\hline 17 & Over speed warning (oSPd) & 71 & ExCom power loss (ECLv) \\
\hline 18 & Speed deviation warning (dAvE) & 72 & ExCom test mode (ECtt) \\
\hline 19 & Phase loss (PHL) & 73 & ExCom BUS off (ECbF) \\
\hline 20 & Over-torque 1 (ot1) & 74 & ExCom no power (ECnP) \\
\hline 21 & Over-torque 2 (ot2) & 75 & ExCom factory defect (ECFF) \\
\hline 22 & Motor overheating (oH3) PTC / PT100 & 76 & ExCom inner error (ECiF) \\
\hline 24 & Over slip warning (oSL) & 78 & ExCom Parameter data error (ECPP) \\
\hline 25 & Auto tuning (tUn) & 79 & ExCom configuration data error (ECPi) \\
\hline 28 & Output phase loss (OPHL) & 80 & Ethernet link fail (ECEF) \\
\hline 30 & Copy model error (SE3) & 81 & Communication time-out (ECto) \\
\hline 31 & Over-torque 3 (ot3) & 82 & Checksum error (ECCS) \\
\hline 32 & Over-torque 4 (ot4) & 83 & Return defect (ECrF) \\
\hline 36 & CANopen guarding time-out (CGdn) & 84 & Modbus TCP over (EcoO) \\
\hline 37 & CANopen heartbeat error (CHbn) & 85 & EtherNet/IP over (ECo1) \\
\hline 39 & CANopen BUS off error (CbFn) & 86 & IP fail (ECiP) \\
\hline 40 & CANopen index error (Cldn) & 87 & Mail fail (EC3F) \\
\hline 41 & CANopen station address error (CAdn) & 88 & ExCom busy (ECbY) \\
\hline 42 & CANopen memory error (CFrn) & 89 & ExCom card break (ECCb) \\
\hline 43 & CANopen SDO time-out (CSdn) & 90 & Copy PLC: password error (CPLP) \\
\hline 44 & CANopen SDO receives register overflow (CSbn) & 91 & Copy PLC: Read mode error (CPL0) \\
\hline 45 & CANopen start-up error warning (Cbtn) & 92 & Copy PLC: Write mode (CPL1) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Warning Name } & ID No. & \multicolumn{1}{c|}{ Warning Name } \\
\hline 93 & Copy PLC: version error (CPLv) & 96 & Copy PLC: time-out (CPLt) \\
\hline 94 & Copy PLC: size error (CPLS) & 101 & InrCOM time-out (ictn) \\
\hline 95 & Copy PLC: PLC function (CPLF) & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 2 & [-7 & Communication error
\[
2 \text { (CE2) }
\] & RS-485 Modbus illegal data address (00-254 H) \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When the input data address is incorrect.} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately} \\
\hline \multicolumn{2}{|l|}{Warning treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{\begin{tabular}{l}
"Warning" occurs when Pr.09-02=0 and the motor drive keeps running. \\
The drive resets automatically when receiving the correct data address.
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately reset} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Incorrect communication command from the upper unit} & \multicolumn{2}{|l|}{Check if the communication command is correct.} \\
\hline \multicolumn{2}{|l|}{Malfunction caused by interference} & \multicolumn{2}{|l|}{Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.} \\
\hline \multicolumn{2}{|l|}{Different communication setting from the upper unit} & \multicolumn{2}{|l|}{Check if the setting for Pr.09-04 is the same as the setting for the upper unit.} \\
\hline \multicolumn{2}{|l|}{Disconnection or bad connection of the cable} & \multicolumn{2}{|l|}{Check the cable and replace it if necessary.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 3 & [5 & Communication error
\[
3 \text { (CE3) }
\] & RS-485 Modbus illegal data value \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When the length of communication data is too long.} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately} \\
\hline Warnin & ment parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{"Warning" occurs when Pr.09-02=0 and the motor drive keeps running. The drive resets automatically when receiving the correct communication data value.} \\
\hline & condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & ecord & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Incorre comma & \begin{tabular}{l}
munication \\
the upper unit
\end{tabular} & \multicolumn{2}{|l|}{Check if the communication command is correct.} \\
\hline \begin{tabular}{l}
Malfun \\
interfer
\end{tabular} & used by & \multicolumn{2}{|l|}{Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.} \\
\hline Differe from th & munication setting unit & \multicolumn{2}{|l|}{Check if the setting for Pr.09-04 is the same as the setting for the upper unit.} \\
\hline Discon connec & or bad the cable & \multicolumn{2}{|l|}{Check the cable and replace it if necessary.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 4 & F- \% & Communication error
\[
4 \text { (CE4) }
\] & RS-485 Modbus data is written to read-only address. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When the data is written to read-only address.} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately} \\
\hline \multicolumn{2}{|l|}{Warning treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{"Warning" occurs when Pr.09-02=0 and the motor drive keeps running. The drive resets automatically when receiving the correct written address of communication data.} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately reset} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Incorrect communication command from the upper unit} & \multicolumn{2}{|l|}{Check if the communication command is correct.} \\
\hline \multicolumn{2}{|l|}{Malfunction caused by interference} & \multicolumn{2}{|l|}{Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.} \\
\hline \multicolumn{2}{|l|}{Different communication setting from the upper unit} & \multicolumn{2}{|l|}{Check if the setting for Pr.09-04 is the same as the setting for the upper unit.} \\
\hline \multicolumn{2}{|l|}{Disconnection or bad connection of the cable} & \multicolumn{2}{|l|}{Check the cable and replace it if necessary.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 7 & [& Save error 1 (SE1) & Keypad COPY error 1: Keypad copy time-out \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & on level & \multicolumn{2}{|l|}{"SE1" warning occurs when the keypad does not transmit the COPY command to the drive, and does not transmit any data to the drive again in 10 ms at the time you copy the parameters to the drive.} \\
\hline & on time & \multicolumn{2}{|l|}{10 ms} \\
\hline Warn & ting parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & cord & \multicolumn{2}{|l|}{N/A} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Commu error & connection & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SE1: The causes of error are mostly communication problems between the keypad and control board. Potential causes include communication signal interference and the unacceptable communication command to the Slave.}} \\
\hline \multicolumn{2}{|l|}{Keypad error} & & \\
\hline Control & error & \multicolumn{2}{|l|}{Check if the error occurs randomly, or only occurs when copying certain parameters (the error displays on the upper right corner of the copy page). If you cannot clear the error, please contact Delta.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 9 & -1 & IGBT over-heating warning (oH1) & The AC motor drive detects over-heating of IGBT, and over the protection level of oH1 warning. (When Pr.06-15 is higher than the IGBT overheating level, the drive shows oH1 error without displaying oH1 warning.) \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Pr.06-15} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{"oH1" warning occurs when IGBT temperature is higher than Pr.06-15 setting value.} \\
\hline Warnin & ment parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{Auto-reset} \\
\hline & condition & \multicolumn{2}{|l|}{The drive auto-resets when IGBT temperature is lower than oH1 warning level minus (-) \(5^{\circ} \mathrm{C}\).} \\
\hline & cord & \multicolumn{2}{|l|}{N/A} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \begin{tabular}{l}
Check \\
temper \\
inside \\
or if the \\
ventilati \\
cabinet
\end{tabular} & bient temperature et is too high, struction in the of the control & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Check the ambient temperature. \\
2. Regularly inspect the ventilation hole of the control cabinet. \\
3. Change the installed place if there are heating objects, such as braking resistors, in the surroundings. \\
4. Install / add cooling fan or air conditioner to lower the temperature inside the cabinet.
\end{tabular}} \\
\hline \begin{tabular}{l}
Check \\
obstruc \\
if the fan
\end{tabular} & \begin{tabular}{l}
s any \\
the heat sink or ning.
\end{tabular} & \multicolumn{2}{|l|}{Remove the obstruction or replace the cooling fan.} \\
\hline Insuffic & tilation space & \multicolumn{2}{|l|}{Increase ventilation space of the drive.} \\
\hline \begin{tabular}{l}
Check \\
corresp
\end{tabular} & ve matches the oading. & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Decrease the loading. \\
2. Decrease the carrier. \\
3. Replace with a drive with larger capacity.
\end{tabular}} \\
\hline The drive more th output & un \(100 \%\) or \(\%\) of the rated g time. & \multicolumn{2}{|l|}{Replace with a drive with larger capacity.} \\
\hline
\end{tabular}
oH1 warning level
\begin{tabular}{|c|c|c|c|}
\hline Voltage & \begin{tabular}{l}
Model \\
(NOTE: \(\mathrm{x}=\mathrm{A}\) or E)
\end{tabular} & \(\mathrm{oH} 1\left({ }^{\circ} \mathrm{C}\right)\) & oH warning oH 1 warning \(=\operatorname{Pr} .06-15\left({ }^{\circ} \mathrm{C}\right)\) \\
\hline \multirow[b]{3}{*}{Single-phase
_115V} & VFD1A6MH11xabAa & 95 & \multirow{8}{*}{oH 1 warning \(=\mathrm{oH} 1-5\)} \\
\hline & VFD2A5MH11xabAa & 100 & \\
\hline & VFD5A0MH11xanAa & 100 & \\
\hline \multirow{5}{*}{Single-phase
_230V} & VFD1A6MH21xamAa & 110 & \\
\hline & VFD2A8MH21xabA■ & 110 & \\
\hline & VFD5A0MH21xanA■ & 110 & \\
\hline & VFD7A5MH21x \(\square\) A \(\square\) & 110 & \\
\hline & VFD11AMH21xanA■ & 110 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Voltage & \begin{tabular}{l}
Model \\
（NOTE：\(x=A\) or E）
\end{tabular} & oH1（ \({ }^{\circ} \mathrm{C}\) ） & oH warning oH 1 warning \(=\operatorname{Pr} .06-15\left({ }^{\circ} \mathrm{C}\right)\) \\
\hline \multirow{14}{*}{Three－phase
_230V} & VFD1A6MH23xロaAロ & 95 & \multirow{31}{*}{oH 1 warning \(=\mathrm{oH} 1-5\)} \\
\hline & VFD2A8MH23xanA & 100 & \\
\hline & VFD5A0MH23xロaAロ & 105 & \\
\hline & VFD7A5MH23xロaAロ & 110 & \\
\hline & VFD11AMH23xanA & 100 & \\
\hline & VFD17AMH23xanA & 105 & \\
\hline & VFD25AMH23xロaAロ & 105 & \\
\hline & VFD33AMH23xロaAロ & 115 & \\
\hline & VFD49AMH23xana & 115 & \\
\hline & VFD65AMH23xanAロ & 115 & \\
\hline & VFD75AMH23xロaAロ & 95 & \\
\hline & VFD90AMH23xロaf & 95 & \\
\hline & VFD120MH23xロaAם & 95 & \\
\hline & VFD146MH23xロaAם & 95 & \\
\hline \multirow{17}{*}{Three－phase
_460V} & VFD1A5MH43xロaAロ & 105 & \\
\hline & VFD3A0MH43xanAロ & 110 & \\
\hline & VFD4A2MH43xロロAロ & 110 & \\
\hline & VFD5A7MH43xロaAロ & 95 & \\
\hline & VFD7A3MH43xロaAロ & 100 & \\
\hline & VFD9A0MH43xロaAロ & 115 & \\
\hline & VFD13AMH43xロaAロ & 105 & \\
\hline & VFD17AMH43xanAロ & 110 & \\
\hline & VFD25AMH43xロaAロ & 115 & \\
\hline & VFD32AMH43xロaAロ & 115 & \\
\hline & VFD38AMH43xanAロ & 110 & \\
\hline & VFD45AMH43xロaAロ & 115 & \\
\hline & VFD60AMH43xanAロ & 95 & \\
\hline & VFD75AMH43xロaAロ & 95 & \\
\hline & VFD91AMH43xロaAロ & 95 & \\
\hline & VFD112MH43xロロAロ & 95 & \\
\hline & VFD150MH43xロロAロ & 95 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 11 & \(\left[\begin{array}{ll}71 \\ \hline 1\end{array}\right.\) & PID feedback error (PID) & PID feedback loss (warning for analog feedback signal; works only when PID enables) \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When the analog input is lower than 4 mA (only detects analog input 4 20 mA).} \\
\hline & on time & \multicolumn{2}{|l|}{Pr.08-08} \\
\hline \multicolumn{2}{|l|}{Warning treatment parameter} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.08-09 \\
0: Warn and keep operation \\
1: Fault and ramp to stop \\
2: Fault and coast to stop \\
3: Warn and operate at last frequency
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Reset method}} & Auto \begin{tabular}{l|l}
"Warning" \\
automatically \\
mA.
\end{tabular} & occurs when Pr.08-09=0 or 3. The "Warning" clears when the feedback signal is larger than 4 \\
\hline & & \multicolumn{2}{|l|}{Manual "Error" occurs when Pr.08-09=1 or 2. You must reset manually.} \\
\hline & condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & cord & \multicolumn{2}{|l|}{\begin{tabular}{l}
Records when Pr.08-09=1 or 2 ("Error"). \\
Does not record when Pr.08-09=0 or 3 ("Warning").
\end{tabular}} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Loose or broken PID feedback wiring} & \multicolumn{2}{|l|}{Tighten the terminals again. Replace with a new cable.} \\
\hline \multicolumn{2}{|l|}{Feedback device malfunction} & \multicolumn{2}{|l|}{Replace with a new feedback device.} \\
\hline \multicolumn{2}{|l|}{Hardware error} & \multicolumn{2}{|l|}{If the PID error still occurs after checking all the wiring, send the drive back to the factory for repair.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 12 & & ACl analog signal loss (AnL) & Analog input current loss (including all analog 4-20 mA signals) \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When the analog input is lower than 4 mA (only detects analog input 420 mA)} \\
\hline & n time & \multicolumn{2}{|l|}{Immediately act} \\
\hline Warn & nt parameter & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.03-19 \\
0 : Disable \\
1: Continue operation at the last frequency (warning, the keypad displays "AnL") \\
2: Decelerate to 0 Hz (warning, the keypad displays "AnL") \\
3: Stop immediately and display "ACE"
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Reset method}} & Auto \begin{tabular}{l|l}
"Warning" \\
automatical \\
& 4 mA.
\end{tabular} & occurs when Pr.03-19=1 or 2. The "Warning y clears when the analog input signal is larger than \\
\hline & & \multicolumn{2}{|l|}{Manual "Error" occurs when Pr.03-19=3. You must reset manually.} \\
\hline & condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & cord & \multicolumn{2}{|l|}{Does not record when Pr.03-19=1 or 2 ("Warning").} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Loose or broken ACI wiring} & \multicolumn{2}{|l|}{Tighten the terminals again. Replace with a new cable.} \\
\hline \multicolumn{2}{|l|}{External device error} & \multicolumn{2}{|l|}{Replace with a new device.} \\
\hline \multicolumn{2}{|l|}{Hardware error} & \multicolumn{2}{|l|}{If the AnL error still occurs after checking all the wiring, send the drive back to the factory for repair.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Warning Name } & Description \\
\hline \multirow{2}{*}{13} & \multicolumn{2}{|c|}{ Action and Reset } \\
\hline \multicolumn{2}{|c|}{ Action condition } & Under current (uC) & Low current
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 15 & Brop & PG feedback warning (PGFb) & PG feedback error warning \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & Action level & \multicolumn{2}{|l|}{Motor runs in a reverse direction to the direction of frequency command} \\
\hline & Action time & \multicolumn{2}{|l|}{Pr. 10-09} \\
\hline War & g setting parameter & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr. 10-08=0 \\
0 : Warn and operation continue \\
1: Fault and ramp to stop \\
2: Fault and coast to stop
\end{tabular}} \\
\hline & Reset method & \multicolumn{2}{|l|}{Auto-reset} \\
\hline & Reset condition & \multicolumn{2}{|l|}{"Warning" automatically clears when the drive stops} \\
\hline & Record & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \begin{tabular}{l}
Incorrect \\
setting
\end{tabular} & encoder parameter & \multicolumn{2}{|l|}{Reset encoder parameter (Pr.10-02).} \\
\hline \begin{tabular}{l}
Check if \\
encode
\end{tabular} & f the connection of is loss & \multicolumn{2}{|l|}{Wiring again.} \\
\hline Broken & PG card or PG encoder & \multicolumn{2}{|l|}{Replace with a new PG card or encoder.} \\
\hline Malfunc interfer & tion caused by nce & \multicolumn{2}{|l|}{Verify wiring of the control circuit, and wiring/grounding of the main circuit to prevent interference.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 17 & ه & Over speed warning (oSPd) & Over speed warning \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action level} & \multicolumn{2}{|l|}{The encoder feedback speed > Pr.10-10} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Pr.10-11} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{Pr.10-12=0} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{"Warning" automatically clears when the drive stops} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{"Warning" automatically clears when the drive stops} \\
\hline & ecord & \multicolumn{2}{|l|}{N/A} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Improper setting for Pr. 10-25 FOC bandwidth of speed observer} & \multicolumn{2}{|l|}{Decrease setting value for Pr.10-25.} \\
\hline \multicolumn{2}{|l|}{Improper bandwidth setting for ASR speed controller} & \multicolumn{2}{|l|}{Increase the bandwidth setting for ASR speed controller} \\
\hline \multicolumn{2}{|l|}{Incorrect motor parameter setting} & \multicolumn{2}{|l|}{Reset motor parameter and run parameter tuning.} \\
\hline \multicolumn{2}{|l|}{Malfunction caused by interference} & \multicolumn{2}{|l|}{Verify wiring of the control circuit, and wiring/grounding of the main circuit to prevent interference.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 18 & - & Speed deviation warning (dAvE) & Over speed deviation warning \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action level} & \multicolumn{2}{|l|}{Pr. 10-13} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Pr. 10-14} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.10-15=0 \\
0 : Warn and keep operation
\end{tabular}} \\
\hline & Reset method & \multicolumn{2}{|l|}{"Warning" automatically clears when the drive stops} \\
\hline & Reset condition & \multicolumn{2}{|l|}{After the drive stops} \\
\hline & Record & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Imprope the slip & parameter setting for error & \multicolumn{2}{|l|}{Reset proper value for Pr.10-13 and Pr.10-14.} \\
\hline Imprope parame decelera & setting for ASR ter and acceleration/ ation & \multicolumn{2}{|l|}{\begin{tabular}{l}
Reset ASR parameters. \\
Set proper accel./ decel. time.
\end{tabular}} \\
\hline Accel./ & Decel. time is too short & \multicolumn{2}{|l|}{Reset proper accel./ decel. time.} \\
\hline Motor lo & cked & \multicolumn{2}{|l|}{Remove the causes of motor locked.} \\
\hline Mechan release & ical brake is not d & \multicolumn{2}{|l|}{Check the active timing of the system.} \\
\hline Incorrec torque li
(Pr.06-1 & t parameter setting of imit
12, Pr.11-17-20) & \multicolumn{2}{|l|}{Adjust to proper setting value.} \\
\hline Malfunc interfere & ction caused by ence & \multicolumn{2}{|l|}{Verify wiring of the control circuit, and wiring/grounding of the main circuit to prevent interference.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 19 & 「\%H1 & \begin{tabular}{l}
Phase loss \\
(PHL)
\end{tabular} & Input phase loss warning \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action level} & \multicolumn{2}{|l|}{One of the phases outputs less than Pr.06-47} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Pr.06-46} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.06-45 Output Phase Loss Detection Action (OPHL) \(=0\) \\
0 : Warn and continue operation
\end{tabular}} \\
\hline & method & \multicolumn{2}{|l|}{"Warning" automatically clears when the drive stops} \\
\hline & condition & \multicolumn{2}{|l|}{After the drive stops} \\
\hline & cord & \multicolumn{2}{|l|}{N/A} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Phase & he input power & \multicolumn{2}{|l|}{Verify the wiring of the main circuit.} \\
\hline Single three-p & ower input on a odel & \multicolumn{2}{|l|}{Use the model with voltage that matches the power.} \\
\hline \multicolumn{2}{|l|}{The power voltage has changed} & \multicolumn{2}{|l|}{\begin{tabular}{l}
If the power of main circuit works well, check if the MC of the main circuit is broken. \\
Cycle the power after verifying the power is normal. If PHL still occurs, return to the factory for repair.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Loose wiring terminal of input power} & \multicolumn{2}{|l|}{Tighten the terminal screws with the torque listed in the user manual.} \\
\hline \multicolumn{2}{|l|}{Check if the input cable of three-phase power is broken} & \multicolumn{2}{|l|}{Make sure the wiring is correct. Replace the broken part of the cable.} \\
\hline \multicolumn{2}{|l|}{Unbalanced three-phase of the input power} & \multicolumn{2}{|l|}{Check the status of three-phase power.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 20 & -1 & Over-torque 1 (ot1) & Over-torque 1 warning \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Pr.06-07} \\
\hline & n time & \multicolumn{2}{|l|}{Pr.06-08} \\
\hline Warnin & ent parameter & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.06-06=1 or 3 \\
0 : No function \\
1: Continue operation after over-torque detection during constant speed operation \\
2: Stop after over-torque detection during constant speed operation \\
3: Continue operation after over-torque detection during RUN \\
4: Stop after over-torque detection during RUN
\end{tabular}} \\
\hline & method & \multicolumn{2}{|l|}{When input current < (Pr.06-07-5\%), the ot1 warning automatically clears.} \\
\hline & condition & \multicolumn{2}{|l|}{When input current < (Pr.06-07-5\%), the ot1 warning automatically clears.} \\
\hline & cord & \multicolumn{2}{|l|}{N/A} \\
\hline & ause & & Corrective Actions \\
\hline Incorrec & eter setting & \multicolumn{2}{|l|}{Configure the settings for Pr.06-07 and 06-08 again.} \\
\hline Mechan mechan torque) & \begin{tabular}{l}
or (e.g. \\
k due to over-
\end{tabular} & \multicolumn{2}{|l|}{Remove the causes of malfunction.} \\
\hline The loa & large. & \multicolumn{2}{|l|}{\begin{tabular}{l}
Decrease the loading. \\
Replace with a motor with larger capacity.
\end{tabular}} \\
\hline Accel./ cycle is & time and working ort. & \multicolumn{2}{|l|}{Increase the setting values for Pr.01-12-01-19 (accel./ decel. time).} \\
\hline V/F volt & too high. & \multicolumn{2}{|l|}{Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too small, the load capacity decreases at low-speed).} \\
\hline The mo small. & acity is too & \multicolumn{2}{|l|}{Replace with a motor with larger capacity.} \\
\hline Over-load operati & ing low-speed & \multicolumn{2}{|l|}{Decrease the loading during low-speed operation. Increase the motor capacity.} \\
\hline The tor large. & mpensation is too & \multicolumn{2}{|l|}{Readjust the torque compensation value (Pr.07-26 torque compensation gain) till the output current decreases and the motor does not stall.} \\
\hline Improp the spe (includi momen restart & meter settings for king function art after wer loss and ult) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Correct the parameter settings for speed tracking. \\
Start the speed tracking function. \\
Adjust the maximum current for Pr.07-09 speed tracking.
\end{tabular}} \\
\hline
\end{tabular}

Chapter 13 Warning Codes| MH300
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 21 & -1 & Over-torque (ot2) & Over-torque 2 warning \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action level} & \multicolumn{2}{|l|}{Pr.06-10} \\
\hline & on time & \multicolumn{2}{|l|}{Pr.06-11} \\
\hline Warn & g parameter & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.06-09 Over-torque Detection Selection (Motor 2) \(=1\) or 3 \\
0 : No function \\
1: Continue operation after over-torque detection during constant speed operation \\
2: Stop after over-torque detection during constant speed operation \\
3: Continue operation after over-torque detection during RUN \\
4: Stop after over-torque detection during RUN
\end{tabular}} \\
\hline & method & \multicolumn{2}{|l|}{When the output current < Pr.06-10, the Ot2 warning automatically clears} \\
\hline & condition & \multicolumn{2}{|l|}{When the output current < Pr.06-10, the Ot2 warning automatically clears} \\
\hline & cord & \multicolumn{2}{|l|}{N/A} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Incorr & eter setting & \multicolumn{2}{|l|}{Configure the settings for Pr.06-10 and Pr.06-11} \\
\hline Mecha mecha torque) & \begin{tabular}{l}
or (e.g. \\
\(k\) due to over-
\end{tabular} & \multicolumn{2}{|l|}{Remove the causes of malfunction.} \\
\hline The load & large & \multicolumn{2}{|l|}{\begin{tabular}{l}
Decrease the loading. \\
Replace with a motor with larger capacity.
\end{tabular}} \\
\hline Accel./ cycle is & time and working & \multicolumn{2}{|l|}{Increase the setting values for Pr.01-12-01-19 (accel./ decel. time)} \\
\hline V/F volt & oo high & \multicolumn{2}{|l|}{Adjust the V/F curve (Motor 2, Pr.01-35-01-42), especially the setting value for the mid-point voltage (if the mid-point voltage is set too small, the load capacity decreases at low-speed).} \\
\hline The mo & acity is too small & \multicolumn{2}{|l|}{Replace with a motor with larger capacity.} \\
\hline Overlo operat & g low-speed & \multicolumn{2}{|l|}{Decrease the loading during low-speed operation. Increase the motor capacity.} \\
\hline The tor large & mpensation is too & \multicolumn{2}{|l|}{Adjust the torque compensation value (Pr.07-71 torque compensation gain) until the output current decreases and the motor does not stall.} \\
\hline Improp the spe (includ momen restart & meter settings fo king function art after wer loss and ult) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Correct the parameter settings for speed tracking. \\
Start speed tracking function. \\
Adjust the maximum current for Pr.07-09 speed tracking.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No． & Display & Warning Name & Description \\
\hline 22＿1 & \(\square\) & Motor over－heating （oH3）PTC & \begin{tabular}{l}
Motor overheating warning． \\
The AC motor drive detects the temperature inside the motor is too high
\end{tabular} \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & n level & \multicolumn{2}{|l|}{Pr．03－00＝6（PTC），PTC input level＞Pr．06－30 PTC level（default＝50\％）} \\
\hline & n time & \multicolumn{2}{|l|}{Immediately act} \\
\hline Warn & g parameter & \multicolumn{2}{|l|}{\begin{tabular}{l}
Error treatment：Pr．06－29 \\
0 ：Warn and continue operation \\
1：Fault and ramp to stop \\
2：Fault and coast to stop \\
3：No warning \\
When Pr．06－29＝0 and when the temperature is 『Pr．06－30 level，the oH3 warning automatically clears． \\
When Pr．06－29＝0（＂Warning＂），it automatically resets．
\end{tabular}} \\
\hline & method & \multicolumn{2}{|l|}{When Pr．06－29＝0，oH3 displays as＂Warning＂．When the temperature is \({ }^{『}\) Pr．06－30 level，the oH3 warning automatically clears．} \\
\hline & condition & \multicolumn{2}{|l|}{When the temperature is 『Pr．06－30 level，the oH3 warning automatically clears．} \\
\hline & cord & \multicolumn{2}{|l|}{N／A} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Motor lock & & \multicolumn{2}{|l|}{Clear the motor lock status．} \\
\hline The lo & rge & \multicolumn{2}{|l|}{\begin{tabular}{l}
Decrease the loading． \\
Replace with a motor with larger capacity．
\end{tabular}} \\
\hline Ambien & rature is too high & \multicolumn{2}{|l|}{\begin{tabular}{l}
Change the installed place if there are heating devices in the surroundings． \\
Install／add cooling fan or air conditioner to lower the ambient temperature．
\end{tabular}} \\
\hline Motor & stem error & \multicolumn{2}{|l|}{Check the cooling system to make it work normally．} \\
\hline Motor f & & \multicolumn{2}{|l|}{Replace the fan．} \\
\hline Operat & \(w\)－speed too long & \multicolumn{2}{|l|}{Decrease low－speed operation time． Change to dedicated motor for the drive． Increase the motor capacity．} \\
\hline Accel．／ cycle is & time and working rt & \multicolumn{2}{|l|}{Increase setting values for Pr．01－12－01－19（accel．／decel．time）．} \\
\hline V／F volt & oo high & \multicolumn{2}{|l|}{Adjust settings for Pr．01－01－01－08（V／F curve），especially the setting value for the mid－point voltage（if the mid－point voltage is set too small， the load capacity decreases at low－speed）．} \\
\hline Check current namep & tor rated \(s\) the motor & \multicolumn{2}{|l|}{Configure the correct rated current value of the motor again．} \\
\hline Check set and & C is properly & \multicolumn{2}{|l|}{Check the connection between PTC thermistor and the heat protection．} \\
\hline Check preven & tting for stall orrect & \multicolumn{2}{|l|}{Set the stall prevention to the proper value．} \\
\hline Unbala impeda & ree－phase he motor & \multicolumn{2}{|l|}{Replace the motor．} \\
\hline Harmon & oo high & \multicolumn{2}{|l|}{Use remedies to reduce harmonics．} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 22_2 & 1-7 & Motor over-heating (oH3) PT100 & \begin{tabular}{l}
Motor overheating warning. \\
The AC motor drive detects the temperature inside the motor is too high.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action level} & \multicolumn{2}{|l|}{Pr.03-00=11 (PT100), PT100 input level > Pr.06-57 (default=7 V)} \\
\hline & on time & \multicolumn{2}{|l|}{Immediately act} \\
\hline Warn & ng parameter & \multicolumn{2}{|l|}{\begin{tabular}{l}
Error treatment: Pr.06-29 \\
0 : Warn and continue operation \\
1: Fault and ramp to stop \\
2: Fault and coast to stop \\
3: No warning \\
When Pr.06-29=0 and when the temperature is > Pr.06-56 level, the oH3 warning automatically clears. \\
If the temperature is between Pr.06-56 and Pr.06-57, the frequency outputs according to the operating frequency setting for Pr.06-58.
\end{tabular}} \\
\hline & method & \multicolumn{2}{|l|}{When Pr.06-29=0, oH3 displays as "Warning". When the temperature is > Pr.06-56 level, the oH3 warning automatically clears.} \\
\hline & condition & \multicolumn{2}{|l|}{When the temperature is > Pr.06-56 level, the oH3 warning automatically clears.} \\
\hline & cord & \multicolumn{2}{|l|}{N/A} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Motor lo & & \multicolumn{2}{|l|}{Clear the motor lock status.} \\
\hline The load & large & \multicolumn{2}{|l|}{\begin{tabular}{l}
Decrease loading. \\
Replace with a motor with larger capacity.
\end{tabular}} \\
\hline Ambien & rature is too high & \multicolumn{2}{|l|}{\begin{tabular}{l}
Change the installed place if there are heating devices in the surroundings. \\
Install/ add cooling fan or air conditioner to lower the ambient temperature.
\end{tabular}} \\
\hline Motor cool & system error & \multicolumn{2}{|l|}{Check the cooling system to make it work normally.} \\
\hline Motor fa & & \multicolumn{2}{|l|}{Replace the fan.} \\
\hline Operate & w-speed too long & \multicolumn{2}{|l|}{Decrease low-speed operation time. Change to dedicated motor for the drive. Increase the motor capacity.} \\
\hline Accel./ cycle is & time and working ort & \multicolumn{2}{|l|}{Increase the setting values for Pr.01-12-01-19 (accel./ decel. time).} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline V/F voltage is too high & \begin{tabular}{l}
Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting \\
value for the mid-point voltage (if the mid-point voltage is set too small, \\
the load capacity decreases at low-speed).
\end{tabular} \\
\hline \begin{tabular}{l}
Check if the motor rated \\
current matches the motor \\
nameplate
\end{tabular} & Configure the correct rated current value of the motor again. \\
\hline \begin{tabular}{l}
Check if the PT100 is properly \\
set and wired
\end{tabular} & Check the connection between PT100 thermistor and the heat protection. \\
\hline \begin{tabular}{l}
Check if the setting for stall \\
prevention is correct
\end{tabular} & Set the stall prevention to the proper value. \\
\hline \begin{tabular}{l}
Unbalanced three-phase \\
impedance of the motor
\end{tabular} & Replace the motor. \\
\hline Harmonics is too high & Use remedies to reduce harmonics. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 25 & E-11边 & Auto-tuning (tUn) & \begin{tabular}{l}
Parameter auto-tuning is processing. \\
When running auto-tuning, the keypad displays "tUn".
\end{tabular} \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When running Pr.05-00 motor parameter auto-tuning, the keypad displays "tUn".} \\
\hline & n time & \multicolumn{2}{|l|}{N/A} \\
\hline Warnin & ment parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{When auto-tuning is finished and no error occurs, the warning automatically clears.} \\
\hline & condition & \multicolumn{2}{|l|}{When auto-tuning is finished and no error occurs.} \\
\hline & cord & \multicolumn{2}{|l|}{N/A} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline The mo auto-tu & meter is running & \multicolumn{2}{|l|}{When the auto-tuning is finished, the warning automatically clears.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 28 & & Output phase loss (OPHL) & Output phase loss \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Pr.06-47} \\
\hline & on time & \multicolumn{2}{|l|}{N/A} \\
\hline Warni & tment parameter & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.06-45 \\
0 : Warn and continue operation \\
1: Fault and ramp to stop \\
2: Fault and coast to stop \\
3: No warning
\end{tabular}} \\
\hline & method & \multicolumn{2}{|l|}{If Pr.06-45 is set to 0 , the OPHL warning automatically clears after the drive stops.} \\
\hline & condition & \multicolumn{2}{|l|}{N/A} \\
\hline & ecord & \multicolumn{2}{|l|}{N/A} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \begin{tabular}{l}
Unbala \\
impeda
\end{tabular} & \begin{tabular}{l}
ree-phase \\
the motor
\end{tabular} & \multicolumn{2}{|l|}{Replace the motor.} \\
\hline Check & wiring is incorrect. & \multicolumn{2}{|l|}{\begin{tabular}{l}
Check the cable. \\
Replace the cable.
\end{tabular}} \\
\hline \begin{tabular}{l}
Check \\
phase
\end{tabular} & motor is a single- & \multicolumn{2}{|l|}{Choose a three-phase motor.} \\
\hline Check broken & urrent sensor is & \multicolumn{2}{|l|}{\begin{tabular}{l}
Check if the control board cable is loose. If yes, reconnect the cable and run the drive to test. \\
If the error still occurs, send the drive back to the factory for repair. Check if the three-phase current is balanced with a current clamp meter. If the current is balanced and the OPHL error still shows on the display, send the drive back to the factory for repair.
\end{tabular}} \\
\hline \begin{tabular}{l}
Check \\
larger
\end{tabular} & rive capacity is motor capacity & \multicolumn{2}{|l|}{Choose the drive that matches the motor capacity.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{\begin{tabular}{c}
Warning Name
\end{tabular}} \\
\hline 30 & & \begin{tabular}{c}
Copy model error 3 \\
(SE3)
\end{tabular} & Keypad COPY error 3: copy model error \\
\hline \multicolumn{2}{|c|}{ Action and Reset } \\
\hline & Action level & \begin{tabular}{l}
"SE3" warning occurs when different drive identity codes are found during \\
copying parameters.
\end{tabular} \\
\hline Action time & Immediately act when the error is detected \\
\hline Warning setting parameter & N/A \\
\hline Reset method & Manual reset \\
\hline Reset condition & N/A \\
\hline Record & N/A \\
\hline Cause & \\
\hline \begin{tabular}{l}
Keypad copy between different \\
power range drives
\end{tabular} & It is mainly to prevent parameter copies between different HP/models. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 31 & -10 & Over-torque (ot3) & Over-torque 3 warning \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action level} & \multicolumn{2}{|l|}{Pr.14-75} \\
\hline & n time & \multicolumn{2}{|l|}{Pr.14-76} \\
\hline Warn & ng parameter & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.14-74 Over-torque Detection Selection (Motor 3) \(=1\) or 3 \\
0 : No function \\
1: Continue operation after over-torque detection during constant speed operation \\
2: Stop after over-torque detection during constant speed operation \\
3: Continue operation after over-torque detection during RUN \\
4: Stop after over-torque detection during RUN
\end{tabular}} \\
\hline & method & \multicolumn{2}{|l|}{When the output current < Pr.14-75, the Ot3 warning automatically clears} \\
\hline & condition & \multicolumn{2}{|l|}{When the output current < Pr.14-75, the Ot3 warning automatically clears} \\
\hline & cord & \multicolumn{2}{|l|}{N/A} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Incorr & eter setting & \multicolumn{2}{|l|}{Configure the settings for Pr.14-75 and Pr.14-76 again.} \\
\hline Mecha mecha torque) & \begin{tabular}{l}
or (e.g. \\
\(k\) due to over-
\end{tabular} & \multicolumn{2}{|l|}{Remove the causes of malfunction.} \\
\hline The load & large & \multicolumn{2}{|l|}{\begin{tabular}{l}
Decrease the loading. \\
Replace with a motor with larger capacity.
\end{tabular}} \\
\hline Accel./ cycle is & time and working & \multicolumn{2}{|l|}{Increase the setting values for Pr.01-12-01-19 (accel./ decel. time)} \\
\hline V/F vol & oo high & \multicolumn{2}{|l|}{Adjust the V/F curve (Motor 3, Pr.01-54-01-61), especially the setting value for the mid-point voltage (if the mid-point voltage is set too small, the load capacity decreases at low-speed).} \\
\hline The mo & acity is too small & \multicolumn{2}{|l|}{Replace with a motor with larger capacity.} \\
\hline Overlo operation & g low-speed & \multicolumn{2}{|l|}{Decrease the loading during low-speed operation. Increase the motor capacity.} \\
\hline The to large & mpensation is too & \multicolumn{2}{|l|}{Adjust the torque compensation value (Pr.07-73 torque compensation gain) until the output current decreases and the motor does not stall.} \\
\hline Improp the spe (includ momen restart & meter settings for king function art after wer loss and ult) & \multicolumn{2}{|l|}{\begin{tabular}{l}
Correct the parameter settings for speed tracking. \\
Start the speed tracking function. \\
Adjust the maximum current for Pr.07-09 speed tracking.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{\begin{tabular}{c}
Warning Name \\
\hline \multicolumn{1}{|c|}{} \\
\hline \multicolumn{1}{|c|}{ Action level }
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c}
Over-torque \\
(ot4)
\end{tabular}} \\
\hline \multicolumn{1}{|c|}{ Action and Reset time } & \multicolumn{1}{c|}{ Over-torque 4 warning }
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 36 & ¢-5 & CANopen guarding time-out (CGdn) & CANopen guarding time-out 1 \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & ion level & \multicolumn{2}{|l|}{\begin{tabular}{l}
When CANopen Node Guarding detects that one of the slaves does not respond, the CGdn error displays. \\
The upper unit sets the factor and time during configuration.
\end{tabular}} \\
\hline & Action time & \multicolumn{2}{|l|}{The time that upper unit sets during configuration} \\
\hline Warn & eting parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & et method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & et condition & \multicolumn{2}{|l|}{The upper unit sends a reset package to clear this warning.} \\
\hline & Record & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & & Corrective Actions \\
\hline The guard or less & time is too short, tion times & \multicolumn{2}{|l|}{Increase the guarding time (Index 100C) and detection times.} \\
\hline \begin{tabular}{l}
Malfun \\
interfer
\end{tabular} & caused by & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degrees for effective anti-interference performance. \\
2. Make sure the communication circuit is wired in series. \\
3. Use CANopen cable or add terminating resistance.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 37 & - & CANopen heartbeat error (CHbn) & CANopen heartbeat error \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & Action level & \multicolumn{2}{|l|}{\begin{tabular}{l}
When CANopen Heartbeat detects that one of the slaves does not response, the CHbn error shows. \\
The upper unit sets the confirming time of producer and consumer during configuration.
\end{tabular}} \\
\hline & Action time & \multicolumn{2}{|l|}{The upper unit sets the confirming time of producer and consumer during configuration.} \\
\hline Warn & ing setting parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & Reset method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & Reset condition & \multicolumn{2}{|l|}{The upper unit sends a reset package to clear this warning.} \\
\hline & Record & \multicolumn{2}{|l|}{When Pr.00-21 CHbn is a "Warning", and the} \\
\hline & Cause & \multicolumn{2}{|l|}{Corrective Actions} \\
\hline The he & artbeat time is too short & \multicolumn{2}{|l|}{Increase heartbeat time (Index 1016)} \\
\hline Malfun interfer & ction caused by nce & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degrees for effective anti-interference performance. \\
2. Make sure the communication circuit is wired in series. \\
3. Use CANopen cable or add terminating resistance.
\end{tabular}} \\
\hline \begin{tabular}{l}
Comm \\
or bad
\end{tabular} & nication cable is broken connected & \multicolumn{2}{|l|}{Check or replace the communication cable.} \\
\hline
\end{tabular}

\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{\begin{tabular}{c}
Warning Name \\
\hline 40
\end{tabular}} & \begin{tabular}{c}
CANopen index error \\
(Cidn)
\end{tabular} \\
\hline & \multicolumn{2}{|c|}{ Action and Reset } \\
\hline & & CANopen index error \\
\hline Action level & CANopen communication Index error \\
\hline Action time & Immediately act when the fault is detected \\
\hline Warning setting parameter & N/A \\
\hline Reset method & Manual Reset \\
\hline Reset condition & The upper unit sends a reset package to clear this warning \\
\hline Record & When Pr.00-21 Cidn is a "Warning", and the warning is not recorded. \\
\hline Cause & \\
\hline Incorrect setting of CANopen \\
index & Reset CANopen index (Pr.00-02=7) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 41 & - & CANopen station address error (CAdn) & CANopen station address error (only supports \(1-\) 127) \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action level} & \multicolumn{2}{|l|}{CANopen station address error} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act when the fault is detected} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual Reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Pr.00-02=7} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{When Pr.00-21 CAdn is a "Warning", and the warning is not recorded.} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Incorrect setting of CANopen station address} & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Disable CANopen (Pr.09-36=0) \\
2. Reset CANopen (Pr.00-02=7) \\
3. Reset CANopen station address (Pr.09-36)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 42 & 「5\% & CANopen memory error (CFrn) & CANopen memory error \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & ction level & \multicolumn{2}{|l|}{When you update the firmware version of the control board, the FRAM internal data does not change, then CFrn warning occurs.} \\
\hline & Action time & \multicolumn{2}{|l|}{Immediately act when the fault is detected} \\
\hline Warn & setting parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & set method & \multicolumn{2}{|l|}{Manual Reset} \\
\hline & et condition & \multicolumn{2}{|l|}{Pr.00-02=7} \\
\hline & Record & \multicolumn{2}{|l|}{When Pr.00-21 CFrn is a "Warning", and the warning is not recorded.} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{CANopen internal memory error} & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Disable CANopen (Pr.09-36=0) \\
2. Reset CANopen (Pr.00-20=7) \\
3. Reset CANopen station address (Pr.09-36)
\end{tabular}} \\
\hline
\end{tabular}

\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Warning Name } & Description \\
\hline 44 & & \begin{tabular}{l}
CANopen SDO \\
receives register \\
overflow (CSbn)
\end{tabular} & CANopen SDO receives register overflow \\
\hline \multicolumn{4}{|c|}{ Action and Reset } \\
\hline Action level & \begin{tabular}{l}
The upper unit sends too much SDO at one time and causes buffer \\
overflow
\end{tabular} \\
\hline Action time & Immediately act when the fault is detected \\
\hline Warning setting parameter & N/A \\
\hline Reset method & The upper unit sends a reset package to clear the warning. \\
\hline Reset condition & N/A \\
\hline Record & N/A \\
\hline Cause & \\
\hline Too much SDO from the upper \\
unit at one time & \begin{tabular}{l}
Check if the master sends too much SDO command. Make sure the \\
master sends the SDO command according to the command format.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 45 & -1\% & CANopen start-up error warning (Cbtn) & CANopen start-up error warning \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & Action level & \multicolumn{2}{|l|}{When the amount of sent error messages reach 255} \\
\hline & Action time & \multicolumn{2}{|l|}{N/A} \\
\hline Warn & ing setting parameter & \multicolumn{2}{|l|}{Index 6007} \\
\hline & Reset method & \multicolumn{2}{|l|}{Disable CANopen, and cycle the power after power-off} \\
\hline & Reset condition & \multicolumn{2}{|l|}{N/A} \\
\hline & Record & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & & Corrective Actions \\
\hline \begin{tabular}{l}
Serious \\
hardwa
\end{tabular} & interference on re & \multicolumn{2}{|l|}{Verify if the grounding, terminating resistance and bus line are properly installed.} \\
\hline Incorre commu & st setting for nication speed & \multicolumn{2}{|l|}{Verify the setting for communication speed.} \\
\hline The con connec & mmunication card is not ed, or the card is loose & \multicolumn{2}{|l|}{Make sure the communication card is connected to the drive.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 46 & [-7 & CANopen format error (CPtn) & CANopen protocol format error \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & Action level & \multicolumn{2}{|l|}{The slave detects that communication data from the upper unit cannot be recognized, and then CPtn warning occurs.} \\
\hline & Action time & \multicolumn{2}{|l|}{Immediately act when the fault is detected} \\
\hline Warn & ming setting parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & Reset method & \multicolumn{2}{|l|}{The upper unit sends a reset packet to clear the warning} \\
\hline & Reset condition & \multicolumn{2}{|l|}{N/A} \\
\hline & Record & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline The up comm & per unit sends incorrect nication packet & \multicolumn{2}{|l|}{Make sure the master sends the packet based on CANopen DS301 standard command format.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{\begin{tabular}{l}
Warning Name
\end{tabular}} \\
\hline 50 & \multicolumn{2}{|c|}{ Action and Reset } \\
\hline & \begin{tabular}{l}
PLC opposite defect \\
(PLod)
\end{tabular} & PLC download error warning
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 51 & [7] & PLC save memory error (PLSv) & Data error during PLC operation \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & Action condition & \multicolumn{2}{|l|}{The program detects incorrect written address (e.g. the address has exceeded the range) during PLC operation, then the PLSv warning shows.} \\
\hline & Action time & \multicolumn{2}{|l|}{Immediately displays when the fault is detected} \\
\hline Warn & ming setting parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & Reset method & \multicolumn{2}{|l|}{Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.} \\
\hline & Reset condition & \multicolumn{2}{|l|}{N/A} \\
\hline & Record & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline An inco detecte & rrect written address is d during PLC operation & \multicolumn{2}{|l|}{Make sure the write-in address is correct and re-download the program.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 52 & F-71 & Data defect (PLdA) & Data error during PLC operation \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & Action condition & \multicolumn{2}{|l|}{T. The program detects incorrect write-in address when decoding the program source code and downloading the PLC program (e.g. the address has exceeded the range), then PLdA warning acts.} \\
\hline & Action time & \multicolumn{2}{|l|}{Immediately displays when the fault is detected} \\
\hline Warn & ing setting parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & Reset method & \multicolumn{2}{|l|}{Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.} \\
\hline & Reset condition & \multicolumn{2}{|l|}{N/A} \\
\hline & Record & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline During externa written/ internal & PLC operation, the Modbus has read incorrect data to PLC program & \multicolumn{2}{|l|}{Check if the upper unit transmits the correct command} \\
\hline The bult there is Modbus the buil (Pr.09-35) Modbus equipm & It-in PLC function is ON, station address of which is duplicate of -in PLC station address 35) been set in the system of the ent & \multicolumn{2}{|l|}{Set the station addresses of Modbus and built-in PLC to be different} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 53 & 「\% & Function defect (PLFn) & PLC download function code error \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{The program detects incorrect command (unsupported command) during PLC downloading, then PLFn warning acts.} \\
\hline & on time & \multicolumn{2}{|l|}{Immediately displays when the fault is detected} \\
\hline Warn & ting parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.} \\
\hline & condition & \multicolumn{2}{|l|}{N/A} \\
\hline & ecord & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Unsupp used wh program & ommand has wnloading the & \multicolumn{2}{|l|}{Check if the firmware of the drive is the old version. If yes, contact Delta.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 54 & 「1. & PLC buffer overflow (PLor) & PLC register overflow \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When PLC runs the last command and the command exceeds the maximum capacity of the program, the PLor warning shows.} \\
\hline & Action time & \multicolumn{2}{|l|}{Immediately displays when the fault is detected} \\
\hline Warn & ming setting parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & Reset method & \multicolumn{2}{|l|}{Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.} \\
\hline & Reset condition & \multicolumn{2}{|l|}{N/A} \\
\hline & Record & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline The pro code e operati & gram detects source ror during PLC & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Disable PLC \\
2. Delete PLC program (\(\operatorname{Pr} .00-02=6\)) \\
3. Enable PLC \\
4. Re-download PLC program
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 55 & F|\% & Function defect (PLFF) & Function code error during PLC operation \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{The program detects incorrect command (unsupported command) during PLC operation, then PLFF warning shows.} \\
\hline & n time & \multicolumn{2}{|l|}{Immediately displays when the fault is detected} \\
\hline Warn & ting parameter & \multicolumn{2}{|l|}{NA} \\
\hline & method & \multicolumn{2}{|l|}{Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.} \\
\hline & condition & \multicolumn{2}{|l|}{N/A} \\
\hline & cord & \multicolumn{2}{|l|}{N/A} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline The PL
comma & an incorrect ing operation & \multicolumn{2}{|l|}{When starting the PLC function and there is no program in the PLC, the PLFF warning shows. This is a normal warning, please download the program.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Warning Name } & \multicolumn{1}{c|}{ Description } \\
\hline 57 & & \begin{tabular}{l}
No end command \\
(PLEd)
\end{tabular} & PLC end command is missing \\
\hline \multicolumn{4}{|c|}{ Action and Reset } \\
\hline Action condition & \begin{tabular}{l}
The "End" command is missing until the last command is executed, the \\
PLEd warning shows
\end{tabular} \\
\hline Action time & Immediately displays when the fault is detected \\
\hline Warning setting parameter & NA \\
\hline Reset method & \begin{tabular}{l}
Check if the program is correct and re-download the program. If the fault \\
does not exist, the warning automatically clears.
\end{tabular} \\
\hline Reset condition & N/A \\
\hline Record & N/A \\
\hline Cause & \begin{tabular}{l}
1. Disable PLC \\
2. Remove PLC program (Pr.00-02 = 6) \\
3. Enable PLC
\end{tabular} \\
\hline There is no "END" command \\
during PLC operation & \begin{tabular}{l}
4. Re-download PLC program
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 58 & 「-5. & PLC MCR error (PLCr) & PLC MCR command error \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{The MC command is detected during PLC operation, but there is no corresponded MCR command, then the PLCr warning shows.} \\
\hline & Action time & \multicolumn{2}{|l|}{Immediately displays when the fault is detected} \\
\hline Warn & ing setting parameter & \multicolumn{2}{|l|}{NA} \\
\hline & Reset method & \multicolumn{2}{|l|}{Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.} \\
\hline & Reset condition & \multicolumn{2}{|l|}{N/A} \\
\hline & Record & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline The MC continuo than 9 ti & command is usly used for more mes & \multicolumn{2}{|l|}{The MC command cannot be used continuously for 9 times. Check and reset the program, then re-download the program.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 59 & F| & PLC download fail (PLdF) & PLC download fail \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{PLC download fail due to momentary power loss during the downloading, when power is ON again, PLdF warning shows.} \\
\hline & Action time & \multicolumn{2}{|l|}{Immediately displays when the fault is detected} \\
\hline Warn & ning setting parameter & \multicolumn{2}{|l|}{NA} \\
\hline & Reset method & \multicolumn{2}{|l|}{Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.} \\
\hline & Reset condition & \multicolumn{2}{|l|}{N/A} \\
\hline & Record & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline PLC do stop, so incomp & wnload is forced to the program write-in is lete & \multicolumn{2}{|l|}{Check if there is any error in the program and re-download the PLC program} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 60 & Fl & PLC scan time fail (PLSF) & PLC scan time exceeds the maximum allowable time \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When the PLC scan time exceeds the maximum allowable time (400 ms), PLSF warning shows.} \\
\hline & on time & \multicolumn{2}{|l|}{Immediately displays when the fault is detected} \\
\hline Warn & tting parameter & \multicolumn{2}{|l|}{NA} \\
\hline & method & \multicolumn{2}{|l|}{Check if the program is correct and re-download the program. If the fault does not exist, the warning automatically clears.} \\
\hline & condition & \multicolumn{2}{|l|}{N/A} \\
\hline & ecord & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline The PL the max (400ms) & time exceeds allowable time & \multicolumn{2}{|l|}{Check if the source code is correct and re-download the program} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 71 & [-M L-M & ExCom power loss (ECLv) & Low voltage of communication card \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{The 5V power that drive provides to communication card is to low} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately acts} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Re-power} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{The 5V power that drive provides to communication card is to low} & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Switch the communication card to other drives and observe if there is ECLv warning shown. If yes, replace with a new communication card; if not, replace the drive. \\
2. Use another communication card to test if the ECLv warning has shown as well. If not, replace the card; if yes, replace the drive.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{The card is loose} & \multicolumn{2}{|l|}{Make sure the communication card is well inserted.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 72 & E-tor & ExCom test mode (ECtt) & Communication card is in the test mode \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Communication card is in the test mode} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately acts} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Cycle the power and enter the normal mode} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{4}{|l|}{Communication command error Cycle the power} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Warning Name } & \multicolumn{1}{c|}{ Description } \\
\hline 73 & & \begin{tabular}{c}
ExCom Bus off \\
(ECbF)
\end{tabular} & \begin{tabular}{l}
The communication card detects too much errors in \\
the BUS, then enters the bus-off status and stop \\
communicating
\end{tabular} \\
\hline \multicolumn{3}{|c|}{ Action and Reset } \\
\hline Action condition & When the drive detects bus-off (for DeviceNet) \\
\hline Action time & Immediately acts \\
\hline Warning setting parameter & N/A \\
\hline Reset method & Cycle the power \\
\hline Reset condition & N/A \\
\hline Record & N/A \\
\hline Cause & \\
\hline Poor connection of the cable & Re-connect the cable \\
\hline Bad quality of the cable & Replace the cable \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 74 & & ExCom no power (ECnP) & There is no power supply on the DeviceNet \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{There is no power supply on the DeviceNet} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately acts} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Re-power} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{The drive detects that DeviceNet has no power} & \multicolumn{2}{|l|}{Check if the cable and power is normal. If yes, return to the factory for repair.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 75 & E-5\% & ExCom factory defect (ECFF) & Factory default setting error \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Factory default setting error} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately acts} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Cycle the power} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Factory default setting error} & \multicolumn{2}{|l|}{Use DCISoft to reset to the default value.} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Warning Name } & Description \\
\hline 76 & & \begin{tabular}{c}
ExCom inner error \\
(ECiF)
\end{tabular} & Serious internal error \\
\hline \multicolumn{2}{|c|}{ Action and Reset } \\
\hline Action condition & Internal memory saving error \\
\hline Action time & Immediately acts \\
\hline Warning setting parameter & N/A \\
\hline Reset method & Cycle the power \\
\hline Reset condition & N/A \\
\hline Record & N/A \\
\hline Cause & \begin{tabular}{l}
Verify wiring of the control circuit, and wiring/grounding of the main circuit \\
to prevent interference. \\
Cycle the power.
\end{tabular} \\
\hline Noise interference & \begin{tabular}{l}
Reset to the default value and check if the error still exists. If yes, replace \\
the communication card.
\end{tabular} \\
\hline The memory is broken & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 79 & \(\mathrm{CHO}_{\square}^{\square-1}\) & ExCom configuration data error (ECPi) & Profibus configuration data error \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately reset} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{The GSD file is incorrect} & \multicolumn{2}{|l|}{Get the correct GSD file from the software} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Warning Name } & Description \\
\hline 80 & \multicolumn{3}{|c|}{ Action and Reset } \\
\hline \multicolumn{3}{|c|}{\begin{tabular}{c|l|}
\hline \multicolumn{2}{|c|}{ Action condition } \\
Action time & Hardware detection \\
\hline Warning setting parameter & Immediately acts \\
\hline Reset method & Manual reset \\
\hline Reset condition & N/A \\
\hline Record & N/A \\
\hline Cause & \\
\hline Ethernet cable is loose & Re-connect the cable \\
\hline Bad quality of Ethernet cable & Replace the cable \\
\hline
\end{tabular}}
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 81 & C-E & Communication time-out (ECto) & Communication time-out for communication card and the upper unit \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{N/A} \\
\hline & on time & \multicolumn{2}{|l|}{N/A} \\
\hline Warn & ting parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{N/A} \\
\hline & condition & \multicolumn{2}{|l|}{CMC-EC01: auto resets when the communication with the upper unit is back to normal} \\
\hline & ecord & \multicolumn{2}{|l|}{N/A} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Commu connec & \begin{tabular}{l}
n card is not \\
the upper unit
\end{tabular} & \multicolumn{2}{|l|}{Check if the connection of the communication cable is correct} \\
\hline \begin{tabular}{l}
Commu \\
upper
\end{tabular} & error of the & \multicolumn{2}{|l|}{Check if the communication of the upper unit is normal} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 82 & [\(\square_{0}\) & Checksum error (ECCS) & Checksum error for communication card and the drive \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Software detection} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately resets} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Noise interference} & \multicolumn{2}{|l|}{Verify wiring of the control circuit, and wiring/grounding of the main circuit to prevent interference.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 83 & & Return defect (ECrF) & Communication card returns to the default setting \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Communication card returns to the default setting} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately resets} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Communication card is returning to default setting} & \multicolumn{2}{|l|}{No actions.} \\
\hline
\end{tabular}

\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & Warning Name & Description \\
\hline 86 & \multicolumn{3}{|c|}{ Action and Reset } \\
\hline \multicolumn{3}{|c|}{ Action condition } & Software detection \\
\hline Action time & Immediately acts \\
\hline Warning setting parameter & N/A \\
\hline Reset method & Manual reset \\
\hline Reset condition & Immediate reset \\
\hline Record & N/A \\
\hline Cause & \\
\hline IP conflict & Reset IP \\
\hline DHCP IP configuration error & MIS check if DHCP Server works normally \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 87 & [-7 & Mail fail (EC3F) & Mail warning: Alarm mail will be sent when the communication card establishes alarm conditions \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Communication card establishes alarm conditions} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately acts} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately resets} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Communication card establishes alarm conditions} & \multicolumn{2}{|l|}{No actions} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Warning Name } & Description \\
\hline 89 & & \begin{tabular}{c}
ExCom card break \\
(ECCb)
\end{tabular} & Communication card break off warning \\
\hline \multicolumn{3}{|c|}{ Action and Reset } \\
\hline Action condition & Communication card break off \\
\hline Action time & N/A \\
\hline Warning setting parameter & N/A \\
\hline Reset method & Auto resets after communication card is re-installed \\
\hline Reset condition & Immediately resets \\
\hline Record & N/A \\
\hline Cause & \multicolumn{4}{c|}{ Corrective Actions } \\
\hline Communication card break off & Re-install communication card \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Warning Name } & \multicolumn{1}{c|}{ Description } \\
\hline 90 & & \begin{tabular}{c}
Copy PLC: password \\
error (CPLP)
\end{tabular} & \begin{tabular}{l}
Copy PLC password error. \\
When KPMS-LE01 is processing PLC copy and the \\
PLC password is incorrect, the CPLP warning \\
occurs.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Action and Reset } \\
\hline Action level & PLC password is incorrect \\
\hline Action time & Immediately act \\
\hline Warning setting parameter & N/A \\
\hline Reset method & Manual reset \\
\hline Reset condition & Directly reset \\
\hline Record & N/A \\
\hline Cause & \multicolumn{6}{c|}{ Corrective Actions } \\
\hline PLC password is incorrect & Reset and enter the correct PLC password \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 91 & \(\left[\begin{array}{ccc}\square \\ {[-714}\end{array}\right]\) & Copy PLC: Read mode error (CPLO) & Copy PLC Read mode error \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When copy PLC read mode with incorrect process} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately acts} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Directly resets} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{When copy PLC read mode and the process is incorrect} & \multicolumn{2}{|l|}{Cycle the power and copy PLC read mode again} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 92 & [-71 & Copy PLC: Write mode (CPL1) & Copy PLC write mode error \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Copy PLC write mode with incorrect process} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately acts} \\
\hline \multicolumn{2}{|l|}{Warning setting parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Directly resets} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{When copy PLC write mode and the process is incorrect} & \multicolumn{2}{|l|}{Cycle the power and copy PLC read mode again} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Warning Name } & \multicolumn{1}{c|}{ Description } \\
\hline 93 & & \begin{tabular}{c}
Copy PLC: version \\
error (CPLv)
\end{tabular} & \begin{tabular}{l}
Copy PLC version error. \\
When a non-MS300 built-in PLC is copied to the \\
MH300 drive, the CPLv warning occurs.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Action and Reset } \\
\hline Action level & Software detection \\
\hline Action time & Immediately act \\
\hline Warning setting parameter & N/A \\
\hline Reset method & Manual reset \\
\hline Reset condition & Directly reset \\
\hline Record & N/A \\
\hline Cause & \\
\hline \begin{tabular}{l}
A non-MH300 PLC program is \\
copied to MH300
\end{tabular} & \begin{tabular}{l}
Check if the copied PLC program is for MH300. \\
Use the correct MS300 PLC program.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{\begin{tabular}{c}
Warning Name \\
\hline 94
\end{tabular}} & \begin{tabular}{c}
Copy PLC: size error \\
(CPLS)
\end{tabular} \\
\hline \multicolumn{3}{|c|}{ Action and Reset } \\
\hline Action level & Software detection \\
\hline Action time & Immediately act \\
\hline Warning setting parameter & N/A \\
\hline Reset method & Manual reset \\
\hline Reset condition & Directly reset \\
\hline Record & N/A \\
\hline Cause & \\
\hline \begin{tabular}{l}
The PLC program copied to \\
MH300 exceeds the allowable \\
capacity
\end{tabular} & \begin{tabular}{l}
Check if the copied PLC program is for MH300 \\
Use the correct capacity for the MH300 PLC program
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & Warning Name & \multicolumn{1}{c|}{ Description } \\
\hline 95 & Action level & \begin{tabular}{l}
Copy PLC: PLC \\
function (CPLF)
\end{tabular} & \begin{tabular}{l}
KPMH-LC01 Copy PLC function must be executed \\
when PLC is disabled.
\end{tabular} \\
\hline \multicolumn{3}{|c|}{ Action and Reset } \\
\hline Action time & Immediately act \\
\hline Warning setting parameter & N/A \\
\hline Reset method & Manual reset \\
\hline Reset condition & Directly reset \\
\hline Record & N/A \\
\hline \begin{tabular}{l}
Cause
\end{tabular} \\
\begin{tabular}{l}
PLC function is enabled when \\
KPMH-LC01 is running PLC \\
COpy
\end{tabular} & Disable the PLC function first, and then run the PLC copy function again. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Warning Name } & Description \\
\hline 96 & & \begin{tabular}{c}
Copy PLC: time-out \\
(CPLt)
\end{tabular} & Copy PLC time-out \\
\hline \multicolumn{3}{|c|}{ Action and Reset } \\
\hline Action level & Software detection \\
\hline Action time & Immediately act \\
\hline Warning setting parameter & N/A \\
\hline Reset method & Manual reset \\
\hline Reset condition & Directly reset \\
\hline Record & N/A \\
\hline Cause & \multicolumn{6}{c|}{ Corrective Actions } \\
\hline \begin{tabular}{l}
KPMH-LC01 is removed while \\
copying the PLC program
\end{tabular} & The KPMH-LC01 cannot be removed during the PLC copy process \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Warning Name & Description \\
\hline 101 & \% & InrCOM time-out (ictn) & Internal communication time-out \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When Pr.09-31=-1 to -8 , or -10 , and the internal communication between Master and Slave is abnormal, the ictn warning shows.} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately acts} \\
\hline Warn & ting parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{Auto-reset} \\
\hline & condition & \multicolumn{2}{|l|}{The warning automatically clears when the communication is back to normal condition} \\
\hline & ecord & \multicolumn{2}{|l|}{N/A} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Malfun interfer & used by & \multicolumn{2}{|l|}{Verify wiring / grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.} \\
\hline Differen conditi & munication the upper unit & \multicolumn{2}{|l|}{Check if the setting for Pr.09-04 is the same as the setting for upper unit} \\
\hline Comm or not & n cable break off ed well & \multicolumn{2}{|l|}{Check the cable status or replace the cable} \\
\hline
\end{tabular}
[This page intentionally left blank]

\section*{Chapter 14 Fault Codes}

Summary of Fault Codes
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Fault Name & ID No. & Fault Name \\
\hline 0 & No fault record & 36 & cc hardware failure (HdO) \\
\hline 1 & Over-current during acceleration (ocA) & 37 & oc hardware error (Hd1) \\
\hline 2 & Over-current during deceleration (ocd) & 40 & Auto-tuning error (AUE) \\
\hline 3 & Over-current during steady operation (ocn) & 41 & PID loss ACI (AFE) \\
\hline 4 & Ground fault (GFF) & 42 & PG feedback error (PGF1) \\
\hline 5 & IGBT short circuit between upper bridge and lower bridge (occ) & 43 & PG feedback loss (PGF2) \\
\hline 6 & Over-current at stop (ocS) & 44 & PG feedback stall (PGF3) \\
\hline 7 & Over-voltage during acceleration (ovA) & 45 & PG slip error (PGF4) \\
\hline 8 & Over-voltage during deceleration (ovd) & 48 & ACl loss (ACE) \\
\hline 9 & Over-voltage at constant speed (ovn) & 49 & External fault (EF) \\
\hline 10 & Over-voltage at stop (ovS) & 50 & Emergency stop (EF1) \\
\hline 11 & Low-voltage during acceleration (LvA) & 51 & External base block (bb) \\
\hline 12 & Low-voltage during deceleration (Lvd) & 52 & Password is locked (Pcod) \\
\hline 13 & Low-voltage at constant speed (Lvn) & 54 & lllegal command (CE1) \\
\hline 14 & Low-voltage at stop (LvS) & 55 & lllegal data address (CE2) \\
\hline 15 & Phase loss protection (OrP) & 56 & Illegal data value (CE3) \\
\hline 16 & IGBT overheating (oH1) & 57 & Data is written to read-only address (CE4) \\
\hline 17 & Internal key parts overheating (0H2) & 58 & Modbus transmission time-out (CE10) \\
\hline 18 & IGBT temperature detection failure (tH 10) & 61 & Y-connection / \(\Delta\)-connection switch fault (ydc) \\
\hline 19 & Capacitor hardware error (tH2O) & 62 & Deceleration energy backup fault (dEb) \\
\hline 21 & Over load (oL) & 63 & Over slip error (oSL) \\
\hline 22 & Electronic thermal relay 1 protection (EoL1) & 65 & Hardware error of PG card (PGF5) \\
\hline 23 & Electric thermal relay 2 protection (EoL2) & 72 & STO loss 1 (STL1) \\
\hline 24 & Motor overheating (oH3) PTC / PT100 & 76 & STO (STO) \\
\hline 26 & Over torque 1 (ot1) & 77 & STO loss 2 (STL2) \\
\hline 27 & Over torque 2 (ot2) & 78 & STO loss 3 (STL3) \\
\hline 28 & Under current (uC) & 79 & U-phase over-current before run (Aoc) \\
\hline 29 & Limit error (LiT) & 80 & V-phase over-current before run (boc) \\
\hline 31 & EEPROM read error (cF2) & 81 & W-phase over-current before run (coc) \\
\hline 33 & U-phase error (cd1) & 82 & Output phase loss U phase (OPHL) \\
\hline 34 & V-phase error (cd2) & 83 & Output phase loss V phase (OPHL) \\
\hline 35 & W-phase error (cd3) & 84 & Output phase loss W phase (OPHL) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Fault Name } & ID No. & \multicolumn{1}{c|}{ Fault Name } \\
\hline 87 & Overload protection at low frequency (oL3) & 126 & Internal communication error (CP32) \\
\hline 89 & Rotor position detection error (RoPd) & 127 & Internal communicatino error (CP33) \\
\hline 101 & CANopen guarding fault (CGdE) & 128 & Over-torque 3 (ot3) \\
\hline 102 & CANopen heartbeat fault (CHbE) & 129 & Over-torque 4 (ot4) \\
\hline 104 & CANopen bus off fault (CbFE) & 134 & Internal communicatino error (EoL3) \\
\hline 105 & CANopen index error (CIdE) & 135 & Internal communication error (EoL4) \\
\hline 106 & CANopen station address error (CAdE) & 140 & oc hardware error (Hd6) \\
\hline 107 & CANopen memory error (CFrE) & 141 & GFF occurs before run (b4GFF) \\
\hline 111 & InrCOM time-out error (ictE) & 142 & Auto-tune error 1 (AUE1) \\
\hline 121 & Internal communication error (CP20) & 143 & Auto-tune error 2 (AUE2) \\
\hline 123 & Internal communication error (CP22) & 144 & Auto-tune error 3 (AUE3) \\
\hline 124 & Internal communication error (CP30) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 1 & \(\square\) & Over-current during acceleration (ocA) & Output current exceeds 3 times of the rated current during acceleration. When ocA occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ocA error. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{300\% of the rated current} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Reset in 5 sec . after the fault is cleared.} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline & ause & & Corrective Actions \\
\hline \multicolumn{2}{|l|}{Acceleration time is too short.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Increase the acceleration time \\
2. Increase the acceleration time of S-curve \\
3. Set auto-acceleration and auto-deceleration parameter (Pr.01-44) \\
4. Set over-current stall prevention function (Pr.06-03) \\
5. Replace the drive with a larger capacity model
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Short-circuit at motor output due to poor insulation wiring.} & \multicolumn{2}{|l|}{Without considering the short circuits, check the motor cable or replace the cable before turning on the power.} \\
\hline \multicolumn{2}{|l|}{Check for possible burnout or aging insulation of the motor} & \multicolumn{2}{|l|}{Check the motor insulation value with megger. Replace the motor if the insulation is poor.} \\
\hline \multicolumn{2}{|l|}{The load is too large.} & \multicolumn{2}{|l|}{Check if the output current during the whole working process exceeds the AC motor drive's rated current. If yes, replace the AC motor drive with a larger capacity model.} \\
\hline \multicolumn{2}{|l|}{Impulsive change of the load} & \multicolumn{2}{|l|}{Reduce the load or increase the capacity of the AC motor drive.} \\
\hline \multicolumn{2}{|l|}{Use special motor or motor with larger capacity than the drive} & \multicolumn{2}{|l|}{Check the motor capacity (the rated current on the motor's nameplate should \(\leq\) the rated current of the drive)} \\
\hline \multicolumn{2}{|l|}{Use ON/OFF controller of an electromagnetic contactor at the output (U/V/W) of the drive} & \multicolumn{2}{|l|}{Check the action timing of the contactor and make sure it is not turned ON/OFF when the drive outputs the voltage.} \\
\hline \multicolumn{2}{|l|}{V/F curve setting error} & \multicolumn{2}{|l|}{Adjust V/F curve settings and frequency/voltage. When the fault occurs, and the frequency voltage is too high, reduce the voltage.} \\
\hline \multicolumn{2}{|l|}{Torque compensation is too large.} & \multicolumn{2}{|l|}{Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the output current reduces and the motor does not stall.} \\
\hline \multicolumn{2}{|l|}{Malfunction caused by interference} & \multicolumn{2}{|l|}{Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.} \\
\hline \multicolumn{2}{|l|}{The motor starts when in free run.} & \multicolumn{2}{|l|}{Enable the speed tracking during start-up of Pr.07-12.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Improper parameter settings for \\
the speed tracking function \\
(including restart after \\
momentary power loss and \\
restart after fault)
\end{tabular} & \begin{tabular}{l}
Correct the parameter settings for speed tracking. \\
1. Start the speed tracking function. \\
2. Adjust the maximum current for Pr.07-09 speed tracking.
\end{tabular} \\
\hline Incorrect combination of control \\
mode and used motor & \begin{tabular}{l}
Check the settings for Pr.00-11 control mode: \\
1. For IM motor, Pr.00-11 \(=0,1,2,3,5\) \\
2. For PM motor, Pr.00-11 \(=4,6,7\)
\end{tabular} \\
\hline \begin{tabular}{l}
The length of motor cable is too \\
long.
\end{tabular} & \begin{tabular}{l}
Increase the AC motor drive's capacity. \\
Install AC reactor(s) on the output side (U/V/W).
\end{tabular} \\
\hline Hardware failure & \begin{tabular}{l}
The ocA occurs due to short circuit or ground fault at the output side of \\
the drive. \\
Check for possible short circuits between terminals with the electric \\
meter: \\
B 1 corresponds to \(\mathrm{U}, \mathrm{V}, \mathrm{W} ; \mathrm{DC}\) - corresponds to \(\mathrm{U}, \mathrm{V}, \mathrm{W} ; ~\) \\
to \(\mathrm{U}, \mathrm{V}, \mathrm{W}\). \\
If short circuits occur, return to the factory for repair.
\end{tabular} \\
\hline Check if the setting for stall \\
prevention is correct.
\end{tabular}\(\quad\)\begin{tabular}{l}
Set the stall prevention to the proper value.
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 2 & - & Over-current during deceleration (ocd) & Output current exceeds 3 times of the rated current during deceleration. When ocd occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ocd error. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{300\% of the rated current} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Reset in 5 sec . after the fault is cleared.} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline & ause & & Corrective Actions \\
\hline \multicolumn{2}{|l|}{Deceleration time is too short.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Increase the deceleration time \\
2. Increase the deceleration time of S-curve \\
3. Set auto-acceleration and auto-deceleration parameter (Pr.01-44) \\
4. Set over-current stall prevention function (Pr.06-03) \\
5. Replace the drive with a larger capacity model
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Check if the mechanical brake of the motor activates too early} & \multicolumn{2}{|l|}{Check the action timing of the mechanical brake} \\
\hline \multicolumn{2}{|l|}{Short-circuit at motor output due to poor insulation wiring.} & \multicolumn{2}{|l|}{Without considering the short circuits, check the motor cable or replace the cable before turning on the power.} \\
\hline \multicolumn{2}{|l|}{Check for possible burnout or aging insulation of the motor} & \multicolumn{2}{|l|}{Check the motor insulation value with megger. Replace the motor if the insulation is poor.} \\
\hline \multicolumn{2}{|l|}{The load is too large.} & \multicolumn{2}{|l|}{Check if the output current during the whole working process exceeds the AC motor drive's rated current. If yes, replace the AC motor drive with a larger capacity model.} \\
\hline \multicolumn{2}{|l|}{Impulsive change of the load} & \multicolumn{2}{|l|}{Reduce the load or increase the capacity of the AC motor drive.} \\
\hline \multicolumn{2}{|l|}{Use special motor or motor with larger capacity than the drive} & \multicolumn{2}{|l|}{Check the motor capacity (the rated current on the motor's nameplate should \(\leq\) the rated current of the drive)} \\
\hline \multicolumn{2}{|l|}{Use ON/OFF controller of an electromagnetic contactor at the output (U/V/W) of the drive} & \multicolumn{2}{|l|}{Check the action timing of the contactor and make sure it is not turned ON/OFF when the drive outputs the voltage.} \\
\hline \multicolumn{2}{|l|}{V/F curve setting error} & \multicolumn{2}{|l|}{Adjust V/F curve settings and frequency/voltage. When the fault occurs, and the frequency voltage is too high, reduce the voltage.} \\
\hline \multicolumn{2}{|l|}{Torque compensation is too large.} & \multicolumn{2}{|l|}{Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the output current reduces and the motor does not stall.} \\
\hline \multicolumn{2}{|l|}{Malfunction caused by interference} & \multicolumn{2}{|l|}{Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
The length of motor cable is too \\
long.
\end{tabular} & \begin{tabular}{l}
Increase the AC motor drive's capacity. \\
Install AC reactor(s) on the output side (U/V/W).
\end{tabular} \\
\hline Hardware failure & \begin{tabular}{l}
The ocd occurs due to short circuit or ground fault at the output side of \\
the drive. \\
Check for possible short circuits between terminals with the electric \\
meter:
\end{tabular} \\
B1 corresponds to U, V, W; DC- corresponds to U, V, W; \(\Theta\) corresponds \\
to U, V, W. \\
If short circuits occur, return to the factory for repair.
\end{tabular}\(|\)
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 3 & [0] & Over-current during steady operation (ocn) & Output current exceeds 3 times of the rated current during constant speed. When ocn occurs, the drive closes the gate of the output immediately, the motor runs freely, and the display shows an ocn error. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{300\% of the rated current} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Reset in 5 sec . after the fault is cleared.} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline & ause & & Corrective Actions \\
\hline \multicolumn{2}{|l|}{Short-circuit at motor output due to poor insulation wiring.} & \multicolumn{2}{|l|}{Without considering the short circuits, check the motor cable or replace the cable before turning on the power.} \\
\hline \multicolumn{2}{|l|}{Check for possible shaft lock, burnout or aging insulation of the motor} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Troubleshoot the motor shaft lock. \\
Check the motor insulation value with megger. Replace the motor if the insulation is poor.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Impulsive change of the load} & \multicolumn{2}{|l|}{Reduce the load or increase the capacity of the AC motor drive.} \\
\hline \multicolumn{2}{|l|}{Use special motor or motor with larger capacity than the drive} & \multicolumn{2}{|l|}{Check the motor capacity (the rated current on the motor's nameplate should \(\leq\) the rated current of the drive).} \\
\hline \multicolumn{2}{|l|}{Use ON/OFF controller of an electromagnetic contactor at the output (U/V/W) of the drive} & \multicolumn{2}{|l|}{Check the action timing of the contactor and make sure it is not turned ON/OFF when the drive outputs the voltage.} \\
\hline \multicolumn{2}{|l|}{V/F curve setting error} & \multicolumn{2}{|l|}{Adjust V/F curve settings and frequency/voltage. When the fault occurs, and the frequency voltage is too high, reduce the voltage.} \\
\hline \multicolumn{2}{|l|}{Torque compensation is too large.} & \multicolumn{2}{|l|}{Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the output current reduces and the motor does not stall.} \\
\hline \multicolumn{2}{|l|}{Malfunction caused by interference} & \multicolumn{2}{|l|}{Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.} \\
\hline \multicolumn{2}{|l|}{The length of motor cable is too long.} & \multicolumn{2}{|l|}{Increase the AC motor drive's capacity. Install AC reactor(s) on the output side (U/V/W).} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{\begin{tabular}{l}
The ocn occurs due to short circuit or ground fault at the output side of the drive. \\
Check for possible short circuits between terminals with the electric meter: \\
B1 corresponds to \(\mathrm{U}, \mathrm{V}, \mathrm{W}\); DC- corresponds to \(\mathrm{U}, \mathrm{V}, \mathrm{W}\); corresponds to \(\mathrm{U}, \mathrm{V}, \mathrm{W}\). \\
If short circuits occur, return to the factory for repair.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 4 & 5\% & Ground fault
(GFF) & When the drive detects grounding short circuit on the output terminals (U/V/W), the drive closes the gate of the output immediately, the motor runs freely, and the display shows a GFF error. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Reset in five seconds after the fault is cleared} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Motor burnout or aging insulation occurred} & \multicolumn{2}{|l|}{Check the motor insulation value with megger. Replace the motor if the insulation is poor.} \\
\hline \multicolumn{2}{|l|}{Short circuit due to broken cable} & \multicolumn{2}{|l|}{Troubleshoot the short circuit. Replace the cable.} \\
\hline \multicolumn{2}{|l|}{Larger stray capacitance of the cable and terminal} & \multicolumn{2}{|l|}{\begin{tabular}{l}
If the motor cable length exceeds 100 m , decrease the setting value for the carrier frequency. \\
Take remedies to reduce stray capacitance.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Malfunction caused by interference} & \multicolumn{2}{|l|}{Verify the grounding and wiring of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{Cycle the power after checking the status of motor, cable and cable length. If GFF still exists, return to the factory for repair.} \\
\hline \multicolumn{2}{|l|}{Over-current at constant speed} & \multicolumn{2}{|l|}{Refer to the corrective actions for ocn.} \\
\hline \multicolumn{2}{|l|}{Over-current during acceleration} & \multicolumn{2}{|l|}{Refer to the corrective actions for ocA.} \\
\hline \multicolumn{2}{|l|}{Over-current during deceleration} & \multicolumn{2}{|l|}{Refer to the corrective actions for ocd.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 5 & ■ 0 & IGBT short circuit between upper bridge and lower bridge (occ) & Short-circuit is detected between upper bridge and lower bridge of the IGBT module \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Hardware protection} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Act immediately} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Reset in 5 sec . after the fault is cleared} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{IGBT fault} & \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Short-circuit detecting circuit fault} & \multicolumn{2}{|l|}{Cycle the power, if occ still occurs, return to the factory for repair.} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Fault Name } & \multicolumn{1}{c|}{ Description } \\
\hline 6 & \multicolumn{3}{|c|}{ Action and Reset }
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 7 & d lod loo & Over-voltage during acceleration (ovA) & DC bus over-voltage during acceleration. When ovA occurs, the drive closes the gate of the output, the motor runs freely, and the display shows an ovA error. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{\begin{tabular}{l}
230V series: 410 VD \\
460V series: \(820 V_{D C}\)
\end{tabular}} \\
\hline & on time & \multicolumn{2}{|l|}{Immediately act when DC bus voltage is higher than the level.} \\
\hline Faul & ment parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Reset only when DC bus voltage is lower than \(90 \%\) of the over-voltage level.} \\
\hline & ecord & \multicolumn{2}{|l|}{Yes} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \begin{tabular}{l}
Accele \\
when e
\end{tabular} & \begin{tabular}{l}
too slow (e.g. \\
is going down)
\end{tabular} & \multicolumn{2}{|l|}{Decrease the acceleration time. Use brake unit or DC bus. Replace the drive with a larger capacity model.} \\
\hline The se level is current & stall prevention than no-load & \multicolumn{2}{|l|}{The setting for stall prevention level should be larger than no-load current.} \\
\hline Power & is too high. & \multicolumn{2}{|l|}{Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes.} \\
\hline \begin{tabular}{l}
ON/OF \\
phase- \\
power
\end{tabular} & action of citor in the same & \multicolumn{2}{|l|}{If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor.} \\
\hline \[
\begin{aligned}
& \text { Regen } \\
& \text { inertia }
\end{aligned}
\] & oltage of motor & \multicolumn{2}{|l|}{Use over-voltage stall prevention function (Pr.06-01) Use auto-acceleration and auto-deceleration setting (Pr.01-44) Use a brake unit or DC bus} \\
\hline Acceler & me is too short. & \multicolumn{2}{|l|}{\begin{tabular}{l}
Check if the over-voltage warning occurs after acceleration stops. \\
When the warning occurs, do the following: \\
1. Increase the acceleration time \\
2. Set Pr.06-01 over-voltage stall prevention \\
3. Increase the setting value for Pr.01-25 S-curve acceleration arrival time 2
\end{tabular}} \\
\hline Motor g & fault & \multicolumn{2}{|l|}{\begin{tabular}{l}
The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. \\
Troubleshoot the ground fault.
\end{tabular}} \\
\hline Incorre resisto & g of brake ke unit & \multicolumn{2}{|l|}{Check the wiring of brake resistor or brake unit.} \\
\hline Malfun interfer & aused by & \multicolumn{2}{|l|}{Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 8 & -10 & Over-voltage during deceleration (ovd) & DC bus over-voltage during deceleration. When ovd occurs, the drive closes the gate of the output, the motor runs freely, and the display shows an ovd error. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{\begin{tabular}{l}
230V series: \(410 V_{D C}\) \\
460 V series: \(820 \mathrm{~V}_{\mathrm{DC}}\)
\end{tabular}} \\
\hline & n time & \multicolumn{2}{|l|}{Immediately act when DC bus voltage is higher than the level.} \\
\hline Faul & nt parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Reset only when DC bus voltage is lower than \(90 \%\) of the over-voltage level.} \\
\hline & cord & \multicolumn{2}{|l|}{Yes} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Decele causing energy & me is too short, ge regenerative oad. & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Increase the setting value for Pr.01-13, Pr.01-15, Pr.01-17 and Pr.01-19 (deceleration time). \\
2. Connect brake resistor, brake unit or DC bus to the drive. \\
3. Reduce the brake frequency. \\
4. Replace the drive with a larger capacity model. \\
5. Use S-curve acceleration/deceleration. \\
6. Use over-voltage stall prevention (Pr.06-01). \\
7. Use auto-acceleration and auto-deceleration (Pr.01-44). \\
Adjust braking level (Pr.07-01 or the bolt position of the brake unit).
\end{tabular}} \\
\hline The se level is current & stall prevention than no-load & \multicolumn{2}{|l|}{The setting for stall prevention level should be larger than no-load current.} \\
\hline Power & is too high. & \multicolumn{2}{|l|}{Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes.} \\
\hline \begin{tabular}{l}
ON/OF \\
phase- \\
power
\end{tabular} & action of itor in the same & \multicolumn{2}{|l|}{If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor.} \\
\hline Motor g & & \multicolumn{2}{|l|}{\begin{tabular}{l}
The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. \\
Troubleshoot the ground fault.
\end{tabular}} \\
\hline Incorre resistor & \begin{tabular}{l}
of brake \\
e unit
\end{tabular} & \multicolumn{2}{|l|}{Check the wiring of brake resistor or brake unit.} \\
\hline \begin{tabular}{l}
Malfun \\
interfer
\end{tabular} & used by & \multicolumn{2}{|l|}{Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 9 & [1) & Over-voltage at constant speed (ovn) & DC bus over-voltage at constant speed. When ovn occurs, the drive closes the gate of the output, motor runs freely, and the display shows an ovn error. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& 230 \mathrm{~V} \text { series: } 410 \mathrm{~V}_{\mathrm{DC}} \\
& 460 \mathrm{~V} \text { series: } 820 \mathrm{~V} \mathrm{DC}
\end{aligned}
\]} \\
\hline & on time & \multicolumn{2}{|l|}{Immediately act when DC bus voltage is higher than the level.} \\
\hline Faul & ent parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Reset only when DC bus voltage is lower than \(90 \%\) of the over-voltage level.} \\
\hline & cord & \multicolumn{2}{|l|}{Yes} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Impulsi & ge of the load & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Connect brake resistor, brake unit or \(D C\) bus to the drive. \\
2. Reduce the load. \\
3. Replace the drive with a larger capacity model. \\
4. Adjust braking level (Pr.07-01 or the bolt position of the brake unit).
\end{tabular}} \\
\hline The se level is current & stall prevention than no-load & \multicolumn{2}{|l|}{The setting for stall prevention level should be larger than no-load current.} \\
\hline Regene inertia & voltage of motor & \multicolumn{2}{|l|}{Use over-voltage stall prevention function (Pr.06-01) Use a brake unit or DC bus} \\
\hline Power & is too high. & \multicolumn{2}{|l|}{Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes.} \\
\hline ON/OF phasepower & action of itor in the same & \multicolumn{2}{|l|}{If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor.} \\
\hline Motor g & & \multicolumn{2}{|l|}{\begin{tabular}{l}
The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. \\
Troubleshoot the ground fault.
\end{tabular}} \\
\hline Incorre resisto & of brake e unit & \multicolumn{2}{|l|}{Check the wiring of brake resistor or brake unit.} \\
\hline Malfun interfer & used by & \multicolumn{2}{|l|}{Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 10 & - & Over-voltage at stop (ovS) & Over-voltage at stop \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{230 V series: \(410 \mathrm{~V}_{\mathrm{DC}}\)
460 V series: \(820 \mathrm{~V}_{\mathrm{DC}}\)} \\
\hline & on time & \multicolumn{2}{|l|}{Immediately act when DC bus voltage is higher than the level.} \\
\hline Fault & ent parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Reset only when DC bus voltage is lower than \(90 \%\) of the over-voltage level.} \\
\hline & cord & \multicolumn{2}{|l|}{Yes} \\
\hline & ause & & Corrective Actions \\
\hline Power & is too high. & \multicolumn{2}{|l|}{Check if the input voltage is within the rated AC motor drive input voltage range, and check for possible voltage spikes.} \\
\hline ON/OFF phase-in power sy & action of citor in the same & \multicolumn{2}{|l|}{If the phase-in capacitor or active power supply unit acts in the same power system, the input voltage may surge abnormally in a short time. In this case, install an AC reactor.} \\
\hline Incorrec resistor & of brake e unit & \multicolumn{2}{|l|}{Check the wiring of brake resistor or brake unit.} \\
\hline Malfunc interfere & used by & \multicolumn{2}{|l|}{Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.} \\
\hline Hardwa detectio & re in voltage & \multicolumn{2}{|l|}{Check if other error codes such as cd1-cd3 occur after cycling the power. If yes, return to the factory for repair.} \\
\hline Motor g & ault & \multicolumn{2}{|l|}{\begin{tabular}{l}
The ground short circuit current charges the capacitor in the main circuit through the power. Check if there is ground fault on the motor cable, wiring box and its internal terminals. \\
Troubleshoot the ground fault.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Fault Name } & \multicolumn{1}{c|}{ Description } \\
\hline 11 & & \begin{tabular}{c}
Low-voltage during \\
acceleration \\
\((\) LvA \()\)
\end{tabular} & \begin{tabular}{l}
Action and Reset \\
during acceleration.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Action condition } \\
\multicolumn{1}{|c|}{ Action time } & Pr.06-00 (Default = depending on the model)
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Fault Name } & \multicolumn{1}{c|}{ Description } \\
\hline 12 & & \begin{tabular}{c}
Low-voltage during \\
deceleration \\
(Lvd)
\end{tabular} & \begin{tabular}{l}
DC bus voltage is lower than Pr.06-00 setting \\
value during deceleration.
\end{tabular} \\
\hline \multicolumn{2}{|c|}{ Action condition } & Pr.06-00 (Default = depending on the model) \\
\hline \multicolumn{2}{|c|}{ Action time } & Immediate activate when DC bus voltage is lower than Pr.06-00. \\
\hline Fault treatment parameter & N/A \\
\hline \multicolumn{2}{|c|}{ Reset method } & Manual reset \\
\hline \multicolumn{2}{|c|}{ Reset condition } & Record & Yes when DC bus voltage is higher than Pr.06-00 + 30 V \\
\hline \multicolumn{2}{|c|}{ Cause } & \\
\hline Power-off & Improve power supply condition. \\
\hline Power voltage changes & Adjust voltage to the power range of the drive. \\
\hline Start up the motor with large & \begin{tabular}{l}
Check the power system. \\
Increase the capacity of power equipment.
\end{tabular} \\
\hline capacity. & \begin{tabular}{l}
Reduce the load. \\
Sudden load
\end{tabular} & Increase the drive capacity.
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Fault Name } & \multicolumn{1}{c|}{ Description } \\
\hline 13 & & \begin{tabular}{c}
Low-voltage at \\
constant speed \\
(Lvn)
\end{tabular} & \begin{tabular}{l}
Action and Reset \\
at constant speed.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{ Action condition } \\
\multicolumn{2}{|c|}{ Action time } & Pr.06-00 (Default = depending on the model)
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Fault Name } & \multicolumn{1}{c|}{ Description } \\
\hline 14 & & \begin{tabular}{l}
Low-voltage at stop \\
\((\) LvS \()\)
\end{tabular} & \begin{tabular}{l}
1. DC bus voltage is lower than Pr.06-00 setting \\
value at stop. \\
2. Hardware failure in voltage detection.
\end{tabular} \\
\hline \multicolumn{2}{|c|}{ Action condition } & \multicolumn{1}{c|}{ Action and Reset }
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 15 & -17 & Phase loss protection (orP) & Phase loss of power input \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & ondition & \multicolumn{2}{|l|}{When DC bus ripple is higher than the protection level, and the output current exceeds \(50 \%\) of the rated current, the drive starts counting. When the counting value reaches the upper limit, an orP error occurs.} \\
\hline & n time & \multicolumn{2}{|l|}{The action time varies with different output current.} \\
\hline Fault & ent parameter & \multicolumn{2}{|l|}{Pr.06-53} \\
\hline & method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Immediately reset when DC bus is higher than Pr.07-00} \\
\hline & cord & \multicolumn{2}{|l|}{Yes} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Phase & nput power & \multicolumn{2}{|l|}{Correctly install the wiring of the main circuit power.} \\
\hline Single p three-ph & power input to odel & \multicolumn{2}{|l|}{Choose the model whose power matches the voltage.} \\
\hline Power v & changes & \multicolumn{2}{|l|}{If the main circuit power works normally, verify the main circuit. Cycle the power after checking the power, if orP error still exists, return to the factory for repair.} \\
\hline Loose power & rminal of input & \multicolumn{2}{|l|}{Tighten the terminal screws according to the torque described in the user manual.} \\
\hline The inp power is & of three-phase & \multicolumn{2}{|l|}{\begin{tabular}{l}
Wire correctly. \\
Replace the cut off cable.
\end{tabular}} \\
\hline Unbalan input po & ree-phase of & \multicolumn{2}{|l|}{Check the power three-phase status.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 16 & - & IGBT overheating (oH1) & IGBT temperature exceeds the protection level. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & ondition & \multicolumn{2}{|l|}{Depending on the model power, refer to Table 1 below. When the setting for Pr.06-15 is higher than the oH1 level, oH1 error occurs instead of oH1 warning. An IGBT overheating error occurs, and the drive stops.} \\
\hline Fault & ent parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{\begin{tabular}{l}
Reset only when IGBT temperature is lower than oH1 error level minus \\
(-) \(10^{\circ} \mathrm{C}\)
\end{tabular}} \\
\hline & cord & \multicolumn{2}{|l|}{Yes} \\
\hline & ause & & Corrective Actions \\
\hline Check i tempera inside th high, or the vent control & mbient temperature rol cabinet is too is obstruction in hole of the & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Check ambient temperature. \\
2. Regularly inspect the ventilation hole of the control cabinet. \\
3. Change the installed place if there are heating objects, such as brake resistors, in the surroundings. \\
4. Install / add cooling fan or air conditioner to lower the temperature inside the cabinet.
\end{tabular}} \\
\hline Check i obstruction if the fan & \begin{tabular}{l}
is any \\
the heat sink or ning.
\end{tabular} & \multicolumn{2}{|l|}{Remove the obstruction or replace the cooling fan.} \\
\hline Insufficie & tilation space & \multicolumn{2}{|l|}{Increase ventilation space of the drive.} \\
\hline Check if corresp & ve matches the load & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Reduce the load \\
2. Reduce the carrier wave \\
3. Replace the drive with a larger capacity model.
\end{tabular}} \\
\hline The driv more th output for & un \(100 \%\) or \(\%\) of the rated g time & \multicolumn{2}{|l|}{Replace the drive with a larger capacity model.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No． & Display & Fault Name & Description \\
\hline 17 & － & Over－heat key components（oH2） & The drive has detected the key components are over heat \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Refer to the table below for oH2 level of each models} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{The oH2 fault occurs when the temperature sensor of key components detects the temperature is higher than the protection level for 100 ms ．} \\
\hline Faul & ent parameter & \multicolumn{2}{|l|}{N／A} \\
\hline & method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{The drive auto－resets when the temperature sensor of key components detects the temperature is lower than oH 2 error level minus \((-) 10^{\circ} \mathrm{C}\)} \\
\hline & cord & \multicolumn{2}{|l|}{Yes} \\
\hline & ase & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \begin{tabular}{l}
Check \\
temper \\
inside \\
high，or \\
the ven \\
control
\end{tabular} & bient temperature ol cabinet is too is obstruction in hole of the & \multicolumn{2}{|l|}{\begin{tabular}{l}
1．Check ambient temperature． \\
2．Regularly inspect the ventilation hole of the control cabinet． \\
3．Change the installed place if there are heating objects，such as braking resistors，in the surroundings． \\
4．Install／add cooling fan or air conditioner to lower the temperature inside the cabinet．
\end{tabular}} \\
\hline Check obstruc if the fa & \begin{tabular}{l}
s any \\
the heat sink or ning．
\end{tabular} & \multicolumn{2}{|l|}{Remove the obstruction or replace the cooling fan．} \\
\hline Insuffic & tilation space & \multicolumn{2}{|l|}{Increase ventilation space of the drive．} \\
\hline \multicolumn{2}{|l|}{Check if the drive matches the corresponding load} & \multicolumn{2}{|l|}{\begin{tabular}{l}
1．Reduce the load \\
2．Reduce the carrier \\
3．Replace the drive with a larger capacity model．
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{The drive has run \(100 \%\) or more than \(100 \%\) of the rated output for a long time} & \multicolumn{2}{|l|}{Replace the drive with a larger capacity model．} \\
\hline \multicolumn{2}{|l|}{Unstable power} & \multicolumn{2}{|l|}{Install reactor（s）} \\
\hline \multicolumn{2}{|l|}{Load changes frequently} & \multicolumn{2}{|l|}{Reduce load changes} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Voltage & \begin{tabular}{l}
Model \\
（NOTE：x＝A orE）
\end{tabular} & oH1（ \(\left.{ }^{\circ} \mathrm{C}\right)\) & oH2（ \({ }^{\circ} \mathrm{C}\) ） & \begin{tabular}{l}
oH warning \\
oH 1 warning \(=\mathrm{Pr} .06-15\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} \\
\hline \multirow[b]{3}{*}{Single－phase
_115V} & VFD1A6MH11xa \({ }^{\text {a }}\) & 95 & － & \multirow{8}{*}{\[
\begin{aligned}
& \mathrm{oH} 1 \text { warning }=\mathrm{oH} 1-5 \\
& \mathrm{oH} 2 \text { warning }=\mathrm{oH} 2-5
\end{aligned}
\]} \\
\hline & VFD2A5MH11xamAロ & 100 & － & \\
\hline & VFD5A0MH11xa \({ }^{\text {a }}\) & 100 & － & \\
\hline \multirow{5}{*}{Single－phase
_230V} & VFD1A6MH21xロロAロ & 110 & － & \\
\hline & VFD2A8MH21xa \({ }^{\text {a }}\) & 110 & － & \\
\hline & VFD5A0MH21xa \({ }^{\text {a }}\) & 110 & － & \\
\hline & VFD7A5MH21x \(\square\) A \(\square\) & 110 & － & \\
\hline & VFD11AMH21x \(\square\) A \(\square\) & 110 & － & \\
\hline
\end{tabular}

Chapter 14 Fault Codes｜MH300
\begin{tabular}{|c|c|c|c|c|}
\hline Voltage & \begin{tabular}{l}
Model \\
（NOTE：x＝A orE）
\end{tabular} & \(\mathrm{oH} 1\left({ }^{\circ} \mathrm{C}\right)\) & oH2（ \({ }^{\circ} \mathrm{C}\) ） & oH warning oH 1 warning \(=\operatorname{Pr} .06-15\left({ }^{\circ} \mathrm{C}\right)\) \\
\hline \multirow{14}{*}{Three－phase
_230V} & VFD1A6MH23xロロA■ & 95 & － & \multirow{31}{*}{\begin{tabular}{l}
oH 1 warning \(=\mathrm{oH} 1-5\) \\
oH 2 warning \(=\mathrm{oH} 2-5\)
\end{tabular}} \\
\hline & VFD2A8MH23xロロAロ & 100 & － & \\
\hline & VFD5A0MH23xanA■ & 105 & － & \\
\hline & VFD7A5MH23xロaAם & 110 & － & \\
\hline & VFD11AMH23xロaAロ & 100 & － & \\
\hline & VFD17AMH23xロロAロ & 105 & － & \\
\hline & VFD25AMH23xロロAロ & 105 & － & \\
\hline & VFD33AMH23xロaA■ & 115 & － & \\
\hline & VFD49AMH23xロロAロ & 115 & － & \\
\hline & VFD65AMH23xanA■ & 115 & － & \\
\hline & VFD75AMH23xロaAロ & 95 & 65 & \\
\hline & VFD90AMH23xanAロ & 95 & 65 & \\
\hline & VFD120MH23xロaAロ & 95 & 65 & \\
\hline & VFD146MH23xanAa & 95 & 65 & \\
\hline \multirow{17}{*}{Three－phase
_460V} & VFD1A5MH43xロロAロ & 105 & － & \\
\hline & VFD3A0MH43xロロAロ & 110 & － & \\
\hline & VFD4A2MH43xanAロ & 110 & － & \\
\hline & VFD5A7MH43xロロAロ & 95 & － & \\
\hline & VFD7A3MH43xロロA■ & 100 & － & \\
\hline & VFD9A0MH43xロロAロ & 115 & － & \\
\hline & VFD13AMH43xロロA■ & 105 & － & \\
\hline & VFD17AMH43xロロAロ & 110 & － & \\
\hline & VFD25AMH43xロロA■ & 115 & － & \\
\hline & VFD32AMH43xロaAם & 115 & － & \\
\hline & VFD38AMH43xロロA■ & 110 & － & \\
\hline & VFD45AMH43xロロAロ & 115 & － & \\
\hline & VFD60AMH43xロaAם & 95 & 65 & \\
\hline & VFD75AMH43xロロAロ & 95 & 65 & \\
\hline & VFD91AMH43xロロAロ & 95 & 65 & \\
\hline & VFD112MH43xanAロ & 95 & 65 & \\
\hline & VFD150MH43xロロAロ & 95 & 65 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 18 & E-H100 & IGBT temperature detection failure (tH1o) & IGBT hardware failure in temperature detection \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{NTC broken or wiring failure} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{When the IGBT temperature is higher than the protection level, and detection time exceeds 100 ms , the tH 10 protection activates.} \\
\hline Fault & lt treatment parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & Reset method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & Reset condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & Record & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{Wait for 10 minutes, and then cycle the power. Check if tH1o protection still exists. If yes, return to the factory for repair.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Fault Name } & \multicolumn{1}{c|}{ Description } \\
\hline 19 & \multicolumn{3}{|c|}{ Action and Reset } \\
\hline \multicolumn{3}{|c|}{\begin{tabular}{c}
Capacitor hardware \\
fault \\
(tH2o)
\end{tabular}} & Hardware failure in capacitor temperature detection \\
\hline Action condition & NTC broken or wiring failure \\
\hline Action time & \begin{tabular}{l}
When the IGBT temperature is higher than the protection level, and \\
detection time exceeds 100ms, the tH2o protection occurs.
\end{tabular} \\
\hline Fault treatment parameter & N/A \\
\hline Reset method & Manual reset \\
\hline Reset condition & Reset immediately \\
\hline Record & Yes \\
\hline Cause & \begin{tabular}{l}
Wait for 10 minutes, and then cycle the power. Check if tH2o protection \\
still occurs. If yes, return to the factory for repair.
\end{tabular} \\
\hline Hardware failure &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 21 & 01. & \begin{tabular}{l}
Overload \\
(oL)
\end{tabular} & \begin{tabular}{l}
The AC motor drive detects excessive drive output current. \\
Overload capacity: \\
- Normal duty: \\
Sustains for one minute when the drive outputs \(120 \%\) of the drive's rated output current. \\
Sustains for three seconds when the drive outputs \(150 \%\) of the drive's rated output current. \\
- Heavy duty: \\
Sustains for one minute when the drive outputs \(150 \%\) of the drive's rated output current. \\
Sustains for three seconds when the drive outputs \(200 \%\) of the drive's rated output current.
\end{tabular} \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Based on overload curve and derating curve (refer to the section 9-6)} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{When the load is higher than the protection level and exceeds allowable time, the oL protection activates.} \\
\hline Faul & ent parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Reset in 5 sec . after the fault is cleared.} \\
\hline & cord & \multicolumn{2}{|l|}{Yes} \\
\hline & use & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline The load & arge. & \multicolumn{2}{|l|}{Reduce the load.} \\
\hline Accel. working & me and the e too short. & \multicolumn{2}{|l|}{Increase the setting values for Pr.01-12-01-19 (accel. / decel. time).} \\
\hline \multicolumn{2}{|l|}{V/F voltage is too high.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). \\
Refer to the V/F curve selection of Pr.01-43.
\end{tabular}} \\
\hline The capa small. & the drive is too & \multicolumn{2}{|l|}{Replace the drive with a larger capacity model.} \\
\hline \multicolumn{2}{|l|}{Overload during low-speed operation.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Reduce the load during low-speed operation. Increase the drive capacity. \\
Decrease the carrier frequency of Pr.00-17.
\end{tabular}} \\
\hline Torque large. & sation is too & \multicolumn{2}{|l|}{Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the output current reduces and the motor does not stall.} \\
\hline Check preven & ting for stall rrect. & \multicolumn{2}{|l|}{Set the stall prevention to the proper value.} \\
\hline \multicolumn{2}{|l|}{Output phase loss} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Check the status of three-phase motor. \\
Check if the cable is broken or the screws are loose.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Improper parameter settings for \\
the speed tracking function
\end{tabular} & Correct the parameter settings for speed tracking. \\
(including restart after & 1. \\
\begin{tabular}{ll}
Start the speed tracking function. \\
momentary power loss and & 2.
\end{tabular} Adjust the maximum current for Pr.07-09 speed tracking. \\
restart after fault) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 22 & & Electronic thermal relay 1 protection (EoL1) & Electronic thermal relay 1 protection. The drive coasts to stop once it activates. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Start counting when output current > 150\% of motor 1 rated current.} \\
\hline & ion time & \multicolumn{2}{|l|}{Pr.06-14 (if the output current is larger than \(105 \%\) of motor 1 rated current again within 60 sec., the counting time reduces and is less than Pr.0614.)} \\
\hline Faul & ent parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & et method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Reset in 5 sec . after the fault is cleared.} \\
\hline & Record & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline The load & large. & \multicolumn{2}{|l|}{Reduce the load.} \\
\hline \begin{tabular}{l}
Accel./ \\
working
\end{tabular} & time and the are too short. & \multicolumn{2}{|l|}{Increase the setting values for Pr.01-12-01-19 (accel. / decel. time)} \\
\hline V/F volt & too high. & \multicolumn{2}{|l|}{\begin{tabular}{l}
Adjust the settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). \\
Refer to the V/F curve selection of Pr.01-43.
\end{tabular}} \\
\hline \begin{tabular}{l}
Overloa \\
operati \\
When \\
even it \\
current \\
occur d \\
operati
\end{tabular} & \begin{tabular}{l}
ng low-speed \\
general motor, es below rated erload may still ow-speed
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Decrease low-speed operation time. \\
Replace the drive with a dedicated to VFD model. Increase the motor capacity.
\end{tabular}} \\
\hline \begin{tabular}{l}
When \\
motors \\
therma \\
= 0 inv
\end{tabular} & FD dedicated -13=0 (electronic selection motor 1 otor) & \multicolumn{2}{|l|}{Pr.06-13=1 electronic thermal relay selection motor \(1=\) standard motor (motor with fan on the shaft).} \\
\hline Incorre therma & e of electronic & \multicolumn{2}{|l|}{Reset to the correct motor rated current.} \\
\hline The max is set too & motor frequency & \multicolumn{2}{|l|}{Reset to the correct motor rated frequency.} \\
\hline One dri & ultiple motors & \multicolumn{2}{|l|}{Set Pr.06-13=2 electronic thermal relay selection motor \(1=\) disable, and install thermal relay on each motor.} \\
\hline Check preven & etting for stall correct. & \multicolumn{2}{|l|}{Set the stall prevention to the proper value.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Torque compensation is too \\
large.
\end{tabular} & \begin{tabular}{l}
Adjust the torque compensation (refer to Pr.07-26 torque compensation \\
gain) until the current reduces and the motor does no stall.
\end{tabular} \\
\hline Motor fan error & Check the status of the fan, or replace the fan. \\
\hline \begin{tabular}{l}
Unbalanced three-phase \\
impedance of the motor
\end{tabular} & Replace the motor. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 23 & [ala & Electronic thermal relay 2 protection (EoL2) & Electronic thermal relay 2 protection. The drive coasts to stop once it activates. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & condition & \multicolumn{2}{|l|}{Start counting when the output current \(>150 \%\) of the motor 2 rated current} \\
\hline & ion time & \multicolumn{2}{|l|}{Pr.06-28 (If the output current is larger than \(105 \%\) of the motor 2 rated current again within 60 sec ., the counting time reduces and is less than Pr.06-28)} \\
\hline Faul & ent parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & et method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Reset in five seconds after the fault is cleared} \\
\hline & Record & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline The load & o large & \multicolumn{2}{|l|}{Reduce the load} \\
\hline Accel. working & time or the are too short & \multicolumn{2}{|l|}{Increase the setting values for Pr.01-12-01-19 (accel. / decel. time)} \\
\hline V/F volt & oo high & \multicolumn{2}{|l|}{\begin{tabular}{l}
Adjust the settings for Pr.01-35-01-42 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). \\
Refer to the V/F curve selection setting of Pr.01-43.
\end{tabular}} \\
\hline \begin{tabular}{l}
Overload \\
operat \\
When \\
even it \\
current \\
occur \\
operat
\end{tabular} & \begin{tabular}{l}
ng low-speed \\
general motor, es below rated verload may still ow-speed
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Decrease low-speed operation time. \\
Replace the drive with a dedicated to VFD model. Increase the motor capacity.
\end{tabular}} \\
\hline \begin{tabular}{l}
When \\
motors \\
therma
\[
=0 \text { inve }
\]
\end{tabular} & VFD dedicated -27=0 (electronic selection motor 2 motor) & \multicolumn{2}{|l|}{Pr.06-27=1 Electronic thermal relay selection motor 2 = standard motor (motor with fan on the shaft).} \\
\hline Incorre therma & e of electronic & \multicolumn{2}{|l|}{Reset to the correct motor rated current.} \\
\hline The maxir is set to & motor frequency & \multicolumn{2}{|l|}{Reset to the correct motor rated frequency.} \\
\hline One driv & ultiple motors & \multicolumn{2}{|l|}{Set Pr.06-27=2 Electronic thermal relay selection motor 2 = disable, and install thermal relay on each motor.} \\
\hline Check preven & setting for stall correct. & \multicolumn{2}{|l|}{Set the stall prevention to the proper value.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Torque compensation is too \\
large
\end{tabular} & \begin{tabular}{l}
Adjust the torque compensation (refer to Pr.07-71 torque compensation \\
gain) until the current reduces and the motor does no stall.
\end{tabular} \\
\hline Motor fan error & Check the status of the fan, or replace the fan. \\
\hline \begin{tabular}{l}
Unbalanced three-phase \\
impedance of the motor
\end{tabular} & Replace the motor. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Fault Name } \\
\hline \(24 _1\) & \multicolumn{1}{c|}{\begin{tabular}{l}
Motor overheating \\
(oH3) PTC
\end{tabular}} & \begin{tabular}{l}
Motor overheating (PTC) (Pr.03-00-Pr.03-01=6 \\
PTC), when PTC input > Pr.06-30, the fault \\
treatment acts according to Pr.06-29.
\end{tabular} \\
\hline \multicolumn{1}{|c|}{ Action condition } & \multicolumn{1}{c|}{ Action and Reset }
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Check if the setting for stall \\
prevention is correct.
\end{tabular} & Set the stall prevention to the proper value. \\
\hline \begin{tabular}{l}
Unbalanced three-phase \\
impedance of the motor
\end{tabular} & Replace the motor. \\
\hline Harmonics are too high. & Use remedies to reduce harmonics. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 24_2 & 1-7 & Motor overheating (oH3) PT100 & Motor overheating (PT100) (Pr.03-00-Pr.0301=11 PT100). When PT100 input > Pr.06-57 (default \(=7 \mathrm{~V}\)), the fault treatment acts according to Pr.06-29. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{PT100 input value > Pr.06-57 setting (default = 7 V)} \\
\hline & n time & \multicolumn{2}{|l|}{Immediately act} \\
\hline Faul & ent parameter & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.06-29 \\
0 : Warn and continue operation \\
1: Fault and ramp to stop \\
2: Fault and coast to stop \\
3: No warning
\end{tabular}} \\
\hline & method & \multicolumn{2}{|l|}{\begin{tabular}{l}
When Pr.06-29=0 and the temperature < Pr.06-56, oH3 is automatically cleared. \\
When Pr.06-29=1 or 2, oH3 is a "Fault". You must reset manually.
\end{tabular}} \\
\hline & condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & cord & \multicolumn{2}{|l|}{When Pr.06-29=1 or 2, oH3 is a "Fault", and the fault is recorded.} \\
\hline & cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Motor s & & \multicolumn{2}{|l|}{Remove the shaft lock.} \\
\hline The load & large & \multicolumn{2}{|l|}{Reduce the load. Increase the motor capacity.} \\
\hline \begin{tabular}{l}
Ambien \\
high
\end{tabular} & rature is too & \multicolumn{2}{|l|}{Change the installed place If there are heating devices in the surroundings. Install/ add cooling fan or air conditioner to lower the ambient temperature.} \\
\hline Motor & system error & \multicolumn{2}{|l|}{Check the cooling system to make it work normally.} \\
\hline Motor fan & & \multicolumn{2}{|l|}{Replace the fan.} \\
\hline Operate & -speed too long & \multicolumn{2}{|l|}{\begin{tabular}{l}
Decrease low-speed operation time. \\
Replace the motor with a dedicated to VFD model. Increase the motor capacity.
\end{tabular}} \\
\hline & me and working ort & \multicolumn{2}{|l|}{Increase the setting values for Pr.01-12-Pr.01-19 (accel./decel. time)} \\
\hline V/F volt & too high & \multicolumn{2}{|l|}{Adjust settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed).} \\
\hline \begin{tabular}{l}
Check \\
current \\
motor
\end{tabular} & otor rated es that on the ate. & \multicolumn{2}{|l|}{Reset to the correct motor rated current.} \\
\hline \begin{tabular}{l}
Check \\
set and
\end{tabular} & T100 is properly & \multicolumn{2}{|l|}{Check connection of PT100 thermistor.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Check if the setting for stall \\
prevention is correct.
\end{tabular} & Set the stall prevention to the proper value. \\
\hline \begin{tabular}{l}
Unbalanced three-phase \\
impedance of the motor
\end{tabular} & Replace the motor. \\
\hline Harmonics are too high & Use remedies to reduce harmonics. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 26 & \(\square 1\) & Over-torque 1 (ot1) & When output current exceeds the over-torque detection level (Pr.06-07) and exceeds over-torque detection time (Pr.06-08), and when Pr.06-06 or Pr.06-09 is set to 2 or 4 , the ot 1 error displays. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Pr.06-07} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Pr.06-08} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.06-06 \\
0 : No function \\
1: Continue operation after over-torque detection during constant speed operation \\
2: Stop after over-torque detection during constant speed operation \\
3: Continue operation after over-torque detection during RUN \\
4: Stop after over-torque detection during RUN
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Reset method}} & \multicolumn{2}{|l|}{When Pr.06-06=1 or 3, ot1 is a "Warning". The warning is Auto automatically cleared when the output current < (Pr.06-07 5\%).} \\
\hline & & \multicolumn{2}{|l|}{Manual \({ }^{\text {When Pr.06-06=2 or 4, ot1 is a "Fault". You must reset manually. }}\)} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & cord & \multicolumn{2}{|l|}{When Pr.06-06=2 or 4, ot1 is a "Fault", and the fault is recorded.} \\
\hline & cuse & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Incorrect parameter setting} & \multicolumn{2}{|l|}{Reset Pr.06-07 and 06-08.} \\
\hline \multicolumn{2}{|l|}{Mechanical error (e.g. overtorque, mechanical lock)} & \multicolumn{2}{|l|}{Remove the causes of malfunction.} \\
\hline \multicolumn{2}{|l|}{The load is too large.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Reduce the load. \\
Replace the motor with a larger capacity model.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Accel. / Decel. time and working cycle are too short.} & \multicolumn{2}{|l|}{Increase the setting values for Pr.01-12-01-19 (accel. / decel. time).} \\
\hline \multicolumn{2}{|l|}{V/F voltage is too high.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Adjust settings for Pr.01-01-01-08 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed). \\
Refer to the V/F curve selection of Pr.01-43.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{The motor capacity is too small.} & \multicolumn{2}{|l|}{Replace the motor with a larger capacity model.} \\
\hline \multicolumn{2}{|l|}{Overload during low-speed operation.} & \multicolumn{2}{|l|}{Decrease low-speed operation time. Increase the motor capacity.} \\
\hline \multicolumn{2}{|l|}{Torque compensation is too large.} & \multicolumn{2}{|l|}{Adjust the torque compensation (refer to Pr.07-26 torque compensation gain) until the current reduces and the motor does no stall.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Improper parameter settings for & \\
speed tracking function & Correct the parameter settings for speed tracking. \\
(including restart after & 1. \\
\begin{tabular}{ll}
Start the speed tracking function. \\
momentary power loss and & 2. \\
restart after fault)
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 27 & -170 & Over torque 2 (ot2) & When the output current exceeds the over-torque detection level (Pr.06-10) and exceeds overtorque detection time (Pr.06-11), and when Pr.0609 is set to 2 or 4 , the ot 2 error displays. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Pr.06-10} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Pr.06-11} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.06-09 \\
0 : No function \\
1: Continue operation after over-torque detection during constant speed operation \\
2: Stop after over-torque detection during constant speed operation \\
3: Continue operation after over-torque detection during RUN \\
4: Stop after over-torque detection during RUN
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Reset method \\
Reset condition
\end{tabular}}} & \multicolumn{2}{|l|}{When Pr.06-09=1 or 3, ot2 is a "Warning". The warning is Auto automatically cleared when the output current < (Pr.06-10 \(5 \%)\).} \\
\hline & & \multicolumn{2}{|l|}{Manual When Pr.06-09=2 or 4, ot2 is a "Fault". You must reset manually.} \\
\hline & cord & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & e level & \multicolumn{2}{|l|}{When Pr.06-09=2 or 4, ot2 is a "Fault", and the fault is recorded.} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Incorre & meter setting & \multicolumn{2}{|l|}{Configure the settings for Pr.06-10 and Pr.06-11 again.} \\
\hline Mecha torque, & \begin{tabular}{l}
ure (e.g. over- \\
ical lock)
\end{tabular} & \multicolumn{2}{|l|}{Remove the causes of malfunction.} \\
\hline \multicolumn{2}{|l|}{The load is too large.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Reduce the load. \\
Replace the motor with a larger capacity model.
\end{tabular}} \\
\hline Accel. working & time and are too short & \multicolumn{2}{|l|}{Increase the setting values for Pr.01-12-01-19 (accel. / decel. time).} \\
\hline \multicolumn{2}{|l|}{V/F voltage is too high} & \multicolumn{2}{|l|}{Adjust the V/F curve (Motor 2, Pr.01-35-01-42), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed).} \\
\hline \multicolumn{2}{|l|}{The motor capacity is too small} & \multicolumn{2}{|l|}{Replace the motor with a larger capacity model.} \\
\hline \multicolumn{2}{|l|}{Overload during low-speed operation} & \multicolumn{2}{|l|}{Decrease low-speed operation time. Increase the motor capacity.} \\
\hline \multicolumn{2}{|l|}{Torque compensation is too large} & \multicolumn{2}{|l|}{Adjust the torque compensation (refer to Pr.07-71 torque compensation gain) until the current reduces and the motor does no stall.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Improper parameter settings for & \\
speed tracking function & Correct the parameter settings for speed tracking. \\
(including restart at momentary & 1. \\
\begin{tabular}{ll}
Start the speed tracking function. \\
power loss and restart after & 2.
\end{tabular} & Adjust the maximum current for Pr.07-09 speed tracking. \\
fault)
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 28 & +5-5 & Under current (uC) & Low current detection \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Pr.06-71} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Pr.06-72} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.06-73 \\
0 : No function \\
1: warn and coast to stop \\
2: warn and ramp to stop by the \(2^{\text {nd }}\) deceleration time \\
3: warn and continue operation
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Reset method}} & \multicolumn{2}{|l|}{When Pr.06-73=3, uC is a "Warning". The warning is Auto automatically cleared when the output current > (Pr.06-71 + 0.1 A).} \\
\hline & & \multicolumn{2}{|l|}{Manual When Pr.06-73=1 or 2, uC is a "Fault". You must reset manually.} \\
\hline & condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & cord & \multicolumn{2}{|l|}{When Pr.06-73=1 or 2, uC is a "Fault", and the fault is recorded.} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Motor cable disconnection} & \multicolumn{2}{|l|}{Troubleshoot the connection between the motor and the load.} \\
\hline Improp protect & g of low-current & \multicolumn{2}{|l|}{Reset Pr.06-71, Pr.06-72 and Pr.06-73 to proper settings.} \\
\hline \multicolumn{2}{|l|}{The load is too low.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Check the load status. \\
Check if the motor capacity matches the load.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Fault Name } & \multicolumn{1}{c|}{ Description } \\
\hline 29 & & \multicolumn{2}{c|}{ Action and Reset }
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Fault Name } & Description \\
\hline 31 & & \begin{tabular}{c}
EEPROM read error \\
(cF2)
\end{tabular} & Internal EEPROM cannot be read. \\
\hline \multicolumn{3}{|c|}{ Action and Reset } \\
\hline Action condition & Firmware internal detection \\
\hline Action time & cF2 acts immediately when the drive detects the fault. \\
\hline Fault treatment parameter & N/A \\
\hline Reset method & Manual reset \\
\hline Reset condition & Immediately reset \\
\hline Record & Yes \\
\hline Cause & \begin{tabular}{l}
Press RESET key. If cF2 error still displays on the keypad, return to the \\
factory for repair. \\
Reset the parameter to the default setting. If cF2 error still displays on the \\
keypad, return to the factory for repair. \\
Cycle the power. If cF2 error still exists, return to the factory for repair.
\end{tabular} \\
\hline Internal EEPROM cannot be \\
read. &
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Fault Name } & \multicolumn{1}{c|}{ Description } \\
\hline 33 & & \begin{tabular}{c}
U-phase error \\
(cd1)
\end{tabular} & U-phase current detection error when power is ON. \\
\hline \multicolumn{3}{|c|}{ Action and Reset } \\
\hline Action condition & Hardware detection \\
\hline Action time & cd1 acts immediately when the drive detects the fault. \\
\hline Fault treatment parameter & N/A \\
\hline Reset method & Power-off \\
\hline Reset condition & N/A \\
\hline Record & Yes \\
\hline Cause & \multicolumn{1}{|c|}{ Corrective Actions } \\
\hline Hardware failure & \begin{tabular}{l}
Cycle the power. \\
If the fault code still displays on the keypad, return to the factory for repair.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 34 & - & V-phase error (cd2) & V-phase current detection error when power is ON. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Hardware detection} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{cd2 acts immediately when the drive detects the fault.} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Power-off} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cycle the power. \\
If the fault code still displays on the keypad, return to the factory for repair.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Fault Name } & \multicolumn{1}{c|}{ Description } \\
\hline 35 & & \begin{tabular}{c}
W-phase error \\
(cd3)
\end{tabular} & W-phase current detection error when power is ON. \\
\hline \multicolumn{3}{|c|}{ Action and Reset } \\
\hline Action condition & Hardware detection \\
\hline Action time & cd3 acts immediately when the drive detects the fault. \\
\hline Fault treatment parameter & N/A \\
\hline Reset method & Power-off \\
\hline Reset condition & N/A \\
\hline Record & Yes \\
\hline Cause & \multicolumn{1}{c}{ Corrective Actions } \\
\hline Hardware failure & \begin{tabular}{l}
Cycle the power. \\
If the fault code still displays on the keypad, return to the factory for repair.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 36 & H150] & \begin{tabular}{l}
cc Hardware failure \\
(Hd0)
\end{tabular} & cc (current clamp) hardware protection error when power is ON. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Hardware detection} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Hd0 acts immediately when the drive detects the fault.} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Power-off} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Cycle the power. \\
If the fault code still displays on the keypad, return to the factory for repair.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Fault Name } & \multicolumn{1}{c|}{ Description } \\
\hline 37 & Oc Hardware failure \\
(Hd1)
\end{tabular}\(\quad\) oc hardware protection error when power is ON.
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 40 & Fl|E & Auto-tuning error (AUE) & Motor auto-tuning error \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Hardware detection} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & cord & \multicolumn{2}{|l|}{Yes} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \begin{tabular}{l}
Press \\
tuning.
\end{tabular} & during auto- & \multicolumn{2}{|l|}{Re-execute auto-tuning.} \\
\hline \multicolumn{2}{|l|}{Incorrect motor capacity (too large or too small) and parameter setting} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Check motor capacity and related parameters. \\
Set the correct parameters, that is Pr.01-01-01-02. \\
Set Pr.01-00 larger than motor rated frequency.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Incorrect motor wiring} & \multicolumn{2}{|l|}{Check the wiring.} \\
\hline \multicolumn{2}{|l|}{Motor shaft lock} & \multicolumn{2}{|l|}{Remove the cause of motor shaft lock.} \\
\hline \multicolumn{2}{|l|}{The electromagnetic contactor is ON at output side (U/V/W) of the drive} & \multicolumn{2}{|l|}{Make sure the electromagnetic valve is OFF.} \\
\hline \multicolumn{2}{|l|}{The load is too large.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Reduce the load. \\
Replace the motor with a larger capacity model.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Accel. / Decel. time is too short.} & \multicolumn{2}{|l|}{Increase the setting values for Pr.01-12-01-19 (Accel. / Decel. time).} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 41 & & \begin{tabular}{l}
PID loss ACl \\
(AFE)
\end{tabular} & PID feedback loss (analog feedback signal is only valid when the PID function is enabled.) \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When the analog input < 4 mA (only detects 4-20 mA analog input)} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Pr.08-08} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.08-09 \\
0 : Warn and continue operation \\
1: Fault and ramp to stop \\
2: Fault and coast to stop \\
3: Warn and operate at last frequency
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Reset method}} & \multicolumn{2}{|l|}{Auto \begin{tabular}{l}
When Pr.08-09=3 or 4, AFE is a "Warning". When the feedback \\
signal is \(>4 \mathrm{~mA}\), the "Warning" is automatically cleared.
\end{tabular}} \\
\hline & & \multicolumn{2}{|l|}{Manual \({ }^{\text {When }}\) Pr.08-09=1 or 2, AFE is a "Fault". You must rest manually.} \\
\hline & Reset condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & Record & \multicolumn{2}{|l|}{When Pr.08-09=1 or 2, AFE is a "Fault", and the fault is recorded; when Pr.08-09=3 or 4, AFE is a "Warning", and the warning is not recorded.} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{PID feedback cable is loose or cut off.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Tighten the terminal. \\
Replace the cable with a new one.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Feedback device failure} & \multicolumn{2}{|l|}{Replace the device with a new one.} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{Check all the wiring. If the AFE fault still displays on the keypad, return to the factory for repair.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 42 & F[\% & PG feedback error (PGF1) & The motor runs in a reverse direction to the frequency command direction. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Software detection} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Pr. 10-09} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr. 10-08 \\
0 : Warn and keep operation \\
1: Fault and ramp to stop \\
2: Fault and coast to stop
\end{tabular}} \\
\hline & Reset method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & Reset condition & \multicolumn{2}{|l|}{Reset immediately} \\
\hline & Record & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Incorrect parameter setting of encoder} & \multicolumn{2}{|l|}{Reset encoder parameter (Pr. 10-02).} \\
\hline \multicolumn{2}{|l|}{Check wiring of the encoder} & \multicolumn{2}{|l|}{Re-wire the encoder.} \\
\hline \multicolumn{2}{|l|}{PG card or PG encoder failure} & \multicolumn{2}{|l|}{Replace PG card or encoder with a new one.} \\
\hline \multicolumn{2}{|l|}{Malfunction caused by interference} & \multicolumn{2}{|l|}{Verify wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 43 & BFor & PG feedback loss (PGF2) & Pr. 10-00 and Pr. 10-02 is not set in the PG control mode. When press "RUN" key, PGF2 fault occurs. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Software detection} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Act immediately} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Reset immediately} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Incorrect setting of encoder parameter} & \multicolumn{2}{|l|}{Reset encoder parameters (Pr. 10-00 and Pr. 10-02)} \\
\hline \multicolumn{2}{|l|}{Incorrect selection of the control mode} & \multicolumn{2}{|l|}{Choose the correct control mode.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 48 & Fir & ACl loss (ACE) & Analog input loss (including all the \(4-20 \mathrm{~mA}\) analog signal) \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When the analog input is < 4 mA (only detects \(4-20 \mathrm{~mA}\) analog input)} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.03-19 \\
0: Disable \\
1: Continue operation at the last frequency (warning, ANL displays on the keypad) \\
2: Decelerate to 0 Hz (warning, ANL displays on the keypad) \\
3: Stop immediately and display "ACE"
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Reset method}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
When Pr.03-19=1 or 2, ACE is a "Warning". When analog input \\
Auto signal is \(>4 \mathrm{~mA}\), the "Warning" is automatically cleared.
\end{tabular}} \\
\hline & & \multicolumn{2}{|l|}{Manual When Pr.03-19=3, ACE is a "Fault". You must reset manually.} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & Record & \multicolumn{2}{|l|}{When Pr.03-19=3, ACE is a "Fault", and the fault is recorded.} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{ACI cable is loose or cut off.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Tighten the terminal. \\
Replace the cable with a new one.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{External device failure} & \multicolumn{2}{|l|}{Replace the device with a new one.} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{Check all the wiring. If the ACE fault still displays on the keypad, return to the factory for repair.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 49 & [-\% & External fault (EF) & External fault. When the drive decelerates based on the setting of Pr.07-20, the EF fault displays on the keypad \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{\(\mathrm{MI}=\mathrm{EF}\) and the Ml terminal is ON .} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.07-20 \\
0: Coast to stop \\
1: Stop by \(1^{\text {st }}\) deceleration time \\
2: Stop by \(2^{\text {nd }}\) deceleration time \\
3: Stop by \(3^{\text {rd }}\) deceleration time \\
4: Stop by \(4^{\text {th }}\) deceleration time \\
5: System deceleration \\
6: Automatic deceleration
\end{tabular}} \\
\hline & method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Manual reset only after the external fault is cleared (terminal status is recovered).} \\
\hline & cord & \multicolumn{2}{|l|}{Yes} \\
\hline & use & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{External fault} & \multicolumn{2}{|l|}{Press RESET key after the fault is cleared.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 50 & E\% \(\square^{-1}\) & Emergency stop (EF1) & When the contact of MIx = EF1 is ON, the output stops immediately and displays EF1 on the keypad. The motor is in free running. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{\(\mathrm{MIx}=\mathrm{EF} 1\) and the MI terminal is ON} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Act immediately} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Manual reset only after the external fault is cleared (terminal status is recovered)} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline & use & & Corrective Actions \\
\hline \multicolumn{2}{|l|}{When Mix = EF1 activates} & \multicolumn{2}{|l|}{Verify if the system is back to normal condition, and then press "RESET" key to go back to the default.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 51 & -1 & \begin{tabular}{l}
External base block \\
(bb)
\end{tabular} & When the contact of \(\mathrm{Ml}=\mathrm{bb}\) is ON , the output stops immediately and displays bb on the keypad. The motor is in free running. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{\(\mathrm{Ml}=\mathrm{bb}\) and the Ml terminal is ON .} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{The display "bb" is automatically cleared after the fault is cleared.} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{No} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{MI}=\mathrm{bb}\) activates} & \multicolumn{2}{|l|}{Verify if the system is back to normal condition, and then press RESET key to return to the default.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 52 & [-1) & Password is locked (Pcod) & Entering the wrong password three consecutive times \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Entering the wrong password three consecutive times} \\
\hline & Action time & \multicolumn{2}{|l|}{Immediately act} \\
\hline Faul & lt treatment parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & Reset method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & Reset condition & \multicolumn{2}{|l|}{Power-off} \\
\hline & Record & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Incorre through & ect password input
h Pr.00-07 & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Input the correct password after rebooting the motor drive. \\
2. If you forget the password, enter 9999. \\
3. Press ENTER, and then enter 9999 again. \\
4. You must finish pressing ENTER within 10 seconds. If not, you must repeat the entering. After you successfully unlock the password, the parameter settings return to the default.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 54 & [-E & Illegal command (CE1) & Communication command is illegal \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When the function code is not \(03,06,10\), or 63.} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately reset} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{No} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Incorrect communication command from the upper unit} & \multicolumn{2}{|l|}{Check if the communication command is correct.} \\
\hline \multicolumn{2}{|l|}{Malfunction caused by interference} & \multicolumn{2}{|l|}{Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.} \\
\hline \multicolumn{2}{|l|}{Different communication setting from the upper unit} & \multicolumn{2}{|l|}{Check if the setting for Pr.09-04 is the same as the setting for the upper unit.} \\
\hline \multicolumn{2}{|l|}{Disconnection or bad connection of the cable} & \multicolumn{2}{|l|}{Check the cable and replace it if necessary.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 55 & [& Illegal data address (CE2) & Data address is illegal. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When the data address is correct.} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately reset} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{No} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Incorrect communication command from the upper unit} & \multicolumn{2}{|l|}{Check if the communication command is correct.} \\
\hline \multicolumn{2}{|l|}{Malfunction caused by interference} & \multicolumn{2}{|l|}{Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.} \\
\hline \multicolumn{2}{|l|}{Different communication setting from the upper unit} & \multicolumn{2}{|l|}{Check if the setting for Pr.09-04 is the same as the setting for the upper unit.} \\
\hline \multicolumn{2}{|l|}{Disconnection or bad connection of the cable} & \multicolumn{2}{|l|}{Check the cable and replace it if necessary.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 57 & [-1. & Data is written to read-only address (CE4) & Data is written to read-only address. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When the data is written to read-only address.} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately reset} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{No} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Incorrect communication command from the upper unit} & \multicolumn{2}{|l|}{Check if the communication command is correct.} \\
\hline \multicolumn{2}{|l|}{Malfunction caused by interference} & \multicolumn{2}{|l|}{Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.} \\
\hline \multicolumn{2}{|l|}{Different communication setting from the upper unit} & \multicolumn{2}{|l|}{Check if the setting for Pr.09-04 is the same as the setting for the upper unit.} \\
\hline \multicolumn{2}{|l|}{Disconnection or bad connection of the cable} & \multicolumn{2}{|l|}{Check the cable and replace it if necessary.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 58 & \(\left[\begin{array}{lll}\square-\% & 1 \\ \square . & \square\end{array}\right.\) & Modbus transmission timeout (CE10) & Modbus transmission time-out occurs. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & Action condition & \multicolumn{2}{|l|}{When the communication time exceeds the detection time for Pr.09-03 time-out.} \\
\hline & Action time & \multicolumn{2}{|l|}{Pr.09-03} \\
\hline Faul & treatment parameter & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.09-02 \\
0 : Warn and continue operation \\
1: Warn and ramp to stop \\
2: Warn and coast to stop \\
3: No warning and continue operation
\end{tabular}} \\
\hline & Reset method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & Reset condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & Record & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & & Corrective Actions \\
\hline The up transm comma setting & per unit does not it the communication nd within Pr.09-03 time. & \multicolumn{2}{|l|}{Check if the upper unit transmits the communication command within the setting time for Pr.09-03.} \\
\hline \begin{tabular}{l}
Malfun \\
interfer
\end{tabular} & ction caused by ence & \multicolumn{2}{|l|}{Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degree for effective anti-interference performance.} \\
\hline \begin{tabular}{l}
Differen \\
from th
\end{tabular} & t communication setting e upper unit & \multicolumn{2}{|l|}{Check if the setting for Pr.09-04 is the same as the setting for the upper unit.} \\
\hline Discon connec & nection or bad tion of the cable & \multicolumn{2}{|l|}{Check the cable and replace it if necessary.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 61 & - & \begin{tabular}{l}
Y-connection / \\
\(\Delta\)-connection switch fault (ydc)
\end{tabular} & A fault occurs when \(\mathrm{Y}-\Delta\) switches \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & condition & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. ydc occurs when the confirmation signals of Y -connection and \(\Delta\) connection are conducted at the same time. \\
2. If any of confirmation signals is not conducted within Pr. 05-25, ydc occurs.
\end{tabular}} \\
\hline & n time & \multicolumn{2}{|l|}{Pr. 05-25} \\
\hline Faul & ent parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Can be reset only when the confirmation signal of Y -connection is conducted if it is Y -connection, or when the confirmation signal of \(\Delta\) connection is conducted if it is \(\Delta\)-connection.} \\
\hline & cord & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & & Corrective Actions \\
\hline The ele operat switch. & netic valve ectly during Y- \(\Delta\) & \multicolumn{2}{|l|}{Check if the electromagnetic valve works normally. If not, replace it.} \\
\hline Incorre & meter setting & \multicolumn{2}{|l|}{Check if related parameters are all set up and set correctly.} \\
\hline The wi functio & \(\Delta\) switch rrect & \multicolumn{2}{|l|}{Check the wiring.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 62 & C \(\square_{0}\) & Deceleration energy backup fault (dEb) & When Pr. 07-13 is not 0 , and the power is suddenly off, causing the DC bus voltage lower than the dEb action level, the dEb function acts and the motor ramps to stop. Then dEb displays on the keypad. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When Pr. 07-13 is not 0 , and the DC bus voltage is lower than the level o dEb.} \\
\hline & n time & \multicolumn{2}{|l|}{Act immediately} \\
\hline Fault & ent parameter & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Reset method}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
When Pr. 07-13=2 (dEb with auto-acceleration / auto- \\
Auto deceleration, the drive outputs the frequency after the power is restored): dEb is automatically cleared.
\end{tabular}} \\
\hline & & Hand \begin{tabular}{l|l}
When Pr. 07 \\
deceleration \\
power is res \\
rotation spe \\
manually.
\end{tabular} & -13=1 (dEb with auto-acceleration / auto, the drive does not output the frequency after the tored): The drive stops when dEb acts and the ed becomes 0 Hz , then the drive can be reset \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Auto: The fault is automatically cleared. \\
Hand: When the drive decelerates to 0 Hz .
\end{tabular}} \\
\hline & cord & \multicolumn{2}{|l|}{Yes} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Unstabl power is & source or the & \multicolumn{2}{|l|}{Check the power system.} \\
\hline There is operate & her large load power system & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Replace power system with a larger capacity. \\
2. Use a different power system from the large load system.
\end{tabular}} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 65 & ¢ & Hardware error of PG card (PGF5) & Hardware error of PG card \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & Action condition & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. The PG card (PG01U/PG02U) can only be used with the permanent magnetic motor. When the power is ON and Pr. 00-04=29 pole section shows 0 or 7 (wiring error or no U/V/W signal input), the PGF5 error will be activated. \\
2. The drive receives the operation command right after the power is ON , meanwhile, the PG card is not ready yet.
\end{tabular}} \\
\hline & Action time & \multicolumn{2}{|l|}{Act immediately} \\
\hline Faul & treatment parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & Reset method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & Reset condition & \multicolumn{2}{|l|}{Reset after cycle the power.} \\
\hline & Record & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Wiring U/V/W signal & \begin{tabular}{l}
error or there is no N \\
nput
\end{tabular} & \multicolumn{2}{|l|}{Re-connect the cables correctly} \\
\hline Encoder & r failure & \multicolumn{2}{|l|}{Verify if it is the UVW encoder} \\
\hline The se pa is incor & ting of encoder rameter ect & \multicolumn{2}{|l|}{Choose the correct setting of Pr. 10-00} \\
\hline If the \(m\) PG card & otor selection switch of on the correct position & \multicolumn{2}{|l|}{Check if it is the UVW encoder or Delta encoder} \\
\hline PG car & selection is incorrect & \multicolumn{2}{|l|}{Install the correct PG card} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Fault Name } & Description \\
\hline 72 & \multicolumn{4}{|c|}{ Action and Reset } \\
\hline \multicolumn{3}{|c|}{\begin{tabular}{c}
STO Loss 1 \\
(STL1)
\end{tabular}} & S1-DCM internal loop detection error \\
\hline Action condition & Hardware detection \\
\hline Action time & Immediately act \\
\hline Fault treatment parameter & N/A \\
\hline Reset method & Hardware failure, and cannot reset. Cycle the power. \\
\hline Reset condition & N/A \\
\hline Record & Yes \\
\hline Cause & Re-connect the short circuit line \\
\hline S1 and DCM short circuit lines \\
are not connected & \begin{tabular}{l}
Rerer you make sure all the wiring is correct, if STL1 fault still exists after \\
cycling \\
the power, return to the factory for repair.
\end{tabular} \\
\hline Hardware failure &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 76 & -1] & \[
\begin{aligned}
& \text { STO } \\
& \text { (STo) }
\end{aligned}
\] & Safety Torque Off function active \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Hardware detection} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Reset method}} & \multicolumn{2}{|l|}{When Pr.06-44=1 and after STo error is cleared, it automatically resets.} \\
\hline & & \multicolumn{2}{|l|}{When Pr.06-44=0 and after STo error is cleared, reset it manually.} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Reset only after STo error is cleared.} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{The switch action of STO1/SCM1 and STO2/SCM2 (OPEN)} & \multicolumn{2}{|l|}{Reset the switch (ON) and cycle the power} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 77 & [-7 & \[
\begin{gathered}
\text { STO Loss } 2 \\
(\text { STL2) }
\end{gathered}
\] & S2-DCM internal loop detection error \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Hardware detection} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Hardware failure, and cannot reset. Cycle the power.} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{STO2 and SCM2 short circuit lines are not connected} & \multicolumn{2}{|l|}{Re-connect the short circuit lines} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{\begin{tabular}{l}
After you make sure all the wiring is correct, if STL2 fault still exists after cycling \\
the power, return to the factory for repair.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 78 & & \[
\begin{gathered}
\hline \text { STO Loss } 3 \\
\text { (STL3) }
\end{gathered}
\] & S1-DCM and S2-DCM internal loop detection error \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Hardware detection} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Hardware failure, and cannot reset. Cycle the power.} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{STO1 and SCM1, or STO2 and SCM2 short circuit lines are not connected} & \multicolumn{2}{|l|}{Re-connect the short circuit lines} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{After you make sure all the wiring is correct, if STL3 fault still exists after cycling the power, return to the factory for repair.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 79 & - & U-phase short circuit (Aoc) & U-phase short circuit detected when output wiring detection is performed before the drive runs. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{300\% of the rated current} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Reset in 5 sec . after the fault is cleared.} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline & ause & & Corrective Actions \\
\hline \multicolumn{2}{|l|}{Incorrect motor wiring} & \multicolumn{2}{|l|}{Check if the motor's internal wiring and the UVW wiring of the drive outpu terminal are correct.} \\
\hline \multicolumn{2}{|l|}{Short-circuit at motor output due to poor insulation wiring.} & \multicolumn{2}{|l|}{Without considering the short circuits, check the motor cable or replace the cable before turning on the power.} \\
\hline \multicolumn{2}{|l|}{Check for possible burnout or aging insulation of the motor.} & \multicolumn{2}{|l|}{Check the motor insulation value with megger. Replace the motor if the insulation is poor.} \\
\hline \multicolumn{2}{|l|}{Malfunction caused by interference} & \multicolumn{2}{|l|}{Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.} \\
\hline \multicolumn{2}{|l|}{The length of motor cable is too long.} & \multicolumn{2}{|l|}{Increase the AC motor drive's capacity. Install AC reactor(s) on the output side (U/V/W).} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{\begin{tabular}{l}
The Aoc occurs due to short circuit or ground fault at the output side of the drive. \\
Check for possible short circuits between terminals with the electric meter: \\
B1 corresponds to U, V, W; DC- corresponds to U, V, W; © corresponds to \(\mathrm{U}, \mathrm{V}, \mathrm{W}\). \\
If short circuits occur, return to the factory for repair.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 80 & -1] & V-phase short circuit (Boc) & V-phase short circuit detected when output wiring detection is performed before the drive runs. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{300\% of the rated current} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Reset in 5 sec . after the fault is cleared.} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Incorrect motor wiring} & \multicolumn{2}{|l|}{Check if the motor's internal wiring and the UVW wiring of the drive outpu terminal are correct.} \\
\hline \multicolumn{2}{|l|}{Short-circuit at motor output due to poor insulation wiring.} & \multicolumn{2}{|l|}{Without considering the short circuits, check the motor cable or replace the cable before turning on the power.} \\
\hline \multicolumn{2}{|l|}{Check for possible burnout or aging insulation of the motor.} & \multicolumn{2}{|l|}{Check the motor insulation value with megger. Replace the motor if the insulation is poor.} \\
\hline Malfunc interfere & used by & \multicolumn{2}{|l|}{Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.} \\
\hline The len long. & motor cable is too & \multicolumn{2}{|l|}{Increase the AC motor drive's capacity. Install AC reactor(s) on the output side (U/V/W).} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{\begin{tabular}{l}
The Boc occurs due to short circuit or ground fault at the output side of the drive. \\
Check for possible short circuits between terminals with the electric meter: \\
B1 corresponds to U, V, W; DC- corresponds to U, V, W; © corresponds to U, V, W. \\
If short circuits occur, return to the factory for repair.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 81 & [-0 & \begin{tabular}{l}
W-phase short \\
(Coc)
\end{tabular} & W-phase short circuit detected when output wiring detection is performed before the drive runs. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{300\% of the rated current} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Reset in 5 sec . after the fault is cleared.} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & & Corrective Actions \\
\hline \multicolumn{2}{|l|}{Incorrect motor wiring} & \multicolumn{2}{|l|}{Check if the motor's internal wiring and the UVW wiring of the drive outpu terminal are correct.} \\
\hline \multicolumn{2}{|l|}{Short-circuit at motor output due to poor insulation wiring.} & \multicolumn{2}{|l|}{Without considering the short circuits, check the motor cable or replace the cable before turning on the power.} \\
\hline \multicolumn{2}{|l|}{Check for possible burnout or aging insulation of the motor.} & \multicolumn{2}{|l|}{Check the motor insulation value with megger. Replace the motor if the insulation is poor.} \\
\hline \multicolumn{2}{|l|}{Malfunction caused by interference} & \multicolumn{2}{|l|}{Verify the wiring of the control circuit and wiring/grounding of the main circuit to prevent interference.} \\
\hline \multicolumn{2}{|l|}{The length of motor cable is too long.} & \multicolumn{2}{|l|}{Increase the AC motor drive's capacity. Install AC reactor(s) on the output side (U/V/W).} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{\begin{tabular}{l}
The Coc occurs due to short circuit or ground fault at the output side of the drive. \\
Check for possible short circuits between terminals with the electric meter: \\
B1 corresponds to U, V, W; DC- corresponds to U, V, W; © corresponds to \(\mathrm{U}, \mathrm{V}, \mathrm{W}\). \\
If short circuits occur, return to the factory for repair.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 82 & -51 & \begin{tabular}{l}
Output phase loss \\
U phase (oPL1)
\end{tabular} & U phase output phase loss \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Pr.06-47} \\
\hline & on time & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.06-46 \\
Pr.06-48: Use the setting value of Pr.06-48 first. If DC braking function activates, use that of Pr.06-46.
\end{tabular}} \\
\hline Faul & ent parameter & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.06-45 \\
0 : Warn and continue operation \\
1: Fault and ramp to stop \\
2: Fault and coast to stop \\
3: No warning
\end{tabular}} \\
\hline & method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & ecord & \multicolumn{2}{|l|}{When Pr.06-45=1 or 2, OPL1 is a "Fault", and the fault is recorded.} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Unbala impeda & \begin{tabular}{l}
ree-phase \\
the motor
\end{tabular} & \multicolumn{2}{|l|}{Replace the motor.} \\
\hline Check & wiring is incorrect. & \multicolumn{2}{|l|}{\begin{tabular}{l}
Check the cable and replace it if necessary. \\
Check the motor's internal wiring. If the fault still exists, replace the motor.
\end{tabular}} \\
\hline \begin{tabular}{l}
Check \\
phase
\end{tabular} & otor is a single- & \multicolumn{2}{|l|}{Choose a three-phase motor.} \\
\hline Check broken & urrent sensor is & \multicolumn{2}{|l|}{Check if the control board cable is loose. If yes, reconnect the cable and run the drive to test. If the fault still exists, return to the factory for repair. Check if the three-phase current is balanced with a current clamp meter. If the current is balanced and the oPL1 fault still exists, return to the factory for repair.} \\
\hline \begin{tabular}{l}
Check \\
larger
\end{tabular} & rive capacity is motor capacity. & \multicolumn{2}{|l|}{Choose the drive that matches the motor capacity.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 83 & - & \begin{tabular}{l}
Output phase loss \\
V phase (oPL2)
\end{tabular} & \(\checkmark\) phase output phase loss \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Pr.06-47} \\
\hline & on time & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.06-46 \\
Pr.06-48: Use the setting value of Pr.06-48 first. If DC braking function activates, use that of Pr.06-46.
\end{tabular}} \\
\hline Faul & ment parameter & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.06-45 \\
0 : Warn and continue operation \\
1: Warn and ramp to stop \\
2: Warn and coast to stop \\
3: No warning
\end{tabular}} \\
\hline & method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & ecord & \multicolumn{2}{|l|}{When Pr.06-45=1 or 2, OPL2 is a "Fault", and the fault is recorded.} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Unbala impeda & hree-phase the motor & \multicolumn{2}{|l|}{Replace the motor.} \\
\hline Check & wiring is incorrect. & \multicolumn{2}{|l|}{\begin{tabular}{l}
Check the cable and replace it if necessary. \\
Check the motor's internal wiring. If the fault still exists, replace the motor.
\end{tabular}} \\
\hline Check phase & motor is a single- & \multicolumn{2}{|l|}{Choose a three-phase motor.} \\
\hline \begin{tabular}{l}
Check \\
broken
\end{tabular} & urrent sensor is & \multicolumn{2}{|l|}{Check if the control board cable is loose. If yes, reconnect the cable and run the drive to test. If the fault still exists, return to the factory for repair. Check if the three-phase current is balanced with a current clamp meter. If the current is balanced and the oPL2 fault still exists, return to the factory for repair.} \\
\hline \begin{tabular}{l}
Check \\
larger
\end{tabular} & rive capacity is motor capacity. & \multicolumn{2}{|l|}{Choose the drive that matches the motor capacity.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 87 & [107 & Overload protection at low frequency (oL3) & Low frequency and high current protection \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Software detection} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately reset} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & & Corrective Actions \\
\hline \multicolumn{2}{|l|}{The drive operates at a frequency below 15 Hz , and output current is too large.} & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Enhance the heat dissipation capacity for the cabinet. \\
2. Lower the carrier frequency (Pr.00-17). \\
3. Decrease the voltage settings that correspond to frequency below 15 Hz in the V/F curve. \\
4. Change Pr.00-11 to general control mode. \\
5. Replace the drive with a larger power model.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 89 & [& Rotor position detection error (roPd) & Rotor position detection error protection \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Reset the software.} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately reset} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{Check if the motor cable is abnormal or broken.} & \multicolumn{2}{|l|}{Check or replace the cable.} \\
\hline \multicolumn{2}{|l|}{Motor coil error} & \multicolumn{2}{|l|}{Replace the motor.} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{IGBT broken. Return to the factory for repair.} \\
\hline \multicolumn{2}{|l|}{Drive's current feedback line error} & \multicolumn{2}{|l|}{Cycle the power. If roPd still occurs during operation, return to the factory for repair.} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Fault Name } & Description \\
\hline 101 & & \begin{tabular}{l}
CANopen guarding \\
fault (CGdE)
\end{tabular} & CANopen guarding fault
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 102 & [-\% & CANopen heartbeat fault (CHbE) & CANopen heartbeat fault \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & Action condition & \multicolumn{2}{|l|}{\begin{tabular}{l}
When CANopen Heartbeat detects that one of the slaves is not responding, \\
the CHbE fault occurs. \\
The upper unit sets the confirming time of producer and consumer during configuration.
\end{tabular}} \\
\hline & Action time & \multicolumn{2}{|l|}{The confirming time that upper unit sets for producer and consumer during configuration.} \\
\hline Faul & treatment parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & Reset method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & Reset condition & \multicolumn{2}{|l|}{The upper unit sends a reset package to clear this fault} \\
\hline & Record & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline The hea & artbeat time is too short & \multicolumn{2}{|l|}{Increase heartbeat time (Index 100C)} \\
\hline Malfun interfer & ction caused by nce & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degrees for effective anti-interference performance. \\
2. Make sure the communication circuit is wired in series. \\
3. Use CANopen cable or add terminating resistance.
\end{tabular}} \\
\hline Comm or bad & nication cable is broken connected & \multicolumn{2}{|l|}{Check or replace the communication cable.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Fault Name } & Description \\
\hline 105 & \multicolumn{3}{|c|}{\begin{tabular}{c}
Action and Reset \\
(CldE)
\end{tabular}} \\
\hline \multicolumn{2}{|c|}{ Action condition } & Software detection \\
\hline Action time & Act immediately \\
\hline Fault treatment parameter & N/A \\
\hline Reset method & Manual reset \\
\hline Reset condition & Upper unit sends a reset package to clear this fault \\
\hline Record & Yes \\
\hline \multicolumn{3}{|c|}{ Cause } & \\
\hline Incorrect setting of CANopen \\
index & Reset CANopen Index (Pr. 00-02=7) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 106 & 「-\% & CANopen station address error (CAdE) & CANopen station address error (only supports 1 127) \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Software detection} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Act immediately} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset (Pr.00-02=7)} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & & Corrective Actions \\
\hline \multicolumn{2}{|l|}{Incorrect setting of CANopen station address} & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Disable CANopen (Pr.09-36=0) \\
2. Reset CANopen (Pr.00-02=7) \\
3. Reset CANopen station address (Pr.09-36)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 107 & F\% & CANopen memory error (CFrE) & CANopen memory error \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{When the user update firmware version of the control board, but the FRAM internal data remains the same, then CFrE fault occurs.} \\
\hline & on time & \multicolumn{2}{|l|}{Act immediately} \\
\hline Faul & ment parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & t method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Pr. 00-02=7} \\
\hline & Record & \multicolumn{2}{|l|}{Pr. 00-21=3, the fault is recorded} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline CANop error & rnal memory & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Disable CANopen (Pr. 09-36=0) \\
2. Reset CANopen (Pr. 00-02=7) \\
3. Reset CANopen station address (Pr. 09-36)
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 111 & - & InrCOM time-out error (ictE) & Internal communication time-out \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Pr.09-31=-1 ~-10 (there is no -9), when the internal communication between Slave and Master is abnormal, IctE fault occurs.} \\
\hline & on time & \multicolumn{2}{|l|}{Act immediately} \\
\hline Fault & ent parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & method & \multicolumn{2}{|l|}{Automatically reset after the internal communication is normal} \\
\hline & condition & \multicolumn{2}{|l|}{N/A} \\
\hline & ecord & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \begin{tabular}{l}
Malfunc \\
interfere
\end{tabular} & used by & \multicolumn{2}{|l|}{Verify the wiring and grounding of the communication circuit. It is recommended to separate the communication circuit from the main circuit, or wire in 90 degrees for effective anti-interference performance.} \\
\hline The com differen & ation condition is he upper unit & \multicolumn{2}{|l|}{Verify the setting of Pr. 09-04 is the same as the setting of upper unit.} \\
\hline \begin{tabular}{l}
Commu \\
or bad
\end{tabular} & n cable is broken ted & \multicolumn{2}{|l|}{Check or replace the communication cable.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & Fault Name & Description \\
\hline 121 & & \begin{tabular}{c}
Internal \\
communication error \\
(CP20)
\end{tabular} & Internal communication time-out \\
\hline \multicolumn{3}{|c|}{ Action and Reset } \\
\hline Action condition & Software detection \\
\hline Action time & Immediately act \\
\hline Fault treatment parameter & N/A \\
\hline Reset method & N/A \\
\hline Record & Yes \\
\hline Cause & \multicolumn{5}{c|}{ Corrective Actions } \\
\hline Internal communication error & Contact your local distributor or Delta. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Fault Name } & Description \\
\hline 123 & & \begin{tabular}{c}
Internal \\
communication error \\
(CP22)
\end{tabular} & Abnormal internal communication \\
\hline \multicolumn{4}{|c|}{ Action and Reset } \\
\hline Action condition & Software detection \\
\hline Action time & Immediately act \\
\hline Fault treatment parameter & N/A \\
\hline Reset method & N/A \\
\hline Record & Yes \\
\hline Cause & \multicolumn{4}{c|}{ Corrective Actions } \\
\hline Internal communication error & Contact your local distributor or Delta. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & Fault Name & Description \\
\hline 124 & & \begin{tabular}{c}
Internal \\
communication error \\
\((\) CP30 \()\)
\end{tabular} & Abnormal internal communication \\
\hline \multicolumn{3}{|c|}{ Action and Reset } \\
\hline Action condition & Software detection \\
\hline Action time & Immediately act \\
\hline Fault treatment parameter & N/A \\
\hline Reset method & N/A \\
\hline Record & Yes \\
\hline Cause & \multicolumn{4}{c|}{ Corrective Actions } \\
\hline Internal communication error & Contact your local distributor or Delta. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Fault Name } & Description \\
\hline 126 & & \begin{tabular}{c}
Internal \\
communication error \\
(CP32)
\end{tabular} & Abnormal internal communication \\
\hline \multicolumn{4}{|c|}{ Action and Reset } \\
\hline Action condition & Software detection \\
\hline Action time & Immediately act \\
\hline Fault treatment parameter & N/A \\
\hline Reset method & N/A \\
\hline Record & Yes \\
\hline Cause & \multicolumn{4}{c|}{ Corrective Actions } \\
\hline Internal communication error & Contact your local distributor or Delta. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & Fault Name & Description \\
\hline 127 & & \begin{tabular}{c}
Internal \\
communication error \\
(CP33)
\end{tabular} & Abnormal internal communication \\
\hline \multicolumn{3}{|c|}{ Action and Reset } \\
\hline Action condition & Software detection \\
\hline Action time & Immediately act \\
\hline Fault treatment parameter & N/A \\
\hline Reset method & N/A \\
\hline Record & Yes \\
\hline Cause & \multicolumn{4}{c|}{ Corrective Actions } \\
\hline Internal communication error & Contact your local distributor or Delta. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 128 & -1 & Over-torque 3 (ot3) & When the output current exceeds the over-torque detection level (Pr.14-75) and exceeds overtorque detection time (Pr. 14-76), and when Pr.1474 is set to 2 or 4 , the ot 3 error displays. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Pr.14-75} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Pr.14-76} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.14-74 \\
0 : No function \\
1: Continue operation after over-torque detection during constant speed operation \\
2: Stop after over-torque detection during constant speed operation \\
3: Continue operation after over-torque detection during RUN \\
4: Stop after over-torque detection during RUN
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Reset method}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Auto \\
When Pr.14-74=1 or 3, ot3 is a "Warning". The warning is automatically cleared when the output current < Pr.14-75.
\end{tabular}} \\
\hline & & \multicolumn{2}{|l|}{Manual When Pr.14-74=2 or 4, ot3 is a "Fault". You must reset manually.} \\
\hline & condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & cord & \multicolumn{2}{|l|}{Pr.14-74=2 or 4, ot3 is a "Fault", and the fault is recorded.} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Incorre & meter setting & \multicolumn{2}{|l|}{Reset Pr.14-75 and Pr.14-76} \\
\hline Mecha torque, & \begin{tabular}{l}
ure (e.g. over- \\
ical lock)
\end{tabular} & \multicolumn{2}{|l|}{Remove the causes of malfunction.} \\
\hline \multicolumn{2}{|l|}{The load is too large} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Reduce the load. \\
Replace the motor with a larger capacity model.
\end{tabular}} \\
\hline Accel. \(/\) cycle & ime and working hort & \multicolumn{2}{|l|}{Increase the setting for Pr.01-12-Pr.01-19 (accel. / decel. time)} \\
\hline \multicolumn{2}{|l|}{V/F voltage is too high} & \multicolumn{2}{|l|}{Adjust the V/F curve (Motor 3, Pr.01-54-01-61), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed).} \\
\hline \multicolumn{2}{|l|}{The motor capacity is too small} & \multicolumn{2}{|l|}{Replace the motor with a larger capacity model.} \\
\hline \multicolumn{2}{|l|}{Overload during low-speed operation} & \multicolumn{2}{|l|}{Decrease low-speed operation time. Increase the motor capacity.} \\
\hline \multicolumn{2}{|l|}{Torque compensation is too large} & \multicolumn{2}{|l|}{Adjust the torque compensation (refer to Pr.07-73 torque compensation gain) until the current reduces and the motor does not stall.} \\
\hline \multicolumn{2}{|l|}{Improper parameter settings for speed tracking function (including restart after momentary power loss and restart after fault)} & \multicolumn{2}{|l|}{\begin{tabular}{l}
1. Correct the parameter settings for speed tracking. \\
2. Start the speed tracking function. \\
3. Adjust the maximum current for Pr.07-09 speed tracking.
\end{tabular}} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 129 & -1 & Over-torque 4 (ot4) & When the output current exceeds the over-torque detection level (Pr.14-78) and exceeds overtorque detection time (Pr.14-79), and when Pr.1477 is set to 2 or 4 , the ot 4 error displays. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Pr.14-78} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Pr.14-79} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Pr.14-77 \\
0 : No function \\
1: Continue operation after over-torque detection during constant speed operation \\
2: Stop after over-torque detection during constant speed operation \\
3: Continue operation after over-torque detection during RUN \\
4: Stop after over-torque detection during RUN
\end{tabular}} \\
\hline \multicolumn{2}{|r|}{\multirow{2}{*}{Reset method}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Auto \\
When Pr.14-77=1 or 3, ot4 is a "Warning". The warning is automatically cleared when the output current < Pr.14-78.
\end{tabular}} \\
\hline & & \multicolumn{2}{|l|}{\begin{tabular}{l}
When Pr.14-77=2 or 4, ot4 is a "Fault". You must reset \\
Manual manually.
\end{tabular}} \\
\hline & condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & cord & \multicolumn{2}{|l|}{Pr.14-77=2 or 4, ot4 is a "Fault", and the fault is recorded.} \\
\hline & ause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Incorre & meter setting & \multicolumn{2}{|l|}{Configure the settings for Pr.14-78 and Pr.14-79 again.} \\
\hline Mecha torque & ure (e.g. overical lock) & \multicolumn{2}{|l|}{Remove the causes of malfunction.} \\
\hline \multicolumn{2}{|l|}{The load is too large} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Reduce the load. \\
Replace the motor with a larger capacity model.
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Accel./ Decel. time and working cycle are too short} & \multicolumn{2}{|l|}{Increase the setting values for Pr.01-12-Pr.01-19 (accel. / decel. time)} \\
\hline \multicolumn{2}{|l|}{V/F voltage is too high} & \multicolumn{2}{|l|}{Adjust the V/F curve (Motor 4, Pr.01-63-01-70), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed).} \\
\hline \multicolumn{2}{|l|}{The motor capacity is too small} & \multicolumn{2}{|l|}{Replace the motor with a larger capacity model.} \\
\hline \multicolumn{2}{|l|}{Overload during low-speed operation} & \multicolumn{2}{|l|}{Decrease low-speed operation time. Increase the motor capacity.} \\
\hline \multicolumn{2}{|l|}{Torque compensation is too large} & \multicolumn{2}{|l|}{Adjust the torque compensation (refer to Pr.07-75 torque compensation gain) until the current reduces and the motor does not stall.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Improper parameter settings for & \\
speed tracking function & 1. Correct the parameter settings for speed tracking. \\
(including restart after & 2. Start the speed tracking function. \\
\begin{tabular}{l}
momentary power loss and \\
restart after fault)
\end{tabular} & 3. Adjust the maximum current for Pr.07-09 speed tracking.
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 134 & [-7 & Internal communication error (EoL3) & Electronic thermal relay 3 protection. The drive coasts to stop once it activates. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Start counting when output current > 105\% of the motor 3 rated current.} \\
\hline & ion time & \multicolumn{2}{|l|}{Pr.14-81 (If the output current is larger than \(105 \%\) of the motor 3 rated current again within 60 sec ., the counting time reduces and is less than Pr.14-81)} \\
\hline Faul & ent parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & et method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Reset in five seconds after the fault is cleared} \\
\hline & Record & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline The load & o large & \multicolumn{2}{|l|}{Reduce the load.} \\
\hline Accel. workin & time or the are too short & \multicolumn{2}{|l|}{Increase the setting value for Pr.01-12-01-19 (accel. / decel. time)} \\
\hline V/F vol & too high & \multicolumn{2}{|l|}{Adjust the settings for Pr.01-54-01-61 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed).} \\
\hline \begin{tabular}{l}
Overlo \\
operat \\
When \\
even it \\
curren \\
occur \\
operation
\end{tabular} & \begin{tabular}{l}
ng low-speed \\
general motor, es below rated verload may still ow-speed
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Decrease low-speed operation time. \\
Replace the drive with a dedicated to VFD model. Increase the motor capacity.
\end{tabular}} \\
\hline When motor, therma = inver & VFD dedicated 13=0 (electronic selection motor 1 tor) & \multicolumn{2}{|l|}{Pr.14-80 = 1 electronic thermal relay selection motor \(1=\) standard motor (motor with fan on the shaft).} \\
\hline \begin{tabular}{l}
Incorre \\
therma
\end{tabular} & of electronic & \multicolumn{2}{|l|}{Reset to the correct motor rated current.} \\
\hline The maxir is set & motor frequency & \multicolumn{2}{|l|}{Reset to the correct motor rated frequency.} \\
\hline One dr & multiple motors & \multicolumn{2}{|l|}{Set Pr. 14-80 electronic thermal relay 3 selection \(=2\) disable, and install thermal relay on each motor.} \\
\hline Check preven & setting for stall correct. & \multicolumn{2}{|l|}{Set the stall prevention to the proper value.} \\
\hline Torque large & nsation is too & \multicolumn{2}{|l|}{Adjust the torque compensation (refer to Pr.07-73 torque compensation gain) until the current reduces and the motor does not stall.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Motor fan error & Check the status of the fan, or replace the fan. \\
\hline \begin{tabular}{l}
Unbalanced three-phase \\
impedance of the motor
\end{tabular} & Replace the motor. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 135 & [-1) & Internal communication error (EoL4) & Electronic thermal relay 4 protection. The drive coasts to stop once it activates. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline & condition & \multicolumn{2}{|l|}{Start counting when the output current \(>105 \%\) of the motor 4 rated current.} \\
\hline & ion time & \multicolumn{2}{|l|}{Pr.14-83 (If the output current is larger than \(105 \%\) of motor 4 rated current again within 60 sec ., the counting time reduces and is less than Pr.14-83)} \\
\hline Faul & ment parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & t method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & condition & \multicolumn{2}{|l|}{Reset in five seconds after the fault is cleared} \\
\hline & ecord & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline The load & o large & \multicolumn{2}{|l|}{Reduce the load.} \\
\hline \begin{tabular}{l}
Accel. \\
workin
\end{tabular} & time or the are too short & \multicolumn{2}{|l|}{Increase the setting value for Pr.01-12-01-19 (accel. / decel. time)} \\
\hline V/F vol & oo high & \multicolumn{2}{|l|}{Adjust the settings for Pr.01-62-01-70 (V/F curve), especially the setting value for the mid-point voltage (if the mid-point voltage is set too low, the load capacity decreases at low speed).} \\
\hline \begin{tabular}{l}
Overload \\
operatio \\
genera \\
below \\
overload \\
low-sp
\end{tabular} & ng low-speed en using a , even it operates urrent, an still occur during eration. & \multicolumn{2}{|l|}{\begin{tabular}{l}
Decrease low-speed operation time. \\
Replace the drive with a dedicated to VFD model. Increase the motor capacity.
\end{tabular}} \\
\hline \begin{tabular}{l}
When \\
motor, \\
therma \\
= inver
\end{tabular} & FD dedicated 3=0 (electronic selection motor 1 or) & \multicolumn{2}{|l|}{Pr.14-82 = 1 electronic thermal relay selection motor \(1=\) standard motor (motor with fan on the shaft).} \\
\hline Incorre therma & e of electronic & \multicolumn{2}{|l|}{Reset to the correct motor rated current.} \\
\hline The maxir is set to & motor frequency & \multicolumn{2}{|l|}{Reset to the correct motor rated frequency.} \\
\hline One dr & ultiple motors & \multicolumn{2}{|l|}{Set Pr. 14-82 electronic thermal relay 4 selection \(=2\) disable, and install thermal relay on each motor.} \\
\hline Check preven & etting for stall correct. & \multicolumn{2}{|l|}{Set the stall prevention to the proper value.} \\
\hline Torque large & nsation is too & \multicolumn{2}{|l|}{Adjust the torque compensation (refer to Pr.07-75 torque compensation gain) until the current reduces and the motor does not stall.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Motor fan error & Check the status of the fan, or replace the fan. \\
\hline \begin{tabular}{l}
Unbalanced three-phase \\
impedance of the motor
\end{tabular} & Replace the motor. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 140 & & GFF detected when power is on (Hd6) & The ground current short circuit detected when power is on. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Reset the software.} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Immediately reset} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline \multicolumn{2}{|r|}{Cause} & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline \multicolumn{2}{|l|}{The length of motor cable is too long.} & \multicolumn{2}{|l|}{Use a shorter cable or install an output reactor.} \\
\hline \multicolumn{2}{|l|}{Check if the motor cable is abnormal or broken.} & \multicolumn{2}{|l|}{Check or replace the cable.} \\
\hline \multicolumn{2}{|l|}{Hardware failure} & \multicolumn{2}{|l|}{IGBT broken. Return to the factory for repair.} \\
\hline \multicolumn{2}{|l|}{Drive's current feedback line error} & \multicolumn{2}{|l|}{Cycle the power. If Hd6 still occurs during operation, return to the factory for repair.} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 141 & -1 & GFF occurs before running (b4GFF) & The ground short circuit detected when output wiring detection is performed before the drive runs. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{250\% of the rated current} \\
\hline \multicolumn{2}{|r|}{Action time} & \multicolumn{2}{|l|}{Immediately act} \\
\hline \multicolumn{2}{|l|}{Fault treatment parameter} & \multicolumn{2}{|l|}{N/A} \\
\hline \multicolumn{2}{|r|}{Reset method} & \multicolumn{2}{|l|}{Manual reset} \\
\hline \multicolumn{2}{|r|}{Reset condition} & \multicolumn{2}{|l|}{Reset in 5 sec . after the fault is cleared.} \\
\hline \multicolumn{2}{|r|}{Record} & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & & Corrective Actions \\
\hline \multicolumn{2}{|l|}{Incorrect motor wiring} & \multicolumn{2}{|l|}{Check if the motor's internal wiring and the UVW wiring of the drive outpu terminal are correct.} \\
\hline \multicolumn{2}{|l|}{Short-circuit at motor output due to poor insulation wiring.} & \multicolumn{2}{|l|}{Without considering the short circuits, check the motor cable or replace the cable before turning on the power.} \\
\hline \multicolumn{2}{|l|}{Check for possible burnout or aging insulation of the motor.} & \multicolumn{2}{|l|}{Check the motor insulation value with megger. Replace the motor if the insulation is poor.} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline ID No. & Display & Fault Name & Description \\
\hline 143 & & Auto-tune error 2 (AUE2) & Motor phase loss error when motor parameter automatically detects. \\
\hline \multicolumn{4}{|c|}{Action and Reset} \\
\hline \multicolumn{2}{|r|}{Action condition} & \multicolumn{2}{|l|}{Software detection} \\
\hline & Action time & \multicolumn{2}{|l|}{Immediately act} \\
\hline Faul & reatment parameter & \multicolumn{2}{|l|}{N/A} \\
\hline & Reset method & \multicolumn{2}{|l|}{Manual reset} \\
\hline & Reset condition & \multicolumn{2}{|l|}{Immediately reset} \\
\hline & Record & \multicolumn{2}{|l|}{Yes} \\
\hline & Cause & \multicolumn{2}{|r|}{Corrective Actions} \\
\hline Incorre & motor wiring & \multicolumn{2}{|l|}{Wire the motor correctly.} \\
\hline \multicolumn{2}{|l|}{Motor error} & \multicolumn{2}{|l|}{Check if the motor works normally.} \\
\hline The ele is used output (U/V/W) & romagnetic contactor s an open state on the de of the drive & \multicolumn{2}{|l|}{Verify that the three-phases of the electromagnetic valve are all closed.} \\
\hline Motor U & /W wire error & \multicolumn{2}{|l|}{Check if the wires are broken.} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline ID No. & \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{c|}{ Fault Name } & \multicolumn{1}{c|}{ Description } \\
\hline 144 & \multicolumn{3}{|c|}{ Action and Reset } \\
\hline \multicolumn{3}{|c|}{\begin{tabular}{c}
Auto-tune error 3 \\
(AUE3)
\end{tabular}} & \begin{tabular}{l}
No load current Io measurement error when motor \\
parameter automatically detects.
\end{tabular} \\
\hline Action condition & Software detection \\
\hline Action time & Immediately act \\
\hline Fault treatment parameter & N/A \\
\hline Reset method & Manual reset \\
\hline Reset condition & Immediately reset \\
\hline Record & Yes \\
\hline Cause & \\
\hline Incorrect settings for the motor \\
parameter (rated current) & Check the settings for Pr.05-01 / Pr.05-13 / Pr.05-34. \\
\hline Motor error & Check if the motor works normally. \\
\hline
\end{tabular}

\section*{Chapter 15 CANopen Overview}

15-1 CANopen Overview
15-2 Wiring for CANopen
15-3 CANopen Communication Interface Descreptions
15-4 CANopen Supporting Index
15-5 CANopen Fault Codes
15-6 CANopen LED Functions

The built-in CANopen function is a kind of remote control. You can control the AC motor drive using the CANopen protocol. CANopen is a CAN-based higher layer protocol that provides standardized communication objects, including real-time data (Process Data Objects, PDO), configuration data (Service Data Objects, SDO), and special functions (Time Stamp, Sync message, and Emergency message). It also has network management data, including Boot-up message, NMT message, and Error Control message. Refer to the CiA website http://www.can-cia.org/ for details. The content of this instruction sheet may be revised without prior notice. Consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation.

\section*{Delta CANopen supported functions:}
- Supports CAN2.0A Protocol
- Supports CANopen DS301 V4. 02
- Supports DSP-402 V2.0

\section*{Delta CANopen supported services:}
- PDO (Process Data Objects): PDO1-PDO4
- SDO (Service Data Objects):

Initiate SDO Download;
Initiate SDO Upload;
Abort SDO;
You can use the SDO message to configure the slave node and access the Object Dictionary in every node.
- SOP (Special Object Protocol):

Supports default COB-ID in Predefined Master/Slave Connection Set in DS301 V4.02;
Supports SYNC service;
Supports Emergency service.
- NMT (Network Management):

Supports NMT module control;
Supports NMT Error control;
Supports Boot-up.

Delta CANopen does not support this service:
- Time Stamp service

\section*{15-1 CANopen Overview}

\section*{CANopen Protocol}

CANopen is a CAN-based higher layer protocol, and was designed for motion-oriented machine control networks such as handling systems. Version 4.02 of CANopen (CiA DS301) is standardized as EN50325-4. The CANopen specifications cover the application layer and communication profile (CiA DS301), as well as a framework for programmable devices (CiA 302), recommendations for cables and connectors (CiA 303-1) and SI units and prefix representations (CiA 303-2).

\section*{RJ45 Pin Definition}

plug
\begin{tabular}{|c|c|l|}
\hline PIN & Signal & \multicolumn{1}{c|}{ Description } \\
\hline 1 & CAN_H & CAN_H bus line (dominant high) \\
\hline 2 & CAN_L & CAN_L bus line (dominant low) \\
\hline 3 & CAN_SGND & Ground \(/ 0 \mathrm{~V} / \mathrm{V}-\) \\
\hline 6 & CAN_SGND & Ground \(/ 0 \mathrm{~V} / \mathrm{V}-\) \\
\hline
\end{tabular}

CANopen Communication Protocol contains the following services:
- NMT (Network Management Object)
- SDO (Service Data Objects)
- PDO (Process Data Objects)
- EMCY (Emergency Object)

\section*{NMT (Network Management Object)}

The Network Management (NMT) follows a Master/Slave structure for executing NMT service. A network has only one NMT master, and the other nodes are slaves. All CANopen nodes have a present NMT state, and the NMT master can control the state of the slave nodes. The following shows the state diagram of a node:
(1) After power is applied, start in the auto-initialization state
(2) Automatically enter the pre-operational state
(3) (6) Start remote node
(4) (7) Enter the pre-operational state
(5) (8) Stop remote node
(9) (10) (11) Reset node
(12) (13) (14) Reset communication
(15) Automatically enter reset application state
(16) Automatically enter reset communication state

A: NMT
B: Node Guard
C: SDO
D: Emergency
E: PDO
F: Boot-up
\begin{tabular}{|c|c|c|c|c|}
\hline & Initializing & Pre-Operational & Operational & Stopped \\
\hline PDO & & & \(\bigcirc\) & \\
\hline SDO & & \(\bigcirc\) & \(\bigcirc\) & \\
\hline SYNC & & \(\bigcirc\) & \(\bigcirc\) & \\
\hline Time Stamp & & \(\bigcirc\) & \(\bigcirc\) & \\
\hline EMCY & & \(\bigcirc\) & \(\bigcirc\) & \\
\hline Boot-up & 0 & & & \\
\hline NMT & & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline
\end{tabular}

\section*{SDO (Service Data Objects)}

Use SDO to access the Object Dictionary in every CANopen node using the Client / Server model. One SDO has two COB-IDs (request SDO and response SDO) to upload or download data between two nodes. There is no data limit for SDOs to transfer data, but it must transfer data by segment when the data exceeds four bytes with an end signal in the last segment. MH300 series does not support segmented transmission at the moment.

The Object Dictionary (OD) is a group of objects in a CANopen node. Every node has an OD in the system, and OD contains all parameters describing the device and its network behavior. The access path in the OD is the index and sub-index; each object has a unique index in the OD, and has a sub-index if necessary. The following shows the request and response frame structure of SDO communication:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Type} & & \multicolumn{9}{|c|}{Data 0} & Data 1 & Data 2 & Data 3 & Data 4 & Data 5 & Data 6 & Data 7 \\
\hline & & 7 & 6 & 5 & 4 & 3 & 2 & & & 0 & Index & Index & Index & Data & Data & Data & Data \\
\hline & & \multicolumn{3}{|l|}{command} & & & & & & & L & H & Sub & LL & LH & HL & HH \\
\hline \multirow[t]{2}{*}{Segmented download} & Client & 0 & 0 & 1 & - & \multicolumn{2}{|r|}{N} & & & S & & & & & & & \\
\hline & Server & 0 & 1 & 1 & - & - & - & & & - & & & & & & & \\
\hline \multirow[t]{2}{*}{Segmented upload} & Client & 0 & 1 & 0 & - & - & - & & & - & & & & & & & \\
\hline & Server & 0 & 1 & 0 & - & \multicolumn{2}{|r|}{N} & & E & S & & & & & & & \\
\hline \multirow[t]{2}{*}{Pause segment transmission} & Client & 1 & 0 & 0 & - & - & - & & - & - & & & & & & & \\
\hline & Server & 1 & 0 & 0 & - & - & - & & - & - & & & & & & & \\
\hline
\end{tabular}

N: No bytes used; E: General (0) / Transferred (1); S: Data size

\section*{PDO (Process Data Objects)}

PDO communication can be described by the producer / consumer model. Each node of the network listens to the messages of the transmission node and distinguishes whether the message has to be processed or not after receiving the message. A PDO can be transmitted from one device to one another device or to many other devices. Every PDO has two PDO services: a TxPDO and an RxPDO. PDOs are transmitted in a non-confirmed mode. All transmission types are listed in the following table:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Type Number} & \multicolumn{5}{|c|}{PDO} \\
\hline & Cyclic & Acyclic & Synchronous & Asynchronous & RTR only \\
\hline 0 & & \(\bigcirc\) & \(\bigcirc\) & & \\
\hline 1-240 & \(\bigcirc\) & & \(\bigcirc\) & & \\
\hline 241-251 & \multicolumn{5}{|c|}{Reserved} \\
\hline 252 & & & \(\bigcirc\) & & \(\bigcirc\) \\
\hline 253 & & & & \(\bigcirc\) & \(\bigcirc\) \\
\hline 254 & & & & \(\bigcirc\) & \\
\hline 255 & & & & \(\bigcirc\) & \\
\hline
\end{tabular}

Type number 0 indicates the synchronous aperiodic message between two PDO transmissions. Type number 1-240 indicates the number of SYNC message between two PDO transmissions.
Type number 252 indicates the data is updated (but not sent) immediately after receiving SYNC.

Type number 253 indicates the data is updated immediately after receiving RTR.
Type number 254: Delta CANopen does not support this transmission format.
Type number 255 indicates the data is an asynchronous aperiodic transmission.
All PDO transmission data must be mapped to the index with Object Dictionary.

\section*{EMCY (Emergency Object)}

When errors occur inside the hardware, an emergency object is triggered. An emergency object is only sent when an error occurs. As long as there is nothing wrong with the hardware, there is no emergency object warning of an error message.

\section*{15-2 Wiring for CANopen}

Use an external CANopen communication splitter box (TAP-CNO3) for built-in CANopen wiring to connect CANopen to an MH300. The link uses an RJ45 cable. You must terminate the two farthest ends with \(120 \Omega\) terminating resistors as shown in the picture below.

*1. Turn the terminal resistor setting switch SW to OFF.
*2. Turn the terminal resistor setting switch SW to OFF.
*3. Turn the terminal resistor setting switch SW to ON.

\section*{15-3 CANopen Communication Interface Descriptions}

\section*{15-3-1 CANopen Control Mode Selection}

There are two control modes for CANopen: the DS402 standard (Pr.09-40 set to 1) is the default, and the Delta's standard setting (Pr.09-40 set to 0). There are two control modes according to Delta's standard. One is the old control mode (Pr.09-30 = 0); this control mode can only control the motor drive under frequency control. The other mode is a new standard (Pr.09-30 = 1); this new control mode allows the motor drive to be controlled under multiple modes. The MH300 currently supports speed and torque mode. The following table shows the control mode definitions:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{CANopen Control Mode Selection} & \multicolumn{8}{|c|}{Control Mode} \\
\hline & \multicolumn{2}{|r|}{Speed} & \multicolumn{2}{|r|}{Torque} & \multicolumn{2}{|r|}{Position} & \multicolumn{2}{|r|}{Home} \\
\hline & Index & Description & Index & Description & Index & Description & Index & Description \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
DS402 \\
Standard
Pr.09-40=1
\end{tabular}} & 6042-00 & Target Rotating Speed (RPM) & 6071-00 & Target Torque (\%) & 607A-00 & Target Position & -- & ----- \\
\hline & ----- & ---- & 6072-00 & Max. Torque Limit (\%) & ----- & -- & ----- & ----- \\
\hline Delta Standard (Old definition)
\[
\begin{aligned}
& \text { Pr.09-40=1, } \\
& \text { Pr. } 09-30=0
\end{aligned}
\] & 2020-02 & Target Rotating Speed (Hz) & ----- & ----- & ----- & ----- & ----- & ----- \\
\hline \multirow[t]{2}{*}{Delta Standard (New definition)
\[
\begin{aligned}
& \text { Pr. 09-40=0, } \\
& \text { Pr.09-30 }=1
\end{aligned}
\]} & 2060-03 & Target
Rotating
Speed (Hz) & 2060-07 & Target Torque (\%) & 2060-05 & Target Position & -- & ----- \\
\hline & 2060-04 & Torque Limit (\%) & 2060-08 & Speed Limit \((\mathrm{Hz})\) & ----- & --- & -- & --- \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CANopen Control Mode & \multicolumn{2}{|c|}{ Operation Control } \\
\cline { 2 - 3 } Selection & Index & Description \\
\hline DS402 Standard & \(6040-00\) & Operation Command \\
\cline { 2 - 3 } Pr.09-40=1 & ------ \\
\hline Delta Standard (Old definition) \\
Pr.09-40=1, Pr.09-30 \(=0\)
\end{tabular}\(\quad 2020-01\)\begin{tabular}{c}
Operation Command \\
\hline Delta Standard (New definition) \\
Pr.09-40=0, Pr.09-30 \(=1\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{CANopen Control Mode Selection} & \multicolumn{2}{|c|}{Others} \\
\hline & Index & Description \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DS402 Standard } \\
& \text { Pr.09-40=1 }
\end{aligned}
\]} & 605A-00 & Quick stop processing mode \\
\hline & 605C-00 & Disable operation processing mode \\
\hline Delta Standard (Old definition)
\[
\text { Pr. } 09-40=1 \text {, Pr. } 09-30=0
\] & ----- & ------ \\
\hline \multirow[t]{2}{*}{Delta Standard (New definition)
\[
\text { Pr. } 09-40=0, \text { Pr. } 09-30=1
\]} & -- & ----- \\
\hline & ----- & ----- \\
\hline
\end{tabular}

You can use some indices in either DS402 or Delta's standard.
For example:
1. Indices that are defined as RO attributes.
2. The corresponding index of available parameter groups: (2000-00-200E-XX)
3. Accelerating / Decelerating Index: 604F 6050

\section*{15-3-2 DS402 Standard Control Mode}

15-3-2-1 Related set up for an AC motor drive (following the DS402 standard)
If you want to use the DS402 standard to control the motor drive, follow these steps:
1. Wire the hardware (refer to Section 15-2 Wiring for CANopen).
2. Set the operation source: set Pr.00-21 to 3 for CANopen communication card control. (RUN / STOP, forward / reverse run, etc.)
3. Set the frequency source: set Pr.00-20 to 6. Choose the source for the Frequency command from the CANopen setting.
4. Set the torque source: set Pr.11-33. Choose the source for the Torque command from the CANopen setting.
5. Set the position source: set Pr.11-40. Choose the source for the Position command from the CANopen setting.
6. Set DS402 for the control mode: Pr. 09-40 = 1
7. Set the CANopen station: set the CANopen station (range \(1-127,0\) is the disable CANopen slave function) with Pr.09-36.

NOTE: set Pr.00-02 = 7 to reset if the station number error CAdE or CANopen memory error CFrE appears.
8. Set the CANopen baud rate: set Pr.09-37 (CANBUS Baud Rate: 1 Mbps (0), 500 Kbps (1), 250 Kbps (2), 125 Kbps (3), 100 Kbps (4) or 50 Kbps (5)).
9. Set the multiple input functions to Quick Stop. You can also choose enable or disable; the default setting is disabled. If it is necessary to enable the function, set MI terminal to 53 in one of the following parameters: Pr.02-01-02-07 or Pr.02-26-02-28. Note: This function is available in DS402 only.

15-3-2-2 The status of the motor drive (by following DS402 standard)
According to the DS402 definition, the motor drive is divided into 3 blocks and 9 statuses as described below.

\section*{3 blocks}
1. Power Disable: without PWM output
2. Power Enable: with PWM output
3. Fault: one or more errors have occurred.

\section*{9 status}
1. Start: power on
2. Not Ready to Switch On: the motor drive is initiating.
3. Switch On Disable: occurs when the motor drive finishes initiating.
4. Ready to Switch On: warming up before running.
5. Switch On: the motor drive has the PWM output, but the reference command is not effective.
6. Operation Enable: able to control normally.
7. Quick Stop Active: when there is a Quick Stop request, stop running the motor drive.
8. Fault Reaction Active: the motor drive detects conditions which might trigger error(s).
9. Fault: one or more errors have occurred in the motor drive.

When the motor drive turns on and finishes the initiation, it remains in Ready to Switch On status. To control the operation of the motor drive, change to Operation Enable status. To do this, set the control word's bit0-bit3 and bit7 of the Index 6040H and pair with Index Status Word (Status Word 0X6041). The control steps and index definition are described below:
Index 6040
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(15-9\) & 8 & 7 & \(6-4\) & 3 & 2 & 1 & 0 \\
\hline Reserved & Halt & Fault Reset & Operation & \begin{tabular}{c}
Enable \\
operation
\end{tabular} & Quick Stop & \begin{tabular}{c}
Enable \\
Voltage
\end{tabular} & Switch On \\
\hline
\end{tabular}

Index 6041
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(15-14\) & \(13-12\) & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline Reserved Operation & \begin{tabular}{c}
Internal \\
limit \\
active
\end{tabular} & \begin{tabular}{c}
Target \\
reached
\end{tabular} & Remote Reserved & Warning & \begin{tabular}{c}
Switch \\
on \\
disabled
\end{tabular} & \begin{tabular}{c}
Quick \\
stop
\end{tabular} & \begin{tabular}{l}
Voltage \\
enabled
\end{tabular} & Fault & \begin{tabular}{c}
Operation \\
enable
\end{tabular} & \begin{tabular}{c}
Switch \\
on
\end{tabular} & \begin{tabular}{c}
Ready \\
to \\
switch \\
on
\end{tabular} \\
\hline
\end{tabular}

Set command \(6040=0 \times E\), and then set another command \(6040=0 x F\). Then you can switch the motor drive to Operation Enable. The Index 605A determines the direction of the lines from Operation Enable when the control mode changes from Quick Stop Active. When the setting value is 5-7, both direction lines are active, but when the setting value of 605 A is not \(5-7\), once the motor drive is switched to Quick Stop Active, it is not able to switch back to Operation Enable.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Index & Sub & Definition & Default & R/W & Size & Unit & \[
\begin{array}{|l|}
\hline \text { PDO } \\
\text { Map } \\
\hline
\end{array}
\] & Mode & note \\
\hline \multirow{6}{*}{605Ah} & \multirow{6}{*}{0} & \multirow{6}{*}{Quick stop option code} & \multirow{6}{*}{2} & \multirow{6}{*}{RW} & \multirow{6}{*}{S16} & & \multirow{6}{*}{No} & & 0 : Disable drive function \\
\hline & & & & & & & & & 1: Slow down on slow down ramp \\
\hline & & & & & & & & & 2: Slow down on quick stop ramp \\
\hline & & & & & & & & & 5: Slow down on slow down ramp and stay in Quick Stop \\
\hline & & & & & & & & & 6: Slow down on quick stop ramp and stay in Quick Stop \\
\hline & & & & & & & & & 7: Slow down on the current limit and stay in Quick Stop \\
\hline
\end{tabular}

When the control section switches from Power Enable to Power Disable, use 605C to define the stop method.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Index & Sub & Definition & Default & R/W & Size & Unit & \begin{tabular}{c}
PDO \\
Map
\end{tabular} & Mode & note \\
\hline 605 Ch & 0 & \begin{tabular}{l}
Disable operation \\
option code
\end{tabular} & 1 & RW & S16 & & No & & \begin{tabular}{l}
0: Disable drive function \\
1: Slow down with slow down \\
ramp; disable the drive function.
\end{tabular} \\
\hline
\end{tabular}

15-3-2-3 Various mode control method (by following DS402 standard)

\section*{Speed mode:}
1. Set MH300 to speed control mode: set Index6060 to 2.
2. Switch to Operation Enable mode: set \(6040=0 \times E\), and then set \(6040=0 \times F\).
3. Set the target frequency: set target frequency for 6042 , since the operation unit of 6042 is rpm, a transform is required:
\[
\mathrm{n}=\mathrm{f} \times \frac{120}{\mathrm{p}} \quad \begin{aligned}
& \mathrm{n}: \text { rotation speed (rpm) (rounds/minute) } \\
& \mathrm{p}: \text { number of poles in the motor (Pole) } \\
& \mathrm{f}: \text { rotation frequency }(\mathrm{Hz})
\end{aligned}
\]

For example:
Set \(6042 \mathrm{H}=1500\) (rpm), if the number of poles is 4 (Pr.05-04, Pr.05-16, Pr.05-67, or Pr.05-73), then the motor drive's operation frequency is \(1500(120 / 4)=50 \mathrm{~Hz}\). The 6042 is defined as a signed operation. The plus or minus sign means to rotate clockwise or counter-clockwise.
4. To set acceleration and deceleration: use 604F (Acceleration) and 6050 (Deceleration).
5. Trigger an ACK signal: in the speed control mode, the bit 6-4 of Index 6040 needs to be controlled. It is defined below:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{\begin{tabular}{c}
\(*\) \\
Speed mode \\
(Index \(6060=2)\)
\end{tabular}} & \multicolumn{3}{|c|}{ Index 6040 } & \multirow{2}{*}{ SUM } \\
\cline { 2 - 4 } & bit 6 & bit 5 & bit 4 & \\
\cline { 2 - 4 } & 1 & 0 & 1 & Locked at the current signal. \\
\cline { 2 - 4 } & 1 & 1 & 1 & Run to reach targeting signal. \\
\cline { 2 - 4 } & \multicolumn{3}{|c|}{ Other } & Decelerate to 0 Hz. \\
\hline
\end{tabular}

\section*{NOTE:}
1. Read 6043 to get the current rotation speed (unit: rpm).
2. Read bit 10 of 6041 to find if the rotation speed has reached the targeting value (0: Not reached; 1: Reached).

\section*{Torque mode:}
1. Set AC motor drive to the torque mode: set index \(6060=4\). (index 6042 is available for speed limit under the torque control mode)
2. Switch to Operation Enable mode: set \(6040=0 x E\), and then set \(6040=0 x F\).
3. To set targeting torque: set 6071 as targeting torque and 6072 as the largest output torque.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{ Torque mode } & \multicolumn{3}{|c|}{ Index 6040 } & \multirow{2}{*}{ SUM } \\
\cline { 2 - 4 } (Index 6060 = 4) & bit 6 & bit 5 & bit 4 & \\
\cline { 2 - 4 } & X & X & X & RUN to reach the targeting torque. \\
\hline
\end{tabular}

\section*{NOTE:}
1. There is no maximum speed limit in standard DS402. Therefore, if the drive is using DS402 as the control method, then the maximum speed limit follows the settings of Pr.11-36-11-38.
2. Read 6077 to know the present current. (Unit: \(0.1 \%\))
3. Determine that the torque reaches the setting value or not by bit10 of 6041. (0: not reached; 1 : reached)

\section*{Position mode}
1. Set the parameter of a trapezium curve to define position control (Pr.11-43 Max. Frequency of Point-to-Point Position Control, Pr.11-44 Accel. Time of Point-to-Point Position Control and Pr.1145 Decel. Time of Point-to-Point Position Control)
2. Set MH300 to position control mode: set Index \(6060=1\).
3. Switch to Operation Enable mode: set \(6040=0 \times E\), and then set \(6040=0 x F\).
4. Set targeting position: set 607A as the targeting position.
5. Trigger an ACK signal: set \(6040=0 \times 0 F\), and then set \(6040=0 \times 1 F\). (Pulse On).

\section*{NOTE:}
1. Read 6064 to get the current position.
2. Read bit 10 of 6041 to find if the position reaches the targeting position. (0 : Not reached, 1 : reached)
3. Read bit11 of 6041 to find if the position is over the limited area. (0 : in the limit, 1 : over the limit)

\section*{Home mode}
1. Set \(6098=1-35\) to choose a home method.
2. Set the left and right limits correspond to the position of MI terminal.
3. Switch to Home mode: set Index \(6060=6\).
4. Switch to Operation Enable mode: set \(6040=0 x E\), and then set \(6040=0 x F\).
5. To trigger an ACK signal: set \(6040=0 \times 0 F\), and then set \(6040=0 \times 1 F\) (Pulse On, and the motor drive will be back to home.)

NOTE: Read bit12 of 6041 to find if the home mode is completed. (0 : Not reached, 1 : reached)

\section*{15-3-3 Using the Delta Standard (Old Definition)}

\section*{15-3-3-1 Various Mode Control Method (Delta Old Standard)}

Follow the steps below:
1. Wire the hardware (refer to Section 15-2 Wiring for CANopen).
2. Set the operation source: set Pr.00-21 to 3 for CANopen communication card control. (RUN / STOP, forward / reverse run, etc.)
3. Set the frequency source: set Pr.00-20 to 6. Choose the source for the Frequency command from the CANopen setting.
4. Set Delta Standard (Old definition, only supports speed mode) as the control mode: Pr.09-40 \(=0\) and Pr.09-30 \(=0\).
5. Set the CANopen station: set Pr.09-36; the range is between \(1-127\). When Pr.09-36 \(=0\), the CANopen slave function is disabled. Note: if an error appears (CAdE or CANopen memory error) as you complete the station setting, set Pr.00-02 \(=7\) to reset.
6. Set the CANopen baud rate: set Pr.09-37 (CANBUS Baud Rate: 1 Mbps (0), 500 Kbps (1), 250 Kbps (2), 125 Kbps (3), 100 Kbps (4) and 50 Kbps (5)).

\section*{15-3-3-2 Controls Under the Speed Mode}
1. Set the target frequency: set 2020-02, the unit is Hz , with 2 decimal places. For example: 1000 is 10.00 Hz .
2. Operation control: set \(2020-01=0002 \mathrm{H}\) for running, and set \(2020-01=0001 \mathrm{H}\) for stopping.

\section*{15-3-4 By Using Delta Standard (New Definition)}

\section*{15-3-4-1 Related Set Up for an AC Motor Drive (Delta New Standard)}

Follow the steps below:
1. Wire the hardware (refer to Section 15-2 Wiring for CANopen).
2. Set the operation source: set Pr.00-21 to 3 for CANopen communication card control.
3. Set the frequency source: set Pr.00-20 to 6. Choose the source for the Frequency command from the CANopen setting.
4. Set the torque source: set Pr.11-33. Choose the source of the Torque Command from CANopen setting.)
5. Set the position source: set Pr.11-40 = 3. Choose the source of the Position Command from CANopen setting.)
6. Set Delta Standard (New definition) as the control mode: Pr.09-40 \(=0\) and 09-30 \(=1\).
7. Set the CANopen station: set Pr.09-36; the range is between \(1-127\). When Pr.09-36 \(=0\), the CANopen slave function is disabled. Note: if an error appears (CAdE or CANopen memory error) as you complete the station setting, set Pr.00-02 \(=7\) to reset.
8. Set the CANopen baud rate: set Pr.09-37 (CANBUS Baud Rate: 1 Mbps (0), 500 Kbps (1), 250 Kbps (2), 125 Kbps (3), 100 Kbps (4) and 50 Kbps (5)).

\section*{15-3-4-2 Controls Under Various Modes (Delta New Standard)}

\section*{Speed Mode:}
1. Set MH300 to speed control mode: set index \(6060=2\).
2. Set the target frequency: set 2060-03, unit is Hz , with 2 decimal places.

For example: 1000 is 10.00 Hz .
3. Operation control: set 2060-01 \(=008 \mathrm{H}\) for server on, and set \(2060-01=0081 \mathrm{H}\) for running.

\section*{Torque mode:}
1. Set MH300 to speed control mode: set index 6060 to 4 .
2. Set the target torque: set 2060-07 unit as \%, and the value is one decimal place. 100 represents 10.0\%.
3. Operation: set \(2060-01=0080 \mathrm{H}\) starts excitation, and the drive immediately runs at the target torque.

\section*{NOTE:}
1. Read 2061-07 to know the present current. (Unit: 0.1\%)
2. Determine that the torque reaches the setting value or not by bit10 of 2061-01. (0 : not reached; 1 : reached)
3. If the speed of the drive reaches the speed limit when torque outputs, the output torque may decrease to ensure that the speed stays within the limits.

\section*{Position Mode}
1. Set the parameter of a trapezium curve to define position control (Pr.11-43 Max. Position Control Frequency), Pr.11-44 Accel. Time of Position Control, Pr.11-45 Decel. Time of Position Control)
2. Set MH300 to position control mode, set Index \(6060=1\).
3. Set 2060-01 \(=0080 \mathrm{~h}\), then motor drive starts excitation.
4. Set target position: set 2060-05 = target position.
5. Set 2060-01 \(=0081 \mathrm{~h}\) to trigger the motor drive runs to the target position.
6. Repeat step 3 to step 5 to move to another position.

\section*{NOTE:}
1. Read 2061-05 to get the current position.
2. Read bit0 of 2061 to find if the position has reached to the target position. (0: Not reached, 1 : Reached).

\section*{Home Mode}
1. Set \(6098=1-35\) to choose a home method.
2. Set the left and right limits correspond to the position of MI terminal.
3. Switch to home mode: set Index \(6060=6\).
4. Set 2060-01 \(=0080 \mathrm{~h}\), then the motor drive starts excitation.
5. Set the ACK signal: set \(2060-01=0081 \mathrm{~h}\), then the motor drive starts to go back home.

NOTE: Read bit12 of 6041 to find if returning home is completed. (0 : Not reached, 1: Reached).

\section*{15-3-5 DI / DO / AI / AO are Controlled through CANopen}

To control the DO AO of the motor drive through CANopen, follow these steps:
1. Define the DO to be controlled by CANopen. For example, set Pr.02-13 \(=50\) to control RY1.
2. Define the AO to be controlled by CANopen. For example, set Pr. \(03-20=20\) to control AFM.
3. To control DO, use control Index 2026-41. To control AO, use control 2026-A1. To set RY1 as ON, set bit 0 of Index 2026-41 = 1, then RY1 outputs 1. To control AFM output \(=50.00 \%\), set Index 2026A1 = 5000, then AFM outputs \(50 \%\).

The following table shows the mapping of CANopen DI DO AI AO:
DI:
\begin{tabular}{|c|c|c|c|}
\hline Terminal & Related Parameters & R/W & Mapping Index \\
\hline MI 1 & Pr.02-01 & RO & \(2026-01\) bit 2 \\
\hline MI 2 & Pr.02-02 & RO & \(2026-01\) bit 3 \\
\hline MI 3 & Pr.02-03 & RO & \(2026-01\) bit 4 \\
\hline MI 4 & Pr.02-04 & RO & \(2026-01\) bit 5 \\
\hline MI 5 & Pr.02-05 & RO & \(2026-01\) bit 6 \\
\hline MI 6 & Pr.02-06 & RO & \(2026-01\) bit 7 \\
\hline MI 7 & Pr.02-07 & RO & \(2026-01\) bit 8 \\
\hline MI 10 & Pr.02-26 & RO & \(2026-01\) bit 10 \\
\hline MI 11 & Pr.02-27 & RO & \(2026-01\) bit 11 \\
\hline MI 12 & Pr.02-28 & RO & \(2026-01\) bit 12 \\
\hline
\end{tabular}

DO:
\begin{tabular}{|c|c|c|c|}
\hline Terminal & Related Parameters & R/W & Mapping Index \\
\hline RY1 & Pr.02-13 \(=50\) & RW & \(2026-41\) bit 0 \\
\hline MO1 & Pr.02-16 \(=50\) & RW & \(2026-41\) bit 3 \\
\hline MO2 & Pr.02-17 \(=50\) & RW & \(2026-41\) bit 4 \\
\hline MO10 (RY10) & Pr.02-36 \(=50\) & RW & \(2026-41\) bit 5 \\
\hline MO11 (RY11) & Pr.02-37 \(=50\) & RW & \(2026-41\) bit 6 \\
\hline MO12 (RY12) & Pr.02-38 \(=50\) & RW & \(2026-41\) bit 7 \\
\hline
\end{tabular}

AI:
\begin{tabular}{|c|c|c|c|}
\hline Terminal & Related Parameters & R/W & Mapping Index \\
\hline AVI & \(==\) & RO & Value of 2026-61 \\
\hline ACl & \(==\) & RO & Value of 2026-62 \\
\hline Al10 & \(==\) & RO & Value of 2026-64 \\
\hline Al11 & \(==\) & RO & Value of 2026-65 \\
\hline
\end{tabular}

AO:
\begin{tabular}{|c|c|c|c|}
\hline Terminal & Related Parameters & R/W & Mapping Index \\
\hline AFM & Pr.03-20 \(=20\) & RW & Value of 2026-A1 \\
\hline AO10 & Pr.14-12 \(=20\) & RW & Value of 2026-A3 \\
\hline AO11 & Pr.14-13 \(=20\) & RW & Value of 2026-A4 \\
\hline
\end{tabular}

\section*{15-4 CANopen Supporting Index}

MH300 Index:
The parameter index corresponds as shown in this example:
\[
\begin{array}{cl}
\text { Index } & \text { sub-Index } \\
2000 \mathrm{H}+\text { Group } & \text { Pr. Number }+1
\end{array}
\]

For example:
Pr.10-15 (Encoder Slip Error Treatment)
\begin{tabular}{lcc}
Group & Pr. Number \\
\(10(0 \mathrm{AH}) \quad-\quad 15(0 \mathrm{FH})\)
\end{tabular}

Index \(=2000 \mathrm{H}+0 \mathrm{AH}=200 \mathrm{~A}\)
Sub Index \(=0 \mathrm{FH}+1 \mathrm{H}=10 \mathrm{H}\)
MH300 Control Index:

\section*{Delta Standard Mode (Old Definition)}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Index & Sub & \multicolumn{1}{|c|}{ Definition } & Default & R/W & Size & \multicolumn{1}{|c|}{ Note } \\
\hline & 0 & Number & & & \multicolumn{1}{|c|}{} \\
\hline & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Index & Sub & Definition & Default & R/W & Size & & Note \\
\hline \multirow{14}{*}{2021H} & 5 & Output current (XXX.XX A) & 0 & R & U16 & \multicolumn{2}{|l|}{When the current is greater than 655.35 , it automatically uses a decimal point (XXX.XA). Decimal places can refer to the high byte of 2021-20.} \\
\hline & 6 & DC BUS voltage (XXX.X V) & 0 & R & U16 & & \\
\hline & 7 & Output voltage (XXX. X V) & 0 & R & U16 & & \\
\hline & 8 & The current segment is run by the multi-segment speed command & 0 & R & U16 & & \\
\hline & 9 & Reserved & 0 & R & U16 & & \\
\hline & A & Display counter value (c) & 0 & R & U16 & & \\
\hline & B & Display output power angle (XXX. \({ }^{\circ}\)) & 0 & R & U16 & & \\
\hline & C & Display output torque (XXX.X\%) & 0 & R & U16 & & \\
\hline & D & Display motor speed (XXXXX rpm) & 0 & R & U16 & & \\
\hline & E & Number of PG feedback pulses (0-65535) & 0 & R & U16 & & \\
\hline & F & Number of PG2 pulse commands (0-65535) & 0 & R & U16 & & \\
\hline & 10 & power output (XX.XXX kW) & 0 & R & U16 & & \\
\hline & 17 & Multi-function display (Pr.0004) & 0 & R & U16 & & \\
\hline & 20 & High byte: current number of digits (display) & 0 & R & U16 & & \\
\hline \multirow{11}{*}{2022H} & 0 & Reserved & 0 & R & U16 & & \\
\hline & 1 & Display output current
(XX.XXA) & 0 & R & U16 & \multicolumn{2}{|l|}{When the current is greater than 655.35 , it automatically uses a decimal point (XXX.XA). Decimal places can refer to the high byte of 211F.} \\
\hline & 2 & Display counter value & 0 & R & U16 & & \\
\hline & 3 & Display actual output frequency (XXX.XX Hz) & 0 & R & U16 & & \\
\hline & 4 & Display DC bus voltage
(XXX.X V) & 0 & R & U16 & & \\
\hline & 5 & Display output voltage
(XXX.X V) & 0 & R & U16 & & \\
\hline & 6 & Display output power angle (XXX. \(\mathrm{X}^{\circ}\)) & 0 & R & U16 & & \\
\hline & 7 & Display output power in kW (XX.XXX kW) & 0 & R & U16 & & \\
\hline & 8 & Display actual motor speed (XXXXX rpm) & 0 & R & U16 & & \\
\hline & 9 & Display estimate output torque (XXX.X\%) & 0 & R & U16 & & \\
\hline & A & Display PG feedback & 0 & R & U16 & & \\
\hline
\end{tabular}

CANopen Remote IO mapping
\begin{tabular}{|c|c|c|c|}
\hline Index & Sub & R/W & Definition \\
\hline \multirow{14}{*}{2026H} & 01h & R & Each bit corresponds to different input terminals. \\
\hline & 02h & R & Each bit corresponds to different input terminals. \\
\hline & 03h-40h & R & Reserved \\
\hline & 41h & RW & Each bit corresponds to different output terminals. \\
\hline & 42h-60h & R & Reserved \\
\hline & 61h & R & AVI (\%) \\
\hline & 62h & R & ACl (\%) \\
\hline & 63h & R & Reserved \\
\hline & 64h & & Al10 (\%) \\
\hline & 65h & & Al11 (\%) \\
\hline & 66h-A0h & R & Reserved \\
\hline & A1h & RW & AFM (\%) \\
\hline & A3h & RW & AO10 (\%) \\
\hline & A4h & RW & AO11 (\%) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Index \\
\(2026-01\)
\end{tabular} & bit 0 & bit 1 & bit 2 & bit 3 & bit 4 & bit 5 & bit 6 & bit 7 & bit8 & bit9 & bit10 & bit11 & bit12 & bit13 & bit14 & bit15 \\
\hline 1 & MI1 & MI2 & MI3 & MI4 & MI5 & MI6 & MI7 & & & & & & & & & \\
\hline 2 & & & & & & & & & & & MI10 & MI11 & MI12 & MI13 & MI14 & MI15 \\
\hline
\end{tabular}

1: Control broad I/O
2: Add external card, EMM-D33A (D1022 = 10)
\begin{tabular}{|c|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{c}
Index \\
\(2026-41\)
\end{tabular} & bit 0 & bit 1 & bit 2 & bit 3 & bit 4 & bit 5 & bit 6 & bit 7 & bit8 & bit9 & bit10 & bit11 & bit12 & bit13 & bit14 & bit15 \\
\hline 1 & RY1 & & & MO1 & MO2 & & & & & & & & & & & \\
\hline 2 & & & & & & MO10 & MO11 & MO12 & & & & & & & & \\
\hline 3 & & & & & & RY10 & RY11 & & & & & & & & & \\
\hline 4 & & & & & & RY10 & RY11 & RY12 & & & & & & & & \\
\hline
\end{tabular}

1: Control broad I/O
2: Add external card, EMM-D33A (D1022 = 10)
3: Add external card, EMM-R2CA (D1022 = 12)
4: Add external card, EMM-R3AA (D1022 = 13)

Delta Standard Mode (New Definition)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Index} & \multirow[b]{2}{*}{sub} & \multirow[b]{2}{*}{R/W} & \multirow[b]{2}{*}{Size} & \multicolumn{3}{|c|}{Descriptions} & \multirow[b]{2}{*}{Speed Mode} & \multirow[b]{2}{*}{Position Mode} & \multirow[b]{2}{*}{Home Mode} & \multirow[b]{2}{*}{Torque Mode} \\
\hline & & & & bit & Definition & Priority & & & & \\
\hline \multirow{19}{*}{2060h} & 00h & R & U8 & & & & & & 0: Stop Homing & \\
\hline & \multirow{11}{*}{01h} & \multirow{11}{*}{RW} & \multirow{11}{*}{U16} & 0 & Ack & 4 & \[
\begin{aligned}
& 0: \text { fcmd }=0 \\
& 1: \text { fcmd }=\text { Fset(Fpid) }
\end{aligned}
\] & Pulse 1: Position control & Pulse 1: Return to home & \\
\hline & & & & 1 & Dir & 4 & 0: FWD run command 1: REV run command & & & \\
\hline & & & & 2 & & & & 0: Relative move 1: Absolute move & & \\
\hline & & & & 3 & Halt & 3 & 0: drive run till target speed is attained 1: drive stop by deceleration setting & & & The torque target of internal decoding is set as 0 , but the display of outside torque target will remain its outside setting. \\
\hline & & & & 4 & Hold & 4 & 0: drive run till target speed is attained 1: frequency stop at current frequency & & & \\
\hline & & & & 5 & JOG & 4 & \begin{tabular}{l}
0: JOG OFF \\
Pulse 1: JOG RUN
\end{tabular} & & & \\
\hline & & & & 6 & Qstop & 2 & Quick Stop & Quick Stop & Quick Stop & Quick Stop \\
\hline & & & & 7 & Power & 1 & \begin{tabular}{l}
0: Power OFF \\
1: Power ON
\end{tabular} & \[
\begin{aligned}
& \text { 0: Power OFF } \\
& \text { 1: Power ON }
\end{aligned}
\] & \begin{tabular}{l}
0: Power OFF \\
1: Power ON
\end{tabular} & \begin{tabular}{l}
0: Power OFF \\
1: Power ON
\end{tabular} \\
\hline & & & & 8 & Ext Cmd2 & 4 & \(0 \rightarrow 1\) : Absolute position cleared \\
\hline & & & & 14-9 & Reserved & & & & & \\
\hline & & & & 15 & RST & & Pulse 1: Fault code cleared \\
\hline & 02h & RW & U16 & & Mode Cmd & & 0: Speed mode & \[
\begin{aligned}
& \text { 1: P2P position } \\
& \text { mode }
\end{aligned}
\] & 3: Home mode & 2: Torque mode \\
\hline & 03h & RW & U16 & & & & Speed command (unsigned decimal) & & & \\
\hline & 04h & RW & U16 & & & & & & & \\
\hline & 05h & RW & S32 & & & & & Position command & & \\
\hline & 06h & RW & & & & & & & & \\
\hline & 07h & RW & U16 & & & & & & & Torque command (signed decimal) \\
\hline & 08h & RW & U16 & & & & & & & Speed limit (unsigned decimal) \\
\hline \multirow{12}{*}{2061h} & \multirow{9}{*}{01h} & \multirow{9}{*}{R} & \multirow{9}{*}{U16} & 0 & Arrive & & Frequency command reached & Position attained & Homing complete & Torque attained \\
\hline & & & & 1 & Dir & & \begin{tabular}{l}
0: Motor FWD run \\
1: Motor REV run
\end{tabular} & 0: Motor FWD run 1: Motor REV run & 0: Motor FWD run 1: Motor REV run & \[
\begin{aligned}
& \text { 0: Motor FWD } \\
& \text { run } \\
& \text { 1: Motor REV run }
\end{aligned}
\] \\
\hline & & & & 2 & Warn & & Warning occurs & Warning & Warning & Warning \\
\hline & & & & 3 & Error & & Error detected & Error detected & Error detected & Error detected \\
\hline & & & & 4 & & & & & & \\
\hline & & & & 5 & JOG & & JOG & JOG & JOG & JOG \\
\hline & & & & 6 & Qstop & & Quick stop & Quick stop & Quick stop & Quick stop \\
\hline & & & & 7 & Power On & & Switch ON & Switch ON & Switch ON & Switch ON \\
\hline & & & & 15-8 & & & & & & \\
\hline & 02h & R & & & & & & & & \\
\hline & 03h & R & U16 & & & & Actual output frequency & Actual output frequency & Actual output frequency & Actual output frequency \\
\hline & 04h & R & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Index} & \multirow[b]{2}{*}{sub} & \multirow[b]{2}{*}{R/W} & \multirow[b]{2}{*}{Size} & \multicolumn{2}{|r|}{Descriptions} & \multirow[b]{2}{*}{Speed Mode} & \multirow{2}{*}{Position Mode} & \multirow{2}{*}{Home Mode} & \multirow[b]{2}{*}{Torque Mode} \\
\hline & & & & bit & DefinitionPr & & & & \\
\hline \multirow{3}{*}{2061h} & 05h & R & S32 & & & Actual position (absolute) & Actual position (absolute) & Actual position (absolute) & Actual position (absolute) \\
\hline & 06h & R & & & & & & & \\
\hline & 07h & R & S16 & & & Actual torque & Actual torque & Actual torque & Actual torque \\
\hline
\end{tabular}

DS402 Standard

\section*{15-5 CANopen Fault Codes}
- The settings are based on Pr.06-17-Pr.06-22 and Pr.14-70-Pr.14-73.
- Refer to Chapter 14 for details about the fault codes.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Setting* & Display & \begin{tabular}{l}
Fault \\
code
\end{tabular} & Description & CANopen fault register (bit 0-7) & CANopen fault code \\
\hline 1 & - & 0001H & Over-current during acceleration (ocA) & 1 & 2213H \\
\hline 2 & - & 0002H & Over-current during deceleration (ocd) & 1 & 2213H \\
\hline 3 & [0] & 0003H & Over-current during steady operation (ocn) & 1 & 2214H \\
\hline 4 & WiF & 0004H & Ground fault (GFF) & 1 & 2240 H \\
\hline 5 & & 0005H & IGBT short circuit between upper bridge and lower bridge (occ) & 1 & 2250H \\
\hline 6 & - & 0006H & Over-current at stop (ocS) & 1 & 2214H \\
\hline 7 & - & 0007H & Over-voltage during acceleration (ovA) & 2 & 3210 H \\
\hline 8 & لـ & 0008H & Over-voltage during deceleration (ovd) & 2 & 3210 H \\
\hline 9 & וֹ ניـ ב- & 009H & Over-voltage at constant speed (ovn) & 2 & 3210 H \\
\hline 10 & חu & 000AH & Over-voltage at stop (ovS) & 2 & 3210 H \\
\hline 11 & 1-7\% & 000BH & Low-voltage during acceleration (LvA) & 2 & 3220 H \\
\hline 12 & 1.-4 & 000CH & Low-voltage during deceleration (Lvd) & 2 & 3220 H \\
\hline 13 & & 000DH & Low-voltage at constant speed (Lvn) & 2 & 3220H \\
\hline 14 & 1.-1-5 & 000EH & Low-voltage at stop (LvS) & 2 & 3220 H \\
\hline 15 & - \(\mathrm{ra}^{-1}\) & 000FH & Phase loss protection (orP) & 2 & 3130 H \\
\hline 16 & | & 0010H & IGBT overheating (oH1) & 3 & 4310H \\
\hline 17 & -7\% & 0011H & Over-heat key components (oH2) & 3 & 4310H \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Setting* & Display & Fault code & Description & CANopen fault register (bit 0-7) & CANopen fault code \\
\hline 18 & EH10 & 0012H & IGBT temperature detection failure (tH1o) & 3 & FFOOH \\
\hline 19 & & 0013H & Capacitor hardware fault (tH2o) & 3 & FF01H \\
\hline 21 & 01. & 0015H & Overload (oL) & 1 & 2310 H \\
\hline 22 & [01) & 0016H & Electronic thermal relay 1 protection (EoL1) & 1 & 2310 H \\
\hline 23 & [-7 & 0017H & Electronic thermal relay 2 protection (EoL2) & 1 & 2310 H \\
\hline 24 &]-7 & 0018H & Motor overheating (oH3) & 3 & FF20H \\
\hline 26 & -1 & 001AH & Over-torque 1 (ot1) & 3 & 8311H \\
\hline 27 & -10 & 001BH & Over-torque 2 (ot1) & 3 & 8311H \\
\hline 28 & L-5. & 001CH & Under current (uC) & 1 & 8321H \\
\hline 29 & 1. 1 & 001DH & Limit Error (LiT) & 1 & 7320 H \\
\hline 31 & [-F-\% & 001FH & EEPROM read error (cF2). & 5 & 5530 H \\
\hline 33 & -01 & 0021H & U-phase error (cd1) & 1 & FF04H \\
\hline 34 & [-7 & 0022H & V-phase error (cd2) & 1 & FF05H \\
\hline 35 & [-] & 0023H & W-phase error (cd3) & 1 & FF06H \\
\hline 36 & H10] & 0024H & CC (current clamp) hardware failure (Hd0) & 5 & FF07H \\
\hline 37 & H1 & 0025H & OC hardware failure (Hd1) & 5 & FF08H \\
\hline 40 & Fila & 0028H & Auto-tuning error (AUE) & 1 & FF21H \\
\hline 41 & F\% & 0029H & PID loss ACI (AFE) & 7 & FF22H \\
\hline 42 & FTEF| & 002AH & PG feedback error (PGF1) & 7 & 7301H \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Setting* & Display & Fault code & Description & CANopen fault register (bit 0-7) & CANopen fault code \\
\hline 43 & [-\% & 002BH & PG feedback loss (PGF2) & 7 & 7301H \\
\hline 44 & & 002CH & PG feedback stall (GF3) & 7 & 7301H \\
\hline 45 & & 002DH & PG slip error (PGF4) & 7 & 7301H \\
\hline 48 & Fiom & 0030H & ACI loss (ACE) & 1 & FF25H \\
\hline 49 & F-\% & 0031H & External fault (EF) & 5 & 9000H \\
\hline 50 & EFi & 0032H & Emergency stop (EF1) & 5 & 9000 H \\
\hline 51 & -1 & 0033H & External base block (bb) & 5 & 9000 H \\
\hline 52 & - & 0034H & Password is locked (Pcod) & 5 & FF26H \\
\hline 54 & F- & 0036H & Illegal command (CE1) & 4 & 7500 H \\
\hline 55 & - & 0037H & Illegal data address (CE2) & 4 & 7500H \\
\hline 56 & [-7 & 0038H & Illegal data value (CE3) & 4 & 7500H \\
\hline 57 & [-M & 0039H & Data is written to read-only address
(CE4) & 4 & 7500H \\
\hline 58 & \(\left[\begin{array}{ll}{\left[\begin{array}{ll}-0 & 1\end{array}\right]}\end{array}\right.\) & 003AH & Modbus transmission time-out (CE10) & 4 & 7500 H \\
\hline 61 & تك & 003DH & Y-connection / \(\Delta\)-connection switch fault (ydc) & 2 & 3330H \\
\hline 62 & a & 003EH & Deceleration energy backup fault (dEb) & 2 & FF27H \\
\hline 63 & & 003FH & Over slip error (oSL) & 7 & FF28H \\
\hline 65 & - & 0041H & Hardware error of PG card (PGF5) & 5 & FF29H \\
\hline 72 & & 0048H & STO Loss 1 (STL1) & 5 & FF30H \\
\hline 76 & -1\% & 004CH & STO (STo) & 5 & FF31H \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Setting* & Display & Fault code & Description & CANopen fault register (bit 0-7) & CANopen fault code \\
\hline 77 & -17 & 004DH & STO Loss 2 (STL2) & 5 & FF32H \\
\hline 78 & \begin{tabular}{lllll}
\(\square-7\) & \(\square\) \\
\hline
\end{tabular} & 004EH & STO Loss 3 (STL3) & 5 & FF33H \\
\hline 79 & : & 0050H & U-phase short circuit (Aoc) & 1 & FF2BH \\
\hline 80 & - & 0051H & V-phase short circuit (Boc) & 1 & FF2CH \\
\hline 81 & [-0] & 0050H & W-phase short circuit (Coc) & 1 & FF2DH \\
\hline 82 & \[
\mathrm{cil}^{[-1} \text { | }
\] & 0052H & Output phase loss U phase (oPL1) & 2 & 2331H \\
\hline 83 & & 0053H & Output phase loss \(\vee\) phase (oPL2) & 2 & 2332H \\
\hline 84 & [7] & 0054H & Output phase loss W phase (oPL3) & 2 & 2333H \\
\hline 87 & -18 & 0057H & Overload protection at low frequency (oL3) & 0 & 8A00H \\
\hline 89 &] & 0059H & Rotor position detection error
(roPd) & 0 & 8A00H \\
\hline 101 & - \% & 0065H & CANopen guarding fault (CGdE) & 4 & 8130 H \\
\hline 102 & & 0066H & CANopen heartbeat fault (CHbE) & 4 & 8130 H \\
\hline 104 & F- 5 & 0068H & CANopen bus off fault (CbFE) & 4 & 8140 H \\
\hline 105 & [-1 & 0069H & CANopen index error (CIdE) & 4 & 8100 H \\
\hline 106 & [- & 006AH & CANopen station address error (CAdE) & 4 & 8100H \\
\hline 107 & F-5\% & 006BH & CANopen memory error (CFrE) & 4 & 8100 H \\
\hline 111 & 1 & 006FH & InrCOM time-out error (ictE) & 4 & 7500 H \\
\hline 121 & \[
\left[\begin{array}{cc}
{[-1]} \\
\hline-0]
\end{array}\right]
\] & 007AH & Internal communication error (CP20) & 7 & FF36H \\
\hline 123 & & 007CH & Internal communication error (CP22) & 7 & FF38H \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Setting* & Display & Fault code & Description & CANopen fault register (bit 0-7) & CANopen fault code \\
\hline 124 & & 007DH & Internal communication error
(CP30) & 7 & FF39H \\
\hline 126 & -1 & 0080H & Internal communication error
(CP32) & 7 & FF3BH \\
\hline 127 & & 0081H & Internal communication error (CP33) & 7 & FF3CH \\
\hline 128 & [1] & 0082H & Over-torque 3 (ot3) & 1 & 2310 H \\
\hline 129 & -1. & 0083H & Over-torque 4 (ot4) & 1 & 2310 H \\
\hline 134 & [0] & 0088H & Internal communication error (EoL3) & 1 & 2310 H \\
\hline 135 & [GIL & 0089H & Internal communication error (EoL4) & 1 & 2310 H \\
\hline 140 & H60000 & 008EH & GFF detected when power is on (Hd6) & 1 & 2240 H \\
\hline 141 & 以 & 0090H & GFF occurs before running (b4GFF) & 1 & 2240 H \\
\hline 142 & & 0091H & Auto-tune error 1 (AUE1) & 1 & FF3DH \\
\hline 143 & - & 0092H & Auto-tune error 2 (AUE2) & 1 & FF3EH \\
\hline 144 & FIn & 0093H & Auto-tune error 3 (AUE3) & 1 & FF3FH \\
\hline
\end{tabular}

\section*{15-6 CANopen LED Function}

There are two CANopen flash signs: RUN and ERR.

RUN LED:
\begin{tabular}{|c|c|c|c|}
\hline LED status & & Condition & CANopen Status \\
\hline OFF & Keep lighting off & & Initial \\
\hline Blinking & & & Pre-operation \\
\hline \begin{tabular}{l}
Single \\
flash
\end{tabular} & & \[
\xrightarrow[\mathrm{ms}]{1000}
\] & Stopped \\
\hline ON & Keep lighting on & & Operation \\
\hline
\end{tabular}

\section*{ERR LED:}
\begin{tabular}{|c|c|}
\hline LED status & Condition / Status \\
\hline OFF & No Error \\
\hline Single flash & At least one CANopen packet failure \\
\hline Double flash & Guarding failure or heartbeat failure \\
\hline Triple flash & SYNC failure \\
\hline ON & Bus off \\
\hline
\end{tabular}
[This page intentionally left blank]

\section*{Chapter 16 PLC Function Applications}
16-1 PLC Summary
16-2 Notes Before Using a PLC
16-3 Turn On
16-4 Basic Principles of PLC Ladder Diagrams
16-5 Various PLC Device Functions
16-6 Introduction to the Command Window
16-7 Display and Treatment of PLC Related Faults and Codes
16-8 Explanation of Each PLC Mode Control (Speed, Torque)
16-9 Count Function Using Pulse Input
16-10 CANopen Master Control Applications
16-11 Modbus Remote IO Control Applications (Use MODRW)

\section*{16-1 PLC Summary}

\section*{16-1-1 Introduction}

The commands provided by the MH300's built-in PLC functions, including the ladder diagram editing tool WPLSoft, as well as the use of basic commands and application commands, follow the operating methods of Delta's PLC DVP series.

\section*{16-1-2 WPLSoft ladder diagram editing tool}

WPLSoft is Delta's software program for the DVP and MH300 programmable controllers in Windows operating system environment. In addition to general PLC program design and general Windows editing functions (such as cut, paste, copy, and multiple windows), WPLSoft also provides many features such as Chinese/English annotation editing, registry editing, settings, file reading, saving, and contact graphic monitoring and settings.

Table 16-1 lists the basic requirements for installing the WPLSoft editing software:
\begin{tabular}{|c|l|}
\hline Item & \multicolumn{1}{c|}{ System requirements } \\
\hline Operating system & Windows \(95 / 98 / 2000 / \mathrm{NT} / \mathrm{ME} / \mathrm{XP} / 7 / 10\) \\
\hline CPU & At least Pentium 90 \\
\hline Memory & At least 16 MB (it is recommend at least 32 MB) \\
\hline Hard drive & \begin{tabular}{l}
Hard drive capacity: at least 100 MB of free space \\
One optical drive (to install this software)
\end{tabular} \\
\hline Display & \begin{tabular}{l}
Resolution: \(640 \times 480\), at least 16 colors; it is recommended that the screen \\
area be set at \(800 \times 600\) pixels.
\end{tabular} \\
\hline Mouse & Ordinary mouse or Windows-compatible pointing device \\
\hline Printer & Printer with Windows driver software \\
\hline RS-485 port & Must have at least an RS-485 port to link to the PLC \\
\hline USB port & The USB port on the drive can be connected to the PLC \\
\hline
\end{tabular}

Table 16-1

\section*{16-2 Notes Before Using a PLC}
1. The MH300 provides two communication serial ports that you can use to download programs to the PLC (see Figure 16-1 below).
- Channel 1 (USB port) communication format is the same as channel 2.
- Channel 2 has a preset communication format of \(7, \mathrm{~N}, 2,9600\); you can change to ASCII in Pr.09-01 (transmission speed) and Pr.09-04 (communication protocol).
2. The PLC preset is node 2; you can change the PLC node in Pr.09-35 (PLC address), but this address may not be the same as the drive's address setting in Pr.09-00 (communication address).

Figure 16-1
3. The host controller can simultaneously access data from the drive and the internal PLC, using the identifier for the node. For instance, if the drive node is 1 and the internal PLC node is 2 , then the host controller command depends on the node address:
- 01 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in drive Pr.04-00.
- 02 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in internal PLC XO.
4. The PLC program is disabled when uploading/downloading programs.
5. Note that when using WPR commands to write parameters, you may modify values up to a maximum of \(10^{9}\) times; otherwise, a memory write error occurs. The number of modifications depends on whether the parameter value has changed. If you do not change the value, it does not change the number of modifications; however, if the entered value is different from before, the number of modifications increases by one.
6. When you set Pr.00-04 to 28, the displayed value is the value of PLC register D1043, as shown below.

Figure 16-2
Digital Keypad KPC-CC01 (optional)
Can display 0-65535
7. In the PLC Run and PLC Stop mode, you cannot set Pr.00-02 to the values 9 or 10, and cannot be reset to the default value.
8. You can reset the PLC to the default value when you set Pr.00-02 to 6 .
9. The corresponding MI function is disabled when the PLC writes to input contact \(X\).
10. When the PLC controls the drive operation, the control commands are entirely controlled by the PLC and are not affected by the setting for Pr.00-21.
11. When the PLC controls the drive's Frequency commands (FREQ commands), the Frequency commands are entirely controlled by the PLC, and are not affected by the setting for Pr.00-20 or the HAND ON / OFF configuration.
12. When the PLC controls the drive operation, if the keypad STOP setting is valid, this triggers an FStP error and causes the drive to stop.

\section*{16-3 Turn On}

\section*{16-3-1 Connect the Drive to the PC}

You start operating the PLC functions with the following steps:
After pressing the MENU key and choosing 4: PLC on the KPC-CC01 digital keypad (optional), press the ENTER key (see Figure 16-3 below).

Figure 16-3
1. Wiring: Connect the drive's RJ45 communication interface to a PC through the RS-485 cable.

Figure 16-4
2. PLC function usage

Digital keypad KPC-CC01 (optional)

Figure 16-5

PLC functions are as shown in Figure 16-5 on the left; select item 2 PLC Run to enable the PLC functions.

1: No function (Disable)
2: Enable PLC (PLC Run)
3: Stop PLC functions (PLC Stop)

Digital keypad (KPMH-LC01)

Enter PLC mode setting, and select PLC1
PLC 0: Do not implement PLC functions
PLC 1: Initiate PLC Run
PLC 2: Initiate PLC Stop

Figure 16-6

The MH300 automatically switches to PLC mode when the external multifunctional input terminals (MI1-MI7) are in PLC Mode selection bit 0 (51) or PLC Mode selection bit1 (52), and the terminal contact is closed or open. In this case, keypad switching is ineffective. The corresponding actions are listed in the following table.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{PLC mode} & \multirow[b]{2}{*}{PLC Mode selection bit1 (52)} & \multirow[b]{2}{*}{PLC Mode selection bit0 (51)} \\
\hline Using KPC-CC01 (optional) & Using KPMH-LC01 & & \\
\hline Disable & PLC 0 & OFF & OFF \\
\hline PLC Run & PLC 1 & OFF & ON \\
\hline PLC Stop & PLC 2 & ON & OFF \\
\hline Maintain previous state & Maintain previous state & ON & ON \\
\hline
\end{tabular}

Table 16-2
Using the MH300 digital keypad to implement the PLC functions
च When the PLC screen switches to the PLC1 screen, this triggers one PLC action, and you control the PLC program start/stop by communications with WPLSoft.
■ When the PLC screen switches to the PLC2 screen, this triggers one PLC stop, and you control the PLC program start/stop by communications with WPLSoft.
\(\square\) The external terminal control method is the same as shown in Table 16-2 above.

\section*{NOTE:}
- When the input / output terminals (MI1-MI7 Relay MO) are included in the PLC program, these input / output terminals are used only by the PLC. For example, when the PLC program controls Y0 during PLC operation (PLC1 or PLC2), the corresponding output terminal relay (\(R A / R B / R C\)) operates according to the program. At this time, the multifunctional input / output terminal setting has no effect. Because these terminal functions are already being used by the PLC, you can determine the DI / DO / AO in use by the PLC by looking at Pr.02-52, 02-53, and 03-30.
- When the PLC's procedures use special register D1040, the corresponding AO contact AFM is occupied.
- Pr.03-30 monitors the state of action of the PLC function analog output terminals; bit 1 corresponds to the AFM action state.

\section*{16-3-2 I/O device explanation}

Input devices:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Serial \\
No.
\end{tabular} & X0 & X1 & X2 & X3 & X4 & X5 & X6 & X7 & X10 & X11 & X12 & X13 & X14 & X15 & X16 & X17 \\
\hline \(\mathbf{1}\) & MI1 & MI2 & MI3 & MI4 & MI5 & MI6 & MI7 & & & & & & & & & \\
\hline \(\mathbf{2}\) & & & & & & & & & & & MI10 & MI11 & MI12 & & & \\
\hline
\end{tabular}

1: Control I/O
2: Expansion card EMM-D33A (D1022=10)

Output devices:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Serial \\
No.
\end{tabular} & Y 0 & Y 1 & Y 2 & Y 3 & Y 4 & Y 5 & Y 6 & Y 7 & Y 10 & Y 11 & Y 12 & Y 13 & Y 14 & Y 15 & Y 16 & Y 17 \\
\hline \(\mathbf{1}\) & RY 1 & & & MO 1 & MO 2 & & & & & & & & & & & \\
\hline \(\mathbf{2}\) & & & & & & MO 10 & MO 11 & MO 12 & & & & & & & & \\
\hline \(\mathbf{3}\) & & & & & & RY10 & RY11 & & & & & & & & & \\
\hline \(\mathbf{4}\) & & & & & & RY10 & RY11 & RY 12 & & & & & & & & \\
\hline
\end{tabular}

1: Control I/O |
2: Expansion card EMM-D33A (D1022=10)
3: Expansion card EMM-R2CA (D1022=12)
4: Expansion card EMM-R3AA (D1022=13)

\section*{RY1 / RY2 / RY3}

\section*{RY10 / RY11 / RY12}

Figure 16-7

\section*{16-3-3 Installing WPLSoft}

See Delta's website where you can download the WPLSoft editing software:
After you install WPLSoft, the WPLSoft program is located in the folder "C:IProgram FileslDelta Industrial Automation\WPLSoft x.xx".

\section*{16-3-4 Writing programs in WPLSoft}

\section*{STEP 1:}

You can run the editing software by double-clicking the WPL icon.

Figure 16-8

\section*{STEP 2:}

The WPL editing window appears after three seconds. When running WPLSoft for the first time, before you create a new project file, the menu bar shows only File, View, Communication, Options, and Help menus.

Figure 16-9

\section*{NOTE:}

The next time you run WPLSoft, the program opens the last project file you edited. Figure 16-10 describes the main parts of the WPLSoft editing window.

Figure 16-10

\section*{STEP 3:}

To open a new project file, on the Toolbar, click the New \(\square\) button (or press \(\mathrm{Ctrl}+\mathrm{N}\)).
G) WPL Editor

Figure 16-11

\section*{NOTE:}

Alternatively, on the File menu, click New (Ctrl+N).

Figure 16-12

\section*{STEP 4:}

This displays the Select a PLC Model dialog box where you can enter the Program Title, File Name, and select the device and communication settings.

Figure 16-13

In the Communication Setting dialog box, define the communication settings and then click OK.

Figure 16-14

\section*{NOTE:}

You must select RS232 for the type of connection setup in the Communication Setting dialog box when using USB to connect the motor drive (MS300 / MH300 series).

\section*{STEP 5:}

You can then begin editing the program. There are two program editing methods: you can edit in the command mode, or edit in the ladder diagram mode.

Figure 16-15

\section*{NOTE:}

In the ladder diagram mode, you use the buttons on the function icon row on the toolbar.

Figure 16-16

\section*{Chapter 16 PLC Function Applications | MH300}

\section*{Basic Operation}

Example: Create the ladder diagram in the following picture.

Figure 16-17
Use the following steps to create the ladder diagram. These steps show you how to use both the mouse and the keyboard (F1-F12) to add functions.
1. The following picture shows the WPLSoft program after you create a new project file.

Figure 16-18
2. Add an always-open switch. On the toolbar click the always-open switch button \(\begin{gathered}\text { F1 } \\ 1\end{gathered}\) or press F1.

Figure 16-19

In the Input Device Instruction dialog box, select the device name (such as M), device number (such as 10) and enter comments (such as auxiliary coil). Click OK when finished.

Figure 16-20
3. Add an output coil. Click the output coil button

In the Input Device Instruction dialog box, select the device name (such as \(\mathbf{Y}\)), the device number (such as \(\mathbf{0}\)) and enter comments (such as output coil). Click OK when finished.

Figure 16-21
```

8. WPL Editor - [Ladder Diagram Mode]
F% File Edit Compiler Comments S_earch View | Communication Options Wizard Window Help
```



```

|-M,
~ RS232
Q-9 Ethemet
-I DVPEN01-SL
[] IFD9506
-11 PLC
-1 PLC
M DVPFEN
G DirectLink
\#USB
\#CDC

```

Figure 16-22
4. Press Enter, and Input Instruction box appears. In the Input Instruction box, select END, or use the keyboard to type "END", and then click OK, as shown in Figure 16-23 and Figure 16-24.

Figure 16-23

8\% WPL Editor - [Ladder Diagram Mode]
[㗐 File Edit Compiler Comments Search View | Communication Options Wizard Window Help

Figure 16-24
5. Compile the program. On the toolbar, click the Compile button cove to compile the edited ladder diagram into a command program. After compiling, the number of rungs appear on the left side of the busbar.
```

4. WPL Editor - [Ladder Diagram Mode]
", File Edit Compiler Comments Search View | Communication Options Wizard Window Help
```



```


## Communication Setting 외즈 0

|}\mathrm{ Communication Setting M
\checkmark RS232
-9.0}\mathrm{ Ethemet
-1/ DVPEN01-SL
-1 IFD9506
IFD9507
\#\# PLC
1] DVPFEN01
@ DirectLink
\& USB
\&CDC
\$ Ethernet

Figure 16－25

## 16－3－5 Program download

After you compile your program，download it to the device．Click the Download button ${ }^{[53}$ ．WPLSoft downloads the program to the online PLC in the communication format that you specified for the communication settings．

## 16－3－6 Program monitoring

After you download the program，confirm that the PLC is in Run mode．On the Communication menu， click Online Mode ${ }^{5}$ ，and then click Start Ladder Diagram Control（as shown in Figure 16－26）． This allows you to supervise and operate the ladder diagram while online．


Figure 16－26

## 16-4 Basic Principles of PLC Ladder Diagrams

## 16-4-1 Schematic diagram for PLC ladder diagram program scanning

Output results are calculated on the basis of the ladder diagram configuration
(internal devices have real-time output before results are sent to an external output point)


Figure 16-27

## 16-4-2 Introduction to ladder diagrams

Ladder diagrams use a graphic language widely applied in automatic controls. They employ common electrical control circuit symbols. After you use a ladder diagram editor to create a ladder diagram program, the PLC program design is complete. Using a graphic format to control processes is very intuitive and is readily accepted by personnel who are familiar with electrical control circuit technology. Many of the basic symbols and actions in a ladder diagram mimic common electrical devices in conventional automatic control power distribution panels, such as buttons, switches, relays, timers, and counters.

Internal PLC devices: The types and quantities of internal PLC devices vary in different brands of products. Although these internal devices use the same names as the conventional electrical control circuit elements (such as relays, coils, and contacts), a PLC does not actually contain these physical devices, and they instead correspond to basic elements in the PLC's internal memory (bits). For instance, if a bit is 1 , this may indicate that a coil is electrified; and if that bit is 0 , it indicates that the coil is not electrified. You can use a N.O. contact (Normally Open, or contact A) to directly read the value of the corresponding bit, and use a N.C. contact (Normally Closed, or contact B) to get the inverse of the bit's value. Multiple relays occupy multiple bits, and eight bits comprise one byte. Two bytes comprise one word, and two words comprise a double word. When multiple relays are processing at the same time (as in addition/subtraction or displacement), it can use a byte, a word, or a double word. Furthermore, a PLC contains two types of internal devices: a timer and a counter. It not only has a coil, but can count time and numerical values. Because of this, when it is necessary to process numerical values, these values are usually in the form of bytes, words, or double words (internally in the PLC).

The various internal devices in a PLC use a certain amount of memory in the PLC's storage area. When you use these devices, the content of the corresponding storage area is read in the form of bits, bytes, or words.

The following table describes the internal devices in a PLC

Device   Type	Description of Function
	An input relay constitutes the basic unit of storage in a PLC's internal memory, and corresponds to an external input point. It serves as a terminal connecting with an external input switch and receiving external input signals. It is driven by external input signals, to which it assigns values of 0 or 1 . A program design method cannot change the input relay status, and therefore cannot rewrite the corresponding basic units of an input relay. You cannot use WPLSoft to manually perform ON/OFF actions. You can use a relay's contacts (contacts $A$ and $B$ ) an unlimited number of times in a program. An input relay with no input signal must be left idle and cannot be used for some other purpose.   Input devices are indicated by $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 7, \mathrm{X} 10, \mathrm{X} 11$, and so on. These devices are indicated with the symbol $X$, and a device's order is indicated with an octal number. Input point numbers are indicated in the main PLC and in expansion devices.
Output   Relay	An output relay constitutes the basic unit of storage in a PLC's internal memory, and corresponds to an external output point. It connects with an external load. It can be driven by an input relay contact, a contact on another internal device, or its own contacts. It uses one N.O. contact to connect with external loads or other contacts, and like the input contacts, you can use the output relay's contacts an unlimited number of times in a program. An output relay with no input signal is idle, but can be used by an internal relay if needed.   - Output devices are indicated by Y0, Y1, Y7, Y10, Y11, and so on. These devices are indicated with the symbol Y , and a device's order is indicated with an octal number. Output point numbers are indicated in the main PLC and in expansion devices.
Internal   Relay	Internal relays have no direct connection with the outside. These relays are auxiliary relays inside a PLC. Their function is the same as that of an auxiliary (central) relay in an electrical control circuit: Each auxiliary relay corresponds to a basic unit of internal storage; they can be driven by input relay contacts, output relay contacts, and the contacts of other internal devices. You can use an internal auxiliary relay's contacts an unlimited number of times in a program. Internal relays have no outputs to the outside, and their status must output through an output point.   - Internal relay devices are indicated by: M0, M1-M799, and so on. These devices are indicated with the symbol $M$, and the device's order is indicated with a decimal number.


Device   Type	Counters perform counting operations. The setting value for a counter (such as the number   of pulses to be counted) must be assigned when a counter is used. A counter contains a   coil, contact, and a counting storage device. When the coil goes from OFF $\rightarrow$ ON, this   Counter   indicates that the counter receives an input pulse, and adds one to its count. There are 16   bits available in the counter.   Counter device is indicated by: C0, C1-C79, and so on. These devices are indicated
bimer the symbol C, and the device's order is indicated with a decimal number.	

register. When the coil is electrified, and the setting value for the timer is reached, the <br>
contact is actuated (contact A closes, contact B opens), and the timer's fixed value is given <br>
by the setting value. A timer has a regulated clock cycle (timing units: 100 ms). As soon as <br>
power to the coil is cut off, the contact is no longer be actuated (contact A opens, contact <br>
B closes), and the original timing value returns to zero. <br>
- Timer devices are indicated by: T0, T1-T159, and so on. These devices are indicated <br>
by the symbol T, and the device's order is indicated with a decimal number.\end{array}\right|\)

## Ladder diagram images and explanations

See the Section 16-4-2 "Introduction to ladder diagrams" for descriptions of devices.

Ladder diagram   structures	Explanation of commands	Command	Using Device
	N.O. switch, contact A	LD	X, Y, M, T, C
	N.C. switch, contact B	LDI	X, Y, M, T, C
	Series N.O.	AND	X, Y, M, T, C


Ladder diagram structures	Explanation of commands	Command	Using Device
$\xrightarrow{\square}$	Parallel N.O.	OR	X, Y, M, T, C
	Parallel N.C.	ORI	X, Y, M, T, C
$\|\uparrow\|$	Rising edge-triggered switch	LDP	X, Y, M, T, C
$\downarrow \downarrow$	Falling edge-triggered switch	LDF	X, Y, M, T, C
$\rightarrow \vdash\|\mid$	Rising edge-triggered series	ANDP	X, Y, M, T, C
$\because \vdash \mid \downarrow \downarrow$	Falling edge-triggered series	ANDF	X, Y, M, T, C
$\vdash \sqcup \vdash \mid \vdash$	Rising edge-triggered parallel	ORP	X, Y, M, T, C
	Falling edge-triggered parallel	ORF	X, Y, M, T, C
	Block series	ANB	N/A
	Block parallel	ORB	N/A
	Multiple outputs	MPS MRD MPP	N/A
-	Coil driven output commands	OUT	Y, M
$\square$	Some basic commands, application commands.	Some basic commands, application commands.	
$\rangle$	Inverted logic	INV	N/A

Table 16-6

## 16-4-3 Overview of PLC ladder diagram editing

The program editing method in WPLSoft begins from the left busbar and proceeds to the right busbar (the right busbar is not visible in WPLSoft). Continue to the next row after completing each row; there are a maximum of 11 contacts on each row. If this is not sufficient, WPLSoft generates a continuous line to indicate the continued connection, so that you can add more devices. A continuous series of numbers is generated automatically and you can use identical input points repeatedly (as shown in Figure 16-28).


Figure 16-28
The PLC scans a ladder diagram programs from the upper left corner to the lower right corner. The coils and application command computing box are handled in the output, and in ladder diagram are placed on the farthest right of a rung. Taking Figure 16-29 below as an example, we can analyze the procedural sequence of the ladder diagram. The number in the upper right corner gives the sequential order.
Explanation of
command sequence


Figure 16-29

Explanation of basic structure of ladder diagrams
LD (LDI) command: an LD or LDI command appears at the start of a block. See Figure 16-30.


AND Block


OR Block

Figure 16-30

LDP and LDF use this command structure, but there are differences in their action state. LDP, LDF only act at the rising or falling edge of a conducting contact (see Figure 16-31).


Figure 16-31

AND (ANI) command: a series configuration in which a single device is connected with one device or a block. See Figure 16-32.


Figure 16-32
NOTE:
ANDP, ANDF use this structure, but their action occurs at the rising and falling edge of a conducting contact.

OR (ORI) command: a single device is connected with one device or a block. See Figure 16-33.


OR command



Figure 16-33
NOTE:
ORP, ORF use this structure, but their action occurs at the rising and falling edge of a conduction contact.

ANB command: a configuration in which one block is in series with one device or block. See Figure 16-34.


Figure 16-34

ORB command: a configuration in which one block is in parallel with one device or block. See Figure 16-35.


Figure 16-35

## NOTE:

In the case of ANB and ORB operations that connect a number of blocks, they should be combined to form a block or network from the top down or from left to right.

MPS, MRD, MPP commands: branching point memory for multiple outputs that enable multiple different outputs. The MPS command begins at a branching point, which refers to the intersection of horizontal and vertical lines. Control relies on the contact status along a single vertical line to determine whether the next contact can give a memory command. While each contact is basically able to give memory commands, in view of convenience and the PLC's capacity restrictions, this can be omitted from some places when editing a ladder diagram. You can use the structure of the ladder diagram to judge what kinds of contact memory commands are used.
MPS is indicated by use of the $T$ symbol. You can use this command consecutively up to eight times. The MRD command is read from branching point memory; because logic states along any one vertical line must be the same, in order to continue analysis of other parts of the ladder diagram, the original contact status must be read. MRD is indicated by the $\downarrow$ symbol.
The MPP command is read from the starting state of the uppermost branching point, and it is read from the stack (pop operation); because it is the final command along a vertical line, it indicates that the state of the vertical line can be concluded. MPP is indicated by the L symbol.
Although there should basically be no errors when using the foregoing analytical approach, the
compiling program may sometimes omit identical state output, as shown in Figure 16-36.


Figure 16-36

## 16-4-4 Common basic program design examples

## Start, stop, and protection circuits

Some applications may require a brief close or brief break using a button to start and stop equipment.
A protective circuit must therefore be designed to maintain continued operation in these situations. This protective circuit may employ one of the following methods.

Example 1: Priority stop protective circuit
When the start N.O. contact $\mathrm{X} 1=\mathrm{ON}$, and the stop N.C. contact $\mathrm{X} 2=\mathrm{OFF}, \mathrm{Y} 1=\mathrm{ON}$. If X 2 switches to ON , coil Y 1 is no longer electrified, and this is therefore referred to as priority stop. See Figure 16-37.


Figure 16-37

## Example 2: Priority start protective circuit

When the start N.O. contact $\mathrm{X} 1=\mathrm{ON}$, and the stop N.C. contact $\mathrm{X} 2=\mathrm{OFF}, \mathrm{Y} 1=\mathrm{ON}$, and coil Y 1 is electrified and protected. If X 2 switches to ON , coil Y 1 still protects the contact and continues to be electrified, and this is therefore referred to as priority start. See Figure 16-38.


Figure 16-38

Example 3: Setting (SET) and reset (RST) command protective circuit
Figure 16-39 shows a protective circuit composed of RST and SET commands.

- A priority stop occurs when you place the RST command after the SET command. Because the PLC executes programs from the top down, at the end of the program the state of Y 1 indicates whether coil Y 1 is electrified. When X 1 and X 2 both actuate, Y1 loses power, and this is therefore referred to as priority stop.
- A priority start occurs when you place the SET command after the RST command. When X1 and X2 both actuate, Y1 electrifies, and this is therefore referred to as priority start.


## Top priority of stop



Top priority of start


Figure 16-39

## Commonly-used control circuits

Example 4: Conditional control
X 1 and X 3 respectively start and stop Y 1 ; and X2 and X4 respectively start and stop Y2. All have protective circuits. Because Y1's N.O. contact is in series with Y2's circuit, it becomes an AND condition for the actuation of Y 2 . The action of Y 1 is therefore a condition for the action of Y 2 , and Y 1 must actuate before Y 2 can actuate. See Figure 1640.


Figure 16-40

## Example 5: Interlocking control

Figure 16-41 shows an interlocking control circuit. Depending on which of the start contacts X 1 or X 2 becomes valid first, the corresponding output Y 1 or Y 2 actuates, and when one actuates, the other does not actuate. Y 1 and Y 2 cannot actuate at the same time (interlocking effect). Even if both X1 and X2 are valid at the same time, because the
ladder diagram program is scanned from the top down, it is impossible for Y 1 and Y 2 to actuate at same time. This ladder diagram assigns priority only to Y 1 .


Figure 16-41

## Example 6: Sequence control

If the N.C. contact of Y 2 in the interlocking control configuration from example 5 is put in series with the Y 1 circuit, to create an AND condition for actuation of Y 1 (see Figure 1642), not only is Y 1 a condition for the actuation of Y 2 in this circuit, but the actuation of Y 2 also stops the actuation of Y1. This configuration confirms the actuation order of Y1 and Y2.


Figure 16-42

## Example 7: Oscillating circuit

Oscillating circuit with a period of $\Delta T+\Delta T$
Figure $16-43$ shows a very simple ladder diagram. When starting to scan the Y1 N.C. contact, because the Y1 coil has lost power, the Y1 N.C. contact is closed. When the Y1 coil is then scanned, it is electrified, and the output is 1 . When the Y1 N.C. contact is scanned in the next scanning cycle, because the Y1 coil is electrified, the Y1 NC contact is open, the Y 1 coil then loses power, and the output is 0 . Following repeated scanning, the output of Y 1 coil has an oscillating waveform with a period of $\Delta \mathrm{T}(\mathrm{ON})+\Delta \mathrm{T}(\mathrm{OFF})$.


Figure 16-43

Oscillating circuit with a period of $n T+\Delta T$
The ladder diagram (Figure 16-44) shown below uses timer T0 to control coil Y1's electrified time. After Y 1 is electrified, it causes timer T0 to close during the next scanning cycle, which causes the output from Y1 to oscillate as shown in the diagram below. The constant n is the timer's decimal setting value, and T is the clock cycle of the timer.


Figure 16-44

## Example 8: Flashing circuit

Figure 16-45 shows an oscillating circuit of a type commonly used to cause an indicator to flash or a buzzer to buzz. It uses two timers to control the ON and OFF time of Y1 coil. Here constants n 1 and n 2 are the setting values of timers T 1 and T 2 , and T is the clock cycle of the timer.


Figure 16-45

## Example 9: Triggering circuit

In Figure 16-46, a rising edge in input $X 0$ causes coil $M 0$ to generate a single pulse for $\Delta T$ (length of one scanning cycle), and coil Y 1 is electrified during this scanning cycle. Coil M0 loses power during the next scanning cycle, and N.C. contact M0 and N.C. contact Y1 are both closed. This causes coil Y1 to stay in an electrified state until there is another rising edge in input X 0 . This again causes the electrification of coil MO and the start of another scanning cycle, while also causing coil Y 1 to lose power, and so on. You can see the sequence of these actions in the figure below. This type of circuit is commonly used to enable one input to perform two alternating actions. You can see from the time sequence in the diagram below that when input $X 0$ is a square wave signal with a period of $T$, the output of coil Y 1 is a square wave signal with a period of 2 T .


Figure 16-46

## Example 10: Delay circuit

When input X0 is ON, because the corresponding NC contact is OFF, the timer T10 is in a no power state, and output coil Y1 is electrified. T10 receives power and begins to count the time only after input X 0 is OFF, and output coil Y 1 is delayed for 100 seconds (K1000*0.1 sec. = 100 sec .) before losing power. You can see the sequence of actions in Figure 16-47.


Figure 16-47
Example 11: The open/close delay circuit is composed of two timers; output Y 4 has a delay no matter input X0 is ON or OFF. See Figure 16-48.


Figure 16-48
Example 12: Extended timing circuit
In the circuit in the ladder diagram (Figure 16-49) on the left, the total delay time from the moment input X 0 closes to the time output Y 1 is electrified is $(\mathrm{n} 1+\mathrm{n} 2)^{*} \mathrm{~T}$, where T is the clock cycle. The timers are T11 and T12, and the clock cycle is T.


Figure 16-49

## Chapter 16 PLC Function Applications | MH300

## 16-5 Various PLC Device Functions

Item	Specifications	Notes
Algorithmic control   method	The program is stored internally, alternating back-and-forth   scanning method.	
Input/output control   method	When the scan starts again after ending (after execution to the   END command), the input / output is immediately refreshed.	
Algorithmic   processing speed	Basic commands (several $\mu \mathrm{s}$ )	Application command (1   to several tens of $\mu \mathrm{s})$
Programming   language	Command + ladder diagram	
Program capacity	5000 steps	
Input/output   terminal	Digital input (X): 7, digital output (Y): 3   Analog input AI: 2, analog output AO: 1	

Table 16-7

Type	Device	Item		Range		Function
Relay bit form	X	External input relay		X0-X17, 16 points, octal number	Total 32 points	Corresponds to external input point
	Y	External output relay		Y0-Y17, 16 points, octal number		Corresponds to external output point
		Auxiliary Relay	General Use	M0-M799, 800 points	Total 1080 points	Contact can switch ON/OFF within the program
	M		Special purpose	$\begin{aligned} & \text { M1000-M1279, } 280 \\ & \text { points } \end{aligned}$		
	T	Timer	100 ms timer	T0-T59, 160 points	Total 160 points	Timers referred to by the TMR command; T contact with the same number switches ON when the time is reached.
	C	Counter	16-bit counter, general use	C0-C79, 80 points	Total 80 points	Counter referred to by the CNT command; contact of the $C$ with the same number switches ON when the count is reached.
Register word data	T	Current timer value		T0-T159, 160 points		The contact switches ON when the time is reached.
	C	Current counter value		C0-C79, 16-bit counter 80 points		The counter contact switches ON when the count is reached.
	D	Data Register	Used to maintain power OFF	D0-D99, 100 points	Total 1020 points	Used as data storage memory area
			Special purpose	D100-D399, 300 points D1000-D1619, 620 points		
Constant	K	Decimal	Single-byte	Setting Range: K-32,768-K32,767		
			Double-byte	Setting Range: K-2,147,483,648-K2,147,483,647		
	H	Hexadecimal	Single-byte	Setting Range: H0000-HFFFF		
			Double-byte	Setting Range: H00000000-HFFFFFFFF		
Serial communications port (program write/read)				RS-485/USB/keypad port		
Input/output				Two built-in analog inputs and one analog output		
High-speed counting				One built-in (MI7 or MI6+MI7 ) 32-bit high-speed counter		
Function expansion module			Optional Accessories	EMM-D33A; EMM-R2CA; EMM-R3AA; EMM-A22A		
Communication expansion module			Built-in	CANopen (slave)		
			Optional Accessories			

Table 16-8

## 16-5-1 Introduction to device functions

## Input / output contact functions

Input contact X has this function: input contact X is connected with an input device, and reads input signals entering the PLC. There are no restrictions on the number of times that the input contact A or $B$ appear in the program. The ON/OFF state of input contact $X$ changes as the input device switches between ON and OFF; you cannot use a peripheral device (WPLSoft) to force contact X ON or OFF.

## Output contact $Y$ functions

The output contact Y sends an ON/OFF signal to drive the load connected to output contact Y . There are two types of output contacts: relays and transistors. There are no restrictions on the number of times that contact $A$ or $B$ of an output contact $Y$ appear in a program, but it is recommended that you use the number of output coil Y only once in a program; otherwise the output state when the PLC performs program scanning is determined by the program's final output Y circuit.


The output of YO is decided by circuit (2) that is, decided by ON/OFF of X10.

Figure 16-50

Numerical value, constant [K]/[H]

Constant	Single-byte	K	Decimal	K-32,768-K32,767
	Double-byte			K-2,147,483,648-K2,147,483,647
	Single-byte	H	Hexadecimal	H0000-HFFFF
	Double-byte			H00000000-HFFFFFFFF

Table 16-9
The PLC uses five types of numerical values to implement calculations based on its control tasks; the following topics explain the use and function of the different numerical types.

## Binary Number, BIN

The PLC's numerical operations and memory employ binary numbers. Table 16-10 below explains terms related to binary numbers.

bit	Bits are the fundamental units of binary values, and have a state of either 1 or 0.
Nibble	Comprised of a series of four bits (such as b3-b0); can be used to express a one-   nibble decimal number 0-9 or hexadecimal number 0-F.
Byte	Comprised of a series of two nibbles (i.e. 8 bits, b7-b0); can express a   hexadecimal number: 00-FF.
Word	Comprised of a series of two bytes (i.e. 16 bits, b15-b0); can express a   hexadecimal number with four nibbles: 0000-FFFF.
Double Word	Comprised of a series of two words (i.e. 32 bits, b31-b0); can express a   hexadecimal number with eight nibbles: $00000000-$ FFFFFFFF

The following diagram shows the relationship between bits, digits, nibbles, words, and double words in a binary system (see Figure 16-51).


Figure 16-51

## Octal Number, OCT

The external input and output terminals of a DVP-PLC are numbered using octal numbers.
Example: External input: $\mathrm{X} 0-\mathrm{X} 7, \mathrm{X} 10-\mathrm{X} 17 \ldots$ (Device number table)
External output: Y0-Y7, Y10-Y17...(Device number table)

## Decimal Number, DEC

A PLC uses decimal numbers for the following purposes:
$\square \quad$ The setting values of timer T or counter C , such as TMR C0 K50 (K constant).
■ The numbers of devices including M, T, C, or D, such as M10 or T30 (device number).
$\square$ An operand in an application command, such as MOV K123 D0 (K constant).

## Binary Coded Decimal, BCD

Uses one nibble or four bits to express the data in a decimal number; a series of 16 bits can therefore express a decimal number with four nibbles. These are used to read the input value of a rotating numerical switch to input or output a numerical value to a seven-segment display drive.

## Hexadecimal Number, HEX

A PLC uses hexadecimal numbers as operands in application commands, such as MOV H1A2B D0 (H constant).

## Constant K

PLC's usually prefixed decimal numbers with K , such as K 100 . This indicates that it is a decimal number with a numeric value of 100 .

Exceptions: You can combine K with a bit device $\mathrm{X}, \mathrm{Y}, \mathrm{M}$, or S to produce data in the form of a nibble, byte, word, or double word, such as in the case of K2Y10 or K4M100. Here K1 represents a 4-bit combination, and K2-K4 represent 8-, 12-, and 16-bit combinations.

## Constant H

PLC's usually prefixed hexadecimal numbers with H , such as in the case of H 100 . This indicates a hexadecimal number with a numeric value of 100 .

## Functions of auxiliary relays

Like an output relay $Y$, an auxiliary relay $M$ has an output coil and contacts $A$ and $B$, and you can use the output relay contacts any number of times in a program. You can use an auxiliary relay $M$ to configure the control circuit, but cannot use the auxiliary relay to directly drive an external load. There are two types of auxiliary relays:

- Ordinary auxiliary relays: ordinary auxiliary relays all revert to the OFF state when a power outage occurs while the PLC is running, and remains in the OFF state when power is restored.
- Special purpose auxiliary relays: each special purpose auxiliary relay has its own specific use. Do not use any undefined special purpose auxiliary relays.


## Timer functions

Timers use 100 ms as their timing unit. When the timing method is an upper time limit, and the current timer value = setting value, the timer output coil is energized. Timer setting values use decimal K values; you can also use the data register $D$ as a setting value.
Actual timer setting time $=$ timing units * set value

## Counter features

Item	
Type	General Type
CT Direction:	Up
Setting	$0-32,767$
Designation of set value	Constant K or data register D
Change in current value	When the count reaches the setting value, it stops counting.
Output contact	When the count reaches the setting value, the contact switches ON and stays   ON.
Reset	The current value reverts to 0 when an RST command is executed, and the   contact reverts to OFF.
Contact actuation	All are actuated after the end of scanning.

## Counter functions

When a counter's counting pulse input signal switches from OFF to ON, if the counter's current value is equal to the setting value, the output coil switches ON . The setting value can be either a decimal K or a data register D .

16-bit counter:
■ 16-bit counter setting range: K0-K32,767. When K0 and K1 are identical, the output contact is immediately ON during the first count.

च The current counter value is cleared from an ordinary counter when power to the PLC turns OFF.
■ If you use the MOV command or WPLSoft to transmit a value greater than the setting value to the C 0 current value register, when the next X1 switches from OFF to ON, the C0 counter contact changes to ON , and the current value changes to the setting value.

■ You can set a counter's setting value directly using a constant K , or indirectly using the value in register D (not including special data registers D1000-D1199 or D2000-D2799).
■ If the setting value is a constant K , the value must be a positive number. If the setting value is from data register $D$, the value can be either a positive or negative number. If using a data register, and the current value is 32,767 , incrementing the count causes the count value to roll over to $-32,768$ as the count continues to accumulate.

Example


OUT YO

1. When $X O=O N$ and the RST command is executed, the current value of CO reverts to 0 , and the output contact reverts to OFF.
2. When X1 switches from OFF to ON, the current value of the counter is incremented by one (add one).
3. When the count in CO reaches the set value $K 5$, the contact C 0 switches to ON , and the current value of $\mathrm{CO}=$ setting value $=\mathrm{K} 5$. Afterwards, additional changes in X1 do not affect the count value, and C0 remains at K5.

16-5-2 Introduction to special relay functions (special M)
R/W column: RO means read only; RW means read and write.

Special M	Function Descriptions	R/W
M1000	Monitors N.O. contact (contact A). N.O. while RUN, contact A. This contact is ON while in the RUN state.	RO
M1001	Monitors N.C. contact (contact B). N.C. while RUN, contact B. This contact is OFF while in the RUN state.	RO
M1002	Initiates a forward pulse (the instant RUN is ON). Initial pulse, contact A. Produces a forward pulse when RUN begins; pulse width = scan cycle.	RO
M1003	Initiates a reverse pulse (the instant RUN is OFF). Initial pulse, contact A. Produces a reverse pulse when RUN ends; pulse width = scan cycle.	RO
M1004	--	RO
M1005	Drive malfunction instructions	RO
M1006	Drive has no output	RO
M1007	Drive direction FWD (0) / REV (1)	RO
M1008   M1010	--	--
M1011	$10 \mathrm{~ms} \mathrm{clock} \mathrm{pulse} ,5 \mathrm{~ms} \mathrm{ON} / 5 \mathrm{~ms}$ OFF.	RO
M1012	$100 \mathrm{~ms} \mathrm{clock} \mathrm{pulse}$,50 ms ON / 50 ms OFF.	RO
M1013	1 sec . clock pulse, 0.5 s ON / 0.5 s OFF.	RO
M1014	1 min. clock pulse, 30 s ON / 30 s OFF.	RO
M1015	Frequency reached (when used with M1025)	RO
M1016	Parameter read/write error	RO
M1017	Parameter write successful	RO
M1018	--	--
M1019	--	--
M1020	Zero flag	RO
M1021	Borrow flag	RO
M1022	Carry flag	RO
M1023	Divisor is 0	RO
M1024	--	--
M1025	Drive frequency = set frequency (ON)   Drive frequency $=0$ (OFF)	RW
M1026	Drive operating direction FWD (OFF) / REV (ON)	RW
M1027	Drive Reset	RW
M1028	--	--
M1029	--	--
M1030	--	--
M1031	--	--


Special M	Function Descriptions	R/W
M1032	--	--
M1033	--	--
M1034	--	--
M1035	--	--
M1036	--	--
M1037	--	--
M1038	M17 single-phase or M16+MI7 AB-phase count begins	RW
M1039	Reset MI7 single-phase or MI6+MI7 AB-phase count value	RW
M1040	Hardware power (Servo On)	RW
M1041	--	--
M1042	Quick Stop	RW
M1043	--	--
M1044	Pause (Halt)	RW
M1045   M1047	--	--
M1048	--	--
M1049	--	--
M1050	--	--
M1051	--	--
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW
M1053	--	--
M1054	--	--
M1055	--	--
M1056	Hardware already has power (Servo On Ready)	RO
M1057	--	--
M1058	On Quick Stopping	RO
$\begin{gathered} \text { M1059 } \\ - \\ \text { M1062 } \end{gathered}$	--	--
M1063	Torque reached	RO
M1064   M1076	--	--
M1077	485 read / write completed	RO
M1078	485 read / write error	RO
M1079	485 communication time-out	RO
M1080	485 exception error	RO
M1081	485 check sum or data format is wrong	RO
M1085	485 data have been updated	RW


Special M	Function Descriptions	R/W
M1086	485 data receives a request	RW
M1090	OFF (Refer to Pr.00-29 for more information)	RO
M1091	HAND (Refer to Pr.00-29 for more information)	RO
M1092	AUTO (Refer to Pr.00-29 for more information)	RO
M1100	LOCAL (Refer to Pr.00-29 for more information)	RO
M1101	REMOTE (Refer to Pr.00-29 for more information)	RO

Table 16-11

16-5-3 Introduction to special register functions (special D)
R/W column: RO means read only; RW means read and write.

Special D	Function Descriptions	R/W
D1000	--	--
D1001	Device system program version	RO
D1002	Program capacity	RO
D1003	Total program memory content	RO
$\begin{gathered} \hline \text { D1004 } \\ - \\ \text { D1009 } \end{gathered}$	--	--
D1010	Current scan time (units: 0.1 ms )	RO
D1011	Minimum scan time (units: 0.1 ms )	RO
D1012	Maximum scan time (units: 0.1 ms )	RO
$\begin{gathered} \hline \text { D1013 } \\ - \\ \text { D1017 } \end{gathered}$	--	--
D1018	Current integral value	RO
D1019	Force setting for PID I integral	RW
D1020	Output frequency ( $0.00-599.00 \mathrm{~Hz}$ )	RO
D1021	Output current (\#\#\#\#.\#A)	RO
D1022	AI AO DI DO expansion card number   0: No expansion card   10: EMM-D33A   11: EMM-A22A   12: EMM-R2CA   13: EMM-R3AA	--
D1023	Communication expansion card number   0: No expansion card   1: DeviceNet Slave   2: PROFIBUS-DP Slave   3: CANopen Slave   5: EtherNet/IP Slave	RO
$\begin{gathered} \text { D1024 } \\ - \\ \text { D1026 } \end{gathered}$	--	--
D1027	PID calculation frequency command (frequency command after PID calculation)	RO
D1028	AVI value (0.00-100.00\%)	RO
D1029	ACl value (0.00-100.00\%)	RO
D1030	--	--
D1031	Al10 value (0.00-100.00\%)	RO


Special D	Function Descriptions	R/W
D1032	Al11 value (0.00-100.00\%)	RO
$\begin{gathered} \hline \text { D1033 } \\ - \\ \text { D1034 } \end{gathered}$	--	--
D1035	--	--
D1036	Servo error bit	RO
D1037	Drive output frequency	RO
D1038	DC bus voltage	RO
D1039	Output voltage	RO
D1040	Analog output value AFM (-100.00-100.00\%)	RW
D1041	Analog output value AO10 (0.00-100.00\%)	RW
D1042	Analog output value AO11 (0.00-100.00\%)	RW
D1043	Can be user-defined (is displayed on panel when Pr.00-04 is set to 28 ; display method is Cxxx)	RW
D1044	--	-
D1045	--	--
$\begin{gathered} \hline \text { D1046 } \\ - \\ \text { D1049 } \end{gathered}$	--	--
D1050	Actual operation mode   0 : Speed   2: Torque	RO
D1051	--	--
D1052	--	--
D1053	Actual torque	RO
D1054	M17 current calculated count value (low word)	RO
D1055	MI7 current calculated count value (high word)	RO
D1056	Rotational speed corresponding to MI7	RO
D1057	M17's rotating speed ratio	RW
D1058	M17 refresh rate (ms) corresponding to rotating speed	RW
D1059	Number of nibbles of rotating speed corresponding to MI7 (0-3)	RW
D1060	Operation mode setting   0 : Speed   2: Torque	RW
D1061	485 Modbus communication time-out time (ms)	RW
D1062	Torque command (torque limit in speed mode)	RW
$\begin{gathered} \hline \text { D1063 } \\ - \\ \text { D1069 } \end{gathered}$	--	--
D1100	Target frequency	RO


Special D	Function Descriptions	R/W
D1101	Target frequency (must be operating)	RO
D1102	Reference frequency	RO
D1103	--	--
D1104	--	--
D1105	Target torque	RO
D1106	--	--
D1107	m (Pi) low word	RO
D1108	m (Pi) high word	RO
D1109	Random number	RO
D1111	Encoder pulse number L	RO
D1112	Encoder pulse number H	RO
D1600	The information length that the present 485 received	RO
D1601	The packet accumulation that the present 485 received	RO
D1610	The initial disk D to stack packet	RW

Table 16-12

The following is CANopen Master's special D (Allow writing only when PLC is in STOP state) $\mathrm{n}=0-7$

Special D	Description of Function	$\begin{aligned} & \text { PDO } \\ & \text { Map } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Power } \\ \text { off } \\ \text { Memory } \end{array}$	Default	R/W
D1070	Channel opened by CANopen initialization (bit0=Machine code0 ...)	NO	NO	0	R
D1071	Error channel occurring in CANopen initialization process (bit0=Machine code0 ...)	NO	NO	0	R
D1072	Reserved	-	-		
D1073	CANopen break channel (bit0=Machine code0 ...)	NO	NO		R
D1074	Error code of master error   0 : No error   1: Slave station setting error   2: Synchronizing cycle setting error (too small)	NO	NO	0	R
D1075	Reserved	-	-		-
D1076	SDO error message (main index value)	NO	NO		R
D1077	SDO error message (secondary index value)	NO	NO		R
D1078	SDO error message (error code)	NO	NO		R
D1079	SDO error message (error code)	NO	NO		R
D1080	Reserved	-	-		-
$\begin{gathered} \text { D1081 } \\ -\quad \\ \text { D1086 } \end{gathered}$	Reserved	-	-		-
$\begin{gathered} \text { D1087 } \\ - \\ \text { D1089 } \end{gathered}$	Reserved	-	${ }^{-}$		-
D1090	Synchronizing cycle setting	NO	YES	4	RW
D1091	Sets slave station On or Off (bit 0-bit 7 correspond to slave stations number 0-7)	NO	YES	FFFFH	RW
D1092	Delay before start of initialization	NO	YES	0	RW
D1093	Break time detection	NO	YES	1000 ms	RW
D1094	Break number detection	NO	YES	3	RW


Special D	Description of Function	PDO   Map	Power   off   Memory	Default	R/W
D1095   D1096	Reserved	-	-		-
D1097	Corresponding real-time transmission type (PDO)   Setting range: 1-240	NO	YES	1	RW
D1098	Corresponding real-time receiving type (PDO)   Setting range: 1-240	NO	YES	1	RW
D1099	Initialization completion delay time   Setting range: 1-60000 sec.	NO	YES	15 sec.	RW
D2000+100*nStation number n of slave station   Setting range: 0-127   0: No CANopen function	NO	YES	0	RW	

## 16-5-4 PLC Communication address

Device	Range	Type	Address (Hex)
X	$00-17$ (Octal)	bit	$0400-040 \mathrm{FF}$
Y	$00-17$ (Octal)	bit	$0500-050 \mathrm{~F}$
T	$00-159$	bit/word	$0600-069 \mathrm{~F}$
M	$000-799$	bit	$0800-0 \mathrm{~B} 1 \mathrm{~F}$
M	$1000-1279$	bit	$0 B E 8-0 \mathrm{CFF}$
C	$0-79$	bit/word	0 F
D	$00-399$	word	$1000-0 \mathrm{E} 4 \mathrm{~F}$
D	$1000-16 \mathrm{~F}$		

Table 16-13
Command codes

Function Code	Function Descriptions	Function target
H1	Coil status read	Y, M, T, C
H2	Input status read	X, Y, M, T, C
H3	Read single unit of data	T, C, D
H5	Force single coil status change	Y, M, T, C
H6	Write single unit of data	T, C, D
HF	Force multiple coil status change	Y, M, T, C
H10	Write multiple units of data	T, C, D

Table 16-14

## NOTE:

When PLC functions have been activated, the MH300 can match the PLC and drive parameters; this method uses different addresses for drives (default station number is 1 ; PLC sets station number as 2).

## 16-6 Introduction to the Command Window

## 16-6-1 Overview of basic commands

- Ordinary commands

Command   code	Function	OPERAND	Execution   speed $(\mu \mathrm{s})$
LD	Load contact A	X, Y, M, T, C	0.8
LDI	Load contact B	X, Y, M, T, C	0.8
AND	Connect contact A in series	X, Y, M, T, C	0.8
ANI	Connect contact B in series	X, Y, M, T, C	0.8
OR	Connect contact A in parallel	X, Y, M, T, C	0.8
ORI	Connect contact B in parallel	X, Y, M, T, C	0.8
ANB	Series circuit block	N/A	0.3
ORB	Parallel circuit block	N/A	0.3
MPS	Save to stack	N/A	0.3
MRD	Stack read (pointer does not change)	N/A	0.3
MPP	Read stack	N/A	0.3

Table 16-15

- Output command

Command   code	Function	OPERAND	Execution   speed $(\mu \mathrm{s})$
OUT	Drive coil	Y, M	1
SET	Action continues (ON)	Y, M	1
RST	Clear contact or register	Y, M, T, C, D	1.2

Table 16-16

- Timer, counter

Command   code	Function	OPERAND	Execution   speed $(\mu \mathrm{s})$
TMR	16-bit timer	T-K or T-D commands	1.1
CNT	16-bit counter	C-K or C-D (16-bit)	0.5

Table 16-17

- Main control command

Command   code	Function	OPERAND	Execution   speed $(\mu \mathrm{s})$
MC	Common series contact connection	N0-N7	0.4
MCR	Common series contact release	N0-N7	0.4

Table 16-18

- Contact rising edge / falling edge detection command

Command   code	Function	OPERAND	Execution   speed $(\mu \mathrm{s})$
LDP	Start of rising edge detection action	X, Y, M, T, C	1.1
LDF	Start of falling edge detection action	X, Y, M, T, C	1.1
ANDP	Rising edge detection series connection	X, Y, M, T, C	1.1
ANDF	Falling edge detection series connection	X, Y, M, T, C	1.1
ORP	Rising edge detection parallel connection	X, Y, M, T, C	1.1
ORF	Falling edge detection parallel connection	X, Y, M, T, C	1.1

Table 16-19

- Upper/lower differential output commands

Command   code	Function	OPERAND	Execution   speed $(\mu \mathrm{s})$
PLS	Upper differential output	$\mathrm{Y}, \mathrm{M}$	1.2
PLF	Lower differential output	$\mathrm{Y}, \mathrm{M}$	1.2

Table 16-20

- Stop command

Command   code	Function	OPERAND	Execution   speed $(\mu \mathrm{s})$
END	Program conclusion	N/A	0.2

Table 16-21

- Other commands

Command   code	Function	OPERAND	Execution   speed $(\mu \mathrm{s})$
NOP	No action	$\mathrm{N} / \mathrm{A}$	0.2
INV	Inverse of operation results	$\mathrm{N} / \mathrm{A}$	0.2
P	Index	P	0.3

Table 16-22

## 16-6-2 Detailed explanation of basic commands

Command	Function					
LD	Load contact A					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-

Use the LD command for contact A starting at the left busbar or contact A starting at a Explanation contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register.


Command code: Description:

LD	X0	Load Contact A of X0
AND	X1	Create a series   connection to contact A   of X 1
OUT	Y1	Drive Y1 coil


Command	Function					
LDI	Load contact B					
Operand	$\mathrm{X} 0-\mathrm{X} 17$	$\mathrm{Y} 0-\mathrm{Y} 17$	M0-M799	T0-159	C0-C79	D0-D399
	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-

Use the LDI command for contact B starting at the left busbar or contact B starting at
a contact circuit block; its function is to save current content and save the acquired
contact status in the cumulative register.

Command	Function					
AND	Connect contact A in series					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-

Use the AND command to create a series connection to contact A; its function is to first Explanation read the current status of the designated series contact and the logical operation results before contact in order to perform "AND" operation; saves the results in the cumulative register.


Command code:		Description:
LDI	X1	Load Contact B of X1


Command	Function					
ANI	Connect contact B in series					
Operand	$\mathrm{X0} 0-\mathrm{X17}$	$\mathrm{Y} 0-\mathrm{Y} 17$	M0-M799	T0-159	C0-C79	D0-D399
	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-

Use the ANI command to create a series connection to contact B; its function is to first

Explanation read the current status of the designated series contact and the logical operation results before contact in order to perform "AND" operation; saves the results in the cumulative register.

## Example

Ladder diagram:


Command code: Description:

LD	X1	Load Contact A of X1
ANI	X0	Create a series   connection to contact B   of X0
OUT	Y1	Drive Y1 coil


Command	Function					
OR	Connect contact A in parallel					
Operand	$\mathrm{X} 0-\mathrm{X} 17$	$\mathrm{Y} 0-\mathrm{Y} 17$	$\mathrm{M0}-\mathrm{M} 799$	$\mathrm{T0}$-159	C0-C79	D0-D399
	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-

Use the OR command to establish a parallel connection to contact A; its function is to
 first read the current status of the designated series contact and the logical operation results before contact in order to perform "OR" operation; saves the results in cumulative register.

## Example

Ladder diagram:


Command code: Description:

LD	X0	Load Contact A of X0
OR	X1	Create a series   connection to contact A   of X1
OUT	Y1	Drive Y1 coil


Command	Function					
ORI	Connect contact B in parallel					
Operand	$\mathrm{X} 0-\mathrm{X} 17$	$\mathrm{Y} 0-\mathrm{Y} 17$	$\mathrm{M} 0-\mathrm{M} 799$	T0-159	C0-C79	D0-D399
	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-

Use the ORI command to establish a parallel connection to contact B; its function is to


Command code: Description:

LD	X0	Load Contact A of X0
ORI	X1	Create a series   connection to contact B   of X1
OUT	Y1	Drive Y1 coil



Command	Function			
ORB	Parallel circuit block			
Operand	N/A			
Explanation	ORB performs an "OR" operation on the previously saved logic results and the current cumulative register content.			
Example	Ladder diagram:	Comma	code	Description:
		LD	X0	Load Contact A of X0
		ANI	X1	Establish a parallel
				B of X1
		LDI	X2	Load Contact B of X2   Establish a parallel
		AND	X3	connection to contact A of X3
		ORB		Parallel circuit block
		OUT	Y1	Drive Y1 coil


Command	Function
MPS	Save to stack
Operand	N/A

Explanation Saves the current content of the cumulative register to the stack (add one to the stack pointer).

Command	Function
MRD	Read stack (pointer does not change)
Operand	N/A
Explanation	Reads the stack content and saves to the cumulative register (the stack pointer does   not change).


Command	Function
MPP	Read stack
Operand	N/A



Retrieves the result of the previously-saved logical operation from the stack, and saves
Example Ladder diagram:

Command	Function					
OUT	Drive coil					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	-	$\checkmark$	$\checkmark$	-	-	-

Explanation Outputs the result of the logical operation before the OUT command to the designated element.
Coil contact action:

Result:	Out command		
	Coil	Access Point:	
		Contact A (N.O.)	Contact B (N.C.)
FALSE	OFF	Not conducting	Conducting
TRUE	ON	Conducting	Not conducting


Example	Ladder diagram:	Command code:		Description:
Example		LD	X0	Load Contact B of X0
		AND	X1	connection to contact A of X 1
		OUT	Y1	Drive Y1 coil


Command	Function					
SET	Action continues (ON)					
Operand	$\mathrm{X} 0-\mathrm{X} 17$	$\mathrm{Y} 0-\mathrm{Y} 17$	M0-M799	T0-159	C0-C79	D0-D399
	-	$\checkmark$	$\checkmark$	-	-	-

Sets the designated element to ON, and maintains it in an ON state, regardless of
whether the SET command is still driven. Use the RST command to set the element
as OFF.

Command	Function					
RST	Clear contact or register					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	-	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$
Explanation	Resets the designated element as described.					
	Element	Mode				
	Y, M	Both coil and contact are set to OFF.				
	T, C	Sets the current timing or count value to 0 and both the coil and contact are set to OFF.				
	D	Sets the content value to 0 .				



Command   TMR	Function			
Operand	T-K	T0-T159, K0-K32,767		


Command	Function	
CNT	16-bit counter	
Operand	C-K	C0-C79, K0-K32,767
	C-D	C0-C79, D0-D399



When you execute the CNT command from OFF to ON, switch the designated counter coil from no power to electrified and add one to the counter's count value. When the count reaches the designated value (count value = setting value), the contact has the following action:

N.O. (Normally Open) contact	Closed
N.C. (Normally Closed) contact	Open

After reaching the count value, the contact and count value both remain unchanged even with continued count pulse input. Use the RST command to restart or clear the count.

Ladder diagram:
Command code: Description:


LD	X0	Load Contact A of X0
CNT	C2 K100	
C2 counter		
Set value as K100		


Command	Function	
MC / MCR	Connect / release a common series contact	
Operand	N0-N7	
Explanation	MC is the main control initiation command, and any command between MC and MCR is executed normally. When the MC command is OFF, any command between MC and MCR acts as follows:	
	Determination of commands	Description
	Ordinary timer	The timing value reverts to 0 , the coil loses power, and the contact does not operate.
	Counter	The coil loses power, and the count value and contact stay in their current state.
	Coil driven by OUT command	None receive power.
	Elements driven by SET, RST commands	They remain in their current state.
	Application commands	None are actuated.

MCR is the main control stop command, and is placed at the end of the main control program. There may not be any contact command prior to the MCR command.
The MC-MCR main control program commands support a nested program structure with a maximum of only eight levels; use in the order N0-N7. Refer to the following program example:

## Example



Command code:	Description:	
LD	X0	Load Contact A of X0
LC	N0	Connection of N0 common   series contact
LD	X1	Load Contact A of X1   OUT
Y0	Drive Y0 coil	
LD	X2	Load Contact A of X2
MC	N1	Connection of N1 common   series contact
LD	X3	Load Contact A of X3   OUT
Y1	Drive Y1 coil	
:		Release N1 common series
MCR	N1	contact
:		Release N0 common series   contact
MCR	N0	
:	X10	Load Contact A of X10   LD
MC	N0	Connection of N0 common   series contact
LD	X11	Load Contact A of X11   OUT
Y10	Drive Y10 coil	
:		Release N0 common series   contact
MCR	N0	


Command	Function					
LDP	Start of rising edge detection action					
	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-


Explanation	The LDP command has the same use as LD, but its action is different. Its function is to save the current content while also saving the detected state of the rising edge of the contact to the cumulative register.			
Example	Ladder diagram:	Comm	code:	Description:
		LDP	X0	Start of X0 rising edge detection action
		AND	X1	Create a series connection to contact A of X1
		OUT	Y1	Drive Y1 coil


Command	Function					
LDF	Start of falling edge detection action					
	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-

The LDF command has the same use as LD, but its action is different. Its function is to
 save the current content while also saving the detected state of the falling edge of the contact to the cumulative register.


Command code: Description:

LDF XO $\begin{aligned} & \text { Start of XO falling } \\ & \text { detection action }\end{aligned}$ Create a series
AND X1 connection to contact A of X1
OUT Y1 Drive Y1 coil


Command	Function					
ANDF	Falling edge detection series connection					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-

Explanation Use the ANDF command for a contact falling edge detection series connection.

| Example | Command code: | Description: |
| :--- | :--- | :--- | :--- |
| LD | X0 | Load Contact A of X0 |


Command	Function					
ORP	Rising edge detection parallel connection					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-

Explanation Use the ORP command for a contact rising edge detection parallel connection.


Command code:	Description:	
LD	X0	Load Contact A of X0


Command	Function					
ORF	Falling edge detection parallel connection					
	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	-



	Ladder diagram:	Command code:		Description:
Example		LD	X0	Load Contact A of X0
	$\stackrel{x 1}{\mid \downarrow}$	ORF	X1	X1 Falling edge detection parallel connection
		OUT	Y1	Drive Y1 coil


Command	Function					
PLS	Upper differential output					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	-	$\checkmark$	$\checkmark$	-	-	-



Command	Function					
PLF	Lower differential output					
Operand	X0-X17	Y0-Y17	M0-M799	T0-159	C0-C79	D0-D399
	-	$\checkmark$	$\checkmark$	-	-	-



Command	Function
END	End of Program
Operand	N/A

An END command must be added to the end of a ladder diagram program or command Explanation program. The PLC scans the program from address 0 to the END command, and then returns to address 0 and begins scanning again.

Command	Function
NOP	No action
Operand	N/A

The NOP command does not perform any operation in the program. Because
Explanation
execution of this command retains the original logical operation results, you can use it in the following situation: use the NOP command instead of a command that is deleted without changing the program length.

Ladder diagram:


Command code: Description:

LD	X0	Load Contact B of X0
NOP		No action
OUT	Y1	Drive Y1 coil


Command	Function
INV	Inverse of operation results
Operand	N/A

Explanation Saves the result of the logic inversion operation prior to the INV command in the cumulative register.


Command	Function
$\mathbf{P}$	Pointer
Operand	P0-P255

Use pointer $P$ as the target in a subprogram call (command API 01 CALL). Using $P$
Explanation does not require starting from zero, but the number cannot be used repeatedly; otherwise, an unpredictable error occurs.

Example
Ladder diagram:


Command code: Description:
LD X0 Load Contact A of X0
CALL P10 Call command CALL to P10

P10		Pointer P10
LD	X1	Load Contact A of X1
OUT	Y1	Drive Y 1 coil

## 16-6-3 Overview of application commands

Classification	API	Command code		$P$command	Function	STEPS	
		16 bit	32 bit			16 bit	32 bit
Circuit control	01	CALL	-	$\checkmark$	Call a subprogram	3	-
	2	SRET	-	-	End a subprogram	1	-
	06	FEND	-	-	End a main program	1	-
Send comparison	10	CMP	DCMP	$\checkmark$	Compare set output	7	13
	11	ZCP	DZCP	$\checkmark$	Range comparison	9	17
	12	MOV	DMOV	$\checkmark$	Move data	5	9
	15	BMOV	-	$\checkmark$	Send all	7	-
Four logical operations	20	ADD	DADD	$\checkmark$	BIN addition	7	13
	21	SUB	DSUB	$\checkmark$	BIN subtraction	7	13
	22	MUL	DMUL	$\checkmark$	BIN multiplication	7	13
	23	DIV	DDIV	$\checkmark$	BIN division	7	13
	24	INC	DINC	$\checkmark$	BIN add one	3	5
	25	DEC	DDEC	$\checkmark$	BIN subtract one	3	5
Rotational displacement	30	ROR	DROR	$\checkmark$	Right rotation	5	-
	31	ROL	DROL	$\checkmark$	Left rotation	5	-
Data Process	40	ZRST	-	$\checkmark$	Clear range	5	-
	49	-	DFLT	$\checkmark$	Convert BIN whole number to binary floating point number	-	9
Floating point operation	110	-	DECMP	$\checkmark$	Compare binary floating point numbers	-	13
	111	-	DEZCP	$\checkmark$	Compare binary floating point number range	-	17
	116	-	DRAD	$\checkmark$	Convert angle to diameter	-	9
	117	-	DDEG	$\checkmark$	Convert diameter to angle	-	9
	120	-	DEADD	$\checkmark$	Add binary floating point numbers	-	13
	121	-	DESUB	$\checkmark$	Subtract binary floating point numbers	-	13
	122	-	DEMUL	$\checkmark$	Multiply binary floating point numbers	-	13
	123	-	DEDIV	$\checkmark$	Divide binary floating point numbers	-	13
	124	-	DEXP	$\checkmark$	Find exponent of a binary floating point number	-	9
	125	-	DLN	$\checkmark$	Find natural logarithm of a binary floating point number	-	9
	127	-	DESQR	$\checkmark$	Find the square root of a binary floating point number	-	9
	129	-	DINT	$\checkmark$	Convert binary floating point number to BIN whole number	-	9
	130	-	DSIN	$\checkmark$	Find the sine of a binary floating point number	-	9
	131	-	DCOS	$\checkmark$	Find the cosine of a binary floating point number	-	9
	132	-	DTAN	$\checkmark$	Find the tangent of a binary floating point number	-	9
	133	-	DASIN	$\checkmark$	Find the arcsine of a binary floating point number	-	9
	134	-	DACOS	$\checkmark$	Find the arccosine of a binary floating point number	-	9
	135	-	DATAN	$\checkmark$	Find the arctangent of a binary floating point number	-	9
	136	-	DSINH	$\checkmark$	Find the hyperbolic sine of a binary floating point number	-	9
	137	-	DCOSH	$\checkmark$	Find the hyperbolic cosine of a binary floating point number	-	9
	138	-	DTANH	$\checkmark$	Find the hyperbolic tangent of a binary floating point number	-	9


Classification	API	Command code			Function	STEPS	
		16 bit	32 bit			16 bit	32 bit
Communication	150	MODRW	-	$\checkmark$	Modbus read / write	7	-
GRAY code	170	GRY	DGRY	$\checkmark$	Convert BIN to GRAY code	5	9
	171	GBIN	DGBIN	$\checkmark$	Convert GRAY code to BIN	5	9
Data processing	202	SCAL	DSCAL	$\checkmark$	Scale value operation	5	9
Contact form logical operation	215	LD\&	DLD\&	-	Contact form logical operation LD\#	5	9
	216	LD\|	DLD\|	-	Contact form logical operation LD\#	5	9
	217	LD^	DLD^	-	Contact form logical operation LD\#	5	9
	218	AND\&	DAND\&	-	Contact form logical operation AND\#	5	9
	219	ANDI	DANDI	-	Contact form logical operation AND\#	5	9
	220	AND^	DAND^	-	Contact form logical operation AND\#	5	9
	221	OR\&	DOR\&	-	Contact form logical operation OR\#	5	9
	222	OR\|	DOR\|	-	Contact form logical operation OR\#	5	9
	223	OR^	DOR^	-	Contact form logical operation OR\#	5	9
Contact form comparison command	224	LD=	DLD=	-	Contact form compare LD*	5	9
	225	LD $<$	DLD $<$	-	Contact form compare LD*	5	9
	226	LD $>$	DLD>	-	Contact form compare LD*	5	9
	228	LD $<>$	DLD $<>$	-	Contact form compare LD*	5	9
	229	LD $=>$	DLD $=>$	-	Contact form compare LD*	5	9
	230	LD $=<$	DLD $=<$	-	Contact form compare LD*	5	9
	232	AND =	DAND =	-	Contact form compare AND*	5	9
	233	AND $<$	DAND <	-	Contact form compare AND*	5	9
	234	AND >	DAND >	-	Contact form compare AND*	5	9
	236	AND $<>$	DAND $<>$	-	Contact form compare AND*	5	9
	237	AND $=>$	DAND $=>$	-	Contact form compare AND*	5	9
	238	AND $=<$	DAND $=<$	-	Contact form compare AND*	5	9
	240	$\mathrm{OR}=$	DOR=	-	Contact form compare OR*	5	9
	241	OR $<$	DOR<	-	Contact form compare OR*	5	9
	242	OR $>$	DOR>	-	Contact form compare OR*	5	9
	244	OR $<>$	DOR $<>$	-	Contact form compare OR*	5	9
	245	OR = >	DOR $=>$	-	Contact form compare OR*	5	9
	246	$\mathrm{OR}=<$	DOR $=<$	-	Contact form compare OR*	5	9
Floating point contact form	275	-	FLD $=$	-	Floating point number contact form compare LD*	-	9
	276	-	FLD $<$	-	Floating point number contact form compare LD*	-	9
	277	-	FLD >	-	Floating point number contact form compare LD*	-	9
Comparison command	278	-	FLD $<>$	-	Floating point number contact form compare LD*	-	9
	279	-	FLD $=>$	-	Floating point number contact form compare LD*	-	9
	280	-	$\mathrm{FLD}=<$	-	Floating point number contact form compare LD*	-	9
	281	-	FAND $=$	-	Floating point number contact form compare AND*	-	9
	282	-	FAND $<$	-	Floating point number contact form compare AND*	-	9
	283	-	FAND >	-	Floating point number contact form compare AND*	-	9


Classification	API	Command code		Pcommand	Function	STEPS	
		16 bit	32 bit			16 bit	32 bit
	284	-	FAND < >	-	Floating point number contact form compare AND*	-	9
	285	-	FAND $=>$	-	Floating point number contact form compare AND*	-	9
	286	-	FAND $=<$	-	Floating point number contact form compare AND*	-	9
	287	-	FOR=	-	Floating point number contact form compare OR*	-	9
	288	-	FOR <	-	Floating point number contact form compare OR*	-	9
	289	-	FOR >	-	Floating point number contact form compare OR*	-	9
	290	-	FOR<>	-	Floating point number contact form compare OR*	-	9
	291	-	FOR=>	-	Floating point number contact form compare OR*	-	9
	292	-	FOR= $<$	-	Floating point number contact form compare OR*	-	9
Drive special command	139	RPR	-	$\checkmark$	Read servo parameter	5	-
	140	WPR	-	$\checkmark$	Write servo parameter	5	-
	141	FPID	-	$\checkmark$	Drive PID control mode	9	-
	142	FREQ	-	$\checkmark$	Drive torque control mode	7	-
	262	-	DPOS	$\checkmark$	Set target	-	5
	263	TORQ	-	$\checkmark$	Set target torque	5	-

## 16-6-4 Detailed explanation of application commands

API	CALL			S
0	P	Call a subprogram		



[^0]| API | SRET | - | - | End of subprogram |
| :---: | :--- | :--- | :--- | :--- |
| 02 |  |  |  |  |



Explanation - A contact-driven command is not needed. Automatically returns next command after CALL command.

- Indicates end of subprogram. After end of subprogram, SRET returns to main program, and executes next command after the original call subprogram CALL command.
- Refer to the FEND command explanation and sample content for detailed command functions.


Explanation

- This command indicates the end of the main program. It is the same as the END command when the PLC executes this command.
- The CALL command program must be written after the FEND command, and the SRET command is added to the end of the subprogram.
- When using the FEND command, an END command is also needed. However, the END command must be placed at the end, after the main program and subprogram.

```
CALL
command
process
```

		Main Program   Main Program End
		Subroutine P0
P1		Subroutine P1
	END	PLC Program End


API					
A 10	D	CMP	P	(S1) S2 D	Compare set output


	bit device				Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	
S 1				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	
S 2				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	
D		$*$	$*$									


16-bit command (7 STEP)			
CMP	$\begin{array}{c}\text { Continuous } \\ \text { execution type }\end{array}$	CMPP	

execution type\end{array}\right]\)

Flag signal: none

- S1: Compare value 1. S2: Compare value 2. D: Results of comparison.
- Compares the size of the content of operand $\mathbf{S} 1$ and $\mathbf{S 2}$; stores the results of the comparison in D.
- Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16 -bit command, when b15 is 1 , this indicates a negative number.


## Example

- When the designated device is Y 0 , it automatically occupies $\mathrm{Y0}, \mathrm{Y} 1$ and Y 2 .
- When X10 = ON, the CMP command executes, and Y0, Y1 or Y2 is ON. When $\mathrm{X} 10=\mathrm{OFF}$, the CMP command does not execute, and the state of $\mathrm{Y} 0, \mathrm{Y} 1$ and Y 2 remain in the state prior to $\mathrm{X} 10=\mathrm{OFF}$.
- For $\geq, \leq$, or $\neq$ comparison results, use series and parallel connections among Y0Y2.

- To clear results of comparison, use the RST or ZRST command.




Notes on operand usage:
The content value of operand S1 is less than the content value of Flag signal: none
S2 operand.
The operand $D$ occupies three consecutive points.


S1: Lower limit of range comparison. S2: Upper limit of range comparison. S: Comparative value. D: Results of comparison.

- Compares value $\mathbf{S}$ with the lower limit $\mathbf{S} 1$ and upper limit $\mathbf{S} 2$, and stores the results of the comparison in $\mathbf{D}$.
- When lower limit $\mathbf{S} 1>$ upper limit S2, the command uses the lower limit S1 to perform the comparison with S1 as the upper and lower limit.
- Size comparison is performed algebraically. All data is compared in the form of numerical binary values. Because this is a 16 -bit command, when b15 is 1 , this indicates a negative number.


## Example

- When the designated device is M0, it automatically occupies M0, M1 and M2. When X0 $=\mathrm{ON}$, the ZCP command executes, and M0, M1 or M2 is ON. When X0 = OFF, the ZCP command does not execute, and the state of M0, M1 or M2 remains in the state prior to $\mathrm{X} 0=\mathrm{OFF}$.
- For $\geq, \leq$, or $\neq$ comparison results, use series and parallel connections of M0-M2.

- To clear results of comparison, use the RST or ZRST command.



	bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$
D							$*$	$*$	$*$	$*$	$*$

Notes on operand usage: none

16-bit command (5 STEP)			
MOV	$\begin{array}{c}\text { Continuous } \\ \text { execution type }\end{array}$	MOVP	

execution type\end{array}\right]\)

Flag signal: none
Explanation - S: Data source. D: Destination of data movement Moves the content in $\mathbf{S}$ to $\mathbf{D}$. When the command does not execute, the content of $\mathbf{D}$ does not change.

## Example

- When $\mathrm{X0}=\mathrm{OFF}$, the content of D 10 does not change; if $\mathrm{X} 0=O N$, the value K 10 is moved to data register D10.
- When $\mathrm{X} 1=\mathrm{OFF}$, the content of D 10 does not change; if $\mathrm{X} 1=\mathrm{ON}$, the current value of T0 is moved to data register D10.



		dev					Vord	devic				16-bit co	mand (7 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	BMOV	Continuous	BMOVP	Pulse
S						*	*	*	*	*	*	BMOV	execution type	BMOVP	execution type
D							*	*	*	*	*				
n				*	*				*	*		32-bit command			
Notes on operand usage: n operand scope $\mathrm{n}=1$ to 512												-	-	-	-
												Flag signal: none			

Explanation - S: Initiate source device. D: Initiate destination device. n: Send block length. designated by $\mathbf{S}$ to the n registers starting from the initial number of the device designated by $\mathbf{n}$; if the number of points referred to by n exceeds the range used by that device, sends only points within the valid range.

Example 1

Example 2

- When X10=ON, sends the content of registers D0-D3 to the four registers D20D23.

- When sending from designated bit devices $\mathrm{KnX}, \mathrm{KnY}$, and $\mathrm{KnM}, \mathbf{S}$ and $\mathbf{D}$ must have the same number of nibbles, which means $n$ must be identical for source and destination.


API	A	ADD			S1	S2
20	D	D	BIN addition			


bit device				Word device								
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	
S 1				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	
S 2				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	
D						$*$	$*$	$*$	$*$	$*$		


16-bit command (7 STEP)			
ADD	Continuous   execution type	ADDP	Pulse   execution type
32 -bit command (13 STEP)      DADD Continuous   execution type DADDP Pulse   execution type			

Flag signal: M1020 Zero flag
M1021 Borrow flag
M1022 Carry flag
Refer to the following supplementary
explanation
Explanation $\quad$ S1: Augend. S2: Addend. D: Sum.

- Adds S1 and S2 using the BIN method and stores result in D.
- The highest bit of any data defines the sign: bit=0 indicates (positive) bit=1 indicates (negative); enables the use of algebraic addition operations (for instance: 3+ (-9) =-6).
- Flag changes connected with the addition.

1. When calculation results are 0 , the zero flag M1020 is ON.
2. When calculation results are less than $-32,768$, the borrow flag M1021 is ON.
3. When calculation results are greater than 32,767, the carry flag M1022 is ON.

Example
16-bit BIN addition: When X0=ON, saves the result of the content of addend D0 plus the content of augend D10 in the content of D20.


Remarks

- Relationship between flag actions and negative/positive numbers:

16-bit:


32-bit:




Explanation

- S1: Minuend. S2: Subtrahend. D: Difference.
- Subtracts $\mathbf{S 2}$ from $\mathbf{S} 1$ using the BIN method and stores result in $\mathbf{D}$.
- The highest bit of any data defines the sign bit=0 indicates (positive) bit=1 indicates (negative); enables the use of algebraic subtraction operations.
- Flag changes connected with subtraction.

16-bit command:

1. When calculation results are 0 , the zero flag M1020 is ON.
2. When calculation results are less than $-32,768$, the borrow flag M1021 is ON.
3. When calculation results are greater than 32,767, the carry flag M1022 is ON.

32-bit command:

1. When calculation results are 0 , the zero flag M1020 is ON.
2. When calculation results are less than $-2,147,483,648$, the borrow flag M1021 is ON .
3. When calculation results are greater than $2,147,483,6477$, the carry flag M1022 is ON.

Example
16-bit BIN subtraction: When $\mathrm{X} 0=\mathrm{ON}$, subtracts the content of D 10 from the content of D0, and stores the difference in D20.



		de					/ord	devic				16-bit co	mand (7 STEP)		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	MUL	Continuous	MULP	Pulse
S1				*	*	*	*	*	*	*	*		execution type		execution type
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)			
D							*	*	*	*	*	32-bl	Continuous		
Notes on operand usage:   The 16-bit command operand $D$ occupies two consecutive points.												DMUL	execution type	DMULP	execution type
												Flag signal: none			

Explanation - $\begin{aligned} & \text { S1: Multiplicand. S2: Multiplier. D: Product. } \\ & \text { Multiplies S1 and S2 using the BIN method, and stores the product in D. }\end{aligned}$
16-bit BIN multiplication operation:


Symbol bit $=0$ refers to a positive value.
Symbol bit = 1 refers to a negative value.
When $\mathbf{D}$ is a bit device, $\mathrm{K} 1-\mathrm{K} 4$ can be designated as a hexadecimal number, which occupies two consecutive units.

## Example

- When 16 -bit DO is multiplied by 16 -bit D 10 , the result is a 32 -bit product; the upper 16 bits are stored in D21, and the lower 16 bits are stored in D20. The bit at the farthest left indicates the sign of the result.


AP		DIV		P	(S1) S2 D					BIN division					
	bit device			Word device								16-bit command (7 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	DIV	Continuous	DIVP	Pulse execution type
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)			
Notes on operand usage:   The 16-bit command operand D occupies two consecutive points.												32-bit	Continuous		Pulse
												DDIV	execution type	DDIVP	execution type
												Flag signal: none			

Explanation - S1: Dividend. S2: Divisor. D: Quotient and remainder.
Divides $\mathbf{S 1}$ by $\mathbf{S} 2$ and stores the quotient and remainder in $\mathbf{D}$ using the BIN method. The sign bit for $\mathbf{S 1}$, $\mathbf{S} 2$ and $\mathbf{D}$ must be kept in mind when performing a 16-bit operation.

16-bit BIN division:


If $\mathbf{D}$ is a bit device, K1-K4 can be designated as 16 bits, which occupy two consecutive units and yield the quotient and remainder.

Example

- When $\mathrm{X} 0=\mathrm{ON}$, stores the quotient resulting from division of dividend DO by divisor D10 in D20, and the remainder in D21. The highest bit indicates the sign of the result.



	bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
D							$*$	$*$	$*$	$*$	$*$


$\left\lvert\,$| 16-bit command (3 STEP) |  |  |  |
| :---: | :---: | :---: | :---: |
| INC | Continuous <br> execution type | INCP |  | | Pulse |
| :---: |
| execution type |\right.


32-bit command (5 STEP)			
DINC	Continuous   execution type	DINCP	Pulse   execution type

Flag signal: none
Explanation - D: Destination device.

- If a command is not the pulse execution type, adds 1 to the content of device D during each scanning cycle.
- Generally use this command as a pulse execution type command (INCP).
- During 16-bit operation, 32,767+1 rolls over to $-32,768$. During 32 bit operation, $2,147,483,647+1$ rolls over to $-2,147,483,648$.

Example

- When X0 switches from OFF to ON, adds 1 to the content of D0.



Explanation - D: Destination device.
If a command is not the pulse execution type, adds 1 to the content of device $\mathbf{D}$ during each scanning cycle.

- Generally use this command as a pulse execution type command (DECP).
- During 16-bit operation, $-32,768-1$ rolls over to 32,767 . During 32 bit operation, $-2,147,483,648-1$ rolls over to $2,147,483,647$.

Example

- When X0 switches OFF to ON, subtracts 1 from the content of DO.


API	ROR		D	D	Right rotation
	D	R			


	bit device				Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	
D							$*$	$*$	$*$	$*$	$*$	
n				$*$	$*$							

Notes on operand usage:
K4 (16-bit) is only valid if the operand D is designated as KnY or KnM.
n operand $\mathrm{n}=\mathrm{K} 1$-K16 (16-bit)

16-bit command (5 STEP)			
ROR	Continuous   execution type	RORP	
Pulse   execution type			
32-bit command (9 STEP)      DROR Continuous   execution type DRORP Pulse   execution type			

Flag signal: M1022 Carry flag
Explanation - D: Device to be rotated. $\mathbf{n}:$ : Number of bits for one rotation.

- Generally use this command as a pulse execution type command (RORP).


## Example

- When X0 switches OFF to ON, 4 of the 16 bits in D10 specify a right rotation; the content of the bit indicated with * (see figure below) is sent to the carry flag signal M1022.


AP		ROL		P	(D) $n$					Left rotation					
	bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	ROL	Continuous execution type	ROLP	Pulse execution type
D							*	*	*	*	*				
n				*	*							32-bit command (9 STEP)			
Notes on operand usage:   K4 (16-bit) is only valid if the operand D is designated as KnY or KnM.   n operand $\mathrm{n}=1$ to 16 (16-bit)												DROL	$\begin{array}{\|c\|} \hline \hline \text { Continuous } \\ \text { execution type } \\ \hline \end{array}$	DROLP	Pulse execution type
												Flag signal: M1022 Carry flag			

## Explanation - D: Device to be rotated. n: Number of bits for one rotation. <br> Explanation <br> Rotates the device designated by $\mathbf{D}$ to the left $\mathbf{n}$ bits.

- Generally use this command as a pulse execution type command (ROLP).


## Example

- When X0 switches OFF to ON, 4 of the 16 bits in D10 specify a left rotation; the content of the bit indicated with * (see figure below) is sent to the carry flag signal M1022.


API	-	ZRST		(D1) (D2
	(D	Clear range		


	bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
D1		*	*						*	*	*
D2		*	*						*	*	*

Notes on operand usage
Number of operand $D_{1}$ operand $\leq$ number of operand $D_{2}$
Operands $\mathrm{D}_{1}, \mathrm{D}_{2}$ must designate the same type of device. Refer to the function specifications table for each device in series for the Flag signal: none scope of device usage.

Explanation

- D1: Clear range's initial device. D2: Clear range's final device.

- When the number of operand D1 > number of operand D2, only the operand designated by D2 is cleared.


## Example

- When X0 is ON, clears auxiliary relays M300-M399, changes them to OFF.
- When X1 is ON, 16-bit clears counters C0-C127 (writes 0, and clears and changes contact and coil to OFF).
- When X10 is ON, clears timer T0-T127 (writes 0, and clears and changes contact and coil to OFF).
- When X3 is ON, clears the data in data registers D0-D100 (sets to 0).


Remarks

- Devices such as bit device $\mathrm{Y}, \mathrm{M}$ and word device T, C, D can independently use the clear command (RST).



		dev					ord	evic				16-bit	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S		*	*						*	*	*				
D		*	*						*	*	*	32-bit command (9steps)			
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.   The operand D occupies two consecutive points.												DFLT	Continuous execution type	DFLTP	Pulse execution type
												Flag signal: none			

Explanation - S: Source device. D: Result device.
Explanation - Converts a BIN whole number into a binary decimal value.

## Example

- When X11 is ON, converts the whole number corresponding to D0 and D1 into floating point numbers, and stores the result in D20 and D21.




The operand D occupies three consecutive points. Refer to the
function specifications table for each device in series for the scope Flag signal: none
of device usage.
Explanation

- $\quad \mathbf{S}_{1}$ : Binary floating point number 1. $\mathbf{S}_{2}$ : Binary floating point number 2. D: Results of comparison, occupies three consecutive points.
- Compares binary floating point number 1 with binary floating point number 2, and stores the result of comparison (>, $=,<$ ) in $\mathbf{D}$.
- If the source operand $\mathbf{S}_{1}$ or $\mathbf{S}_{2}$ designates a constant K or H , the command converts the constant to a binary floating point number for the purpose of comparison.
- When the designated device is M10, it automatically occupies M10-M12.
- When $\mathrm{X} 0=\mathrm{ON}$, the DECMP command executes, and one of M10-M12 is ON. When $\mathrm{XO}=$ OFF, the DECMP command does not execute, and M10-M12 remains in the $X 0=O F F$ state.
- For $\geq, \leq$, or $\neq$ comparison, use series and parallel connections for M10-M12.
- Use the RST or ZRST command to clear the result.




Explanation

- $\mathbf{S}_{1}$ : Lower limit for binary floating point number in range comparison. $\mathbf{S}_{2}$ : Upper limit for binary floating point number in range comparison. S: Comparison of binary floating point numerical values. D: Results of comparison, occupies three consecutive points.
- Compares binary floating point number $\mathbf{S}$ with the lower limit value $\mathbf{S}_{1}$ and the upper limit value $\mathbf{S}_{\mathbf{2}}$; stores the results of comparison in $\mathbf{D}$.
- If the source operand $\mathbf{S}_{1}$ or $\mathbf{S}_{2}$ designates a constant K or H , the command converts the constant to a binary floating point number for the purpose of comparison.
- When the lower limit $\mathbf{S}_{1}$ is greater than the upper limit $\mathbf{S}_{2}$, a command issues to perform comparison using the lower limit value $\mathbf{S}_{1}$ as the upper and lower limit.


## Example

- When the designated device is M 0 , it automatically occupies M0-M2.
- When $\mathrm{X} 0=\mathrm{ON}$, the DEZCP command executes, and one of $\mathrm{M} 0-\mathrm{M} 2$ is ON . When XO $=O F F$, the EZCP command does not execute, and M0-M2 remains in the $\mathrm{XO}=\mathrm{OFF}$ state.
- Use the RST or ZRST command to clear the result.



	bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S				$*$	$*$						$*$
D											$*$

Notes on operand usage:
Refer to the function specifications table for each device in series
2-bit command (9 STEP)
DRAD Continuous

DRADP
Pulse for the scope of device usage.

16-bit command     - - -			
32-bit command (9 STEP)      DRAD Continuous   execution type DRADP Pulse   execution type			

Flag signal: none

Explanation

- S: data source (angle). D: result of transformation (diameter)
- 

Uses the following formula to convert angles to radians.
Diameter $=$ Angle $\times(\pi / 180)$

Example

- When $\mathrm{X} 0=\mathrm{ON}$, converts the angle of the designated binary floating point number (D1, D0) to radians and stores the result in (D11, D10); the result is a binary floating point number.

(S)

Angle in degrees
Binary floating point

(D)
D11
D10
Angle in radians $=$ degrees $\mathrm{X}(\pi / 180)$
Binary floating point


		ev					/ord	devic				16-bit co	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												DDEG	Continuous execution type	DDEGP	Pulse execution type
												Flag signal: none			

Explanation

- S: data source (diameter). D: results of transformation (angle).
- Uses the following formula to convert radians to an angle.
- Angle $=$ Diameter $\times(180 / \pi)$


## Example

- When $\mathrm{X} 0=\mathrm{ON}$, angle of the designated binary floating point number (D1, D0) in radians is converted to an angle and stored in (D11, D10), with the content consisting of a binary floating point number.

(S)

Angle in radians Binary floating point
(D)
Angle in degrees $=$ radians $X(180 / \pi)$
Binary floating point


	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1				*	*						*				
S2				*	*						*	32-bit command (9 STEP)			
D											*	DEADD	Continuous execution type	DEADDP	Pulse execution type
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												Flag signal: none			

- $\quad \mathbf{S}_{1}$ : addend. $\mathbf{S}_{2}$ : augend. D: sum.
- Adds the content of the register designated by $\mathbf{S}_{\mathbf{2}}$ to the content of the register designated by $\mathbf{S}_{1}$, and stores the result in the register designated by $\mathbf{D}$. Addition is performed entirely using binary floating point numbers.
- If the source operand $\mathbf{S}_{1}$ or $\mathbf{S}_{2}$ designates a constant K or H , the command converts that constant into a binary floating point number for use in addition.
- In the situation when $\mathbf{S}_{1}$ and $\mathbf{S}_{\mathbf{2}}$ designate identical register numbers, if a "continuous execution" command is employed, when the conditional contact is ON, the register performs addition once during each scan. You generally use pulse execution type commands (DEADDP) under ordinary circumstances.


## Example

- When $\mathrm{X} 0=\mathrm{ON}$, adds a binary floating point number (D1, D0) to a binary floating point number (D3, D2), and stores the results in (D11, D10).

- When X2 =ON, adds a binary floating point number (D11, D10) to K1234 (which is automatically converted to a binary floating point number), and stores the results in (D21, D20).

X 2	DEADD	D 10	K 1234	D 20



		V					/ord	devic				16-bit com	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1				*	*						*	32-bit command (13 STEP)			
S2				*	*						*				
D											*	DESUB	Continuous	DESUBP	Pulse
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												Flag signal: none			

- $\mathbf{S}_{1}$ : minuend. $\mathbf{S}_{2}$ : subtrahend. D: difference.
- Subtracts the content of the register designated by $\mathbf{S}_{2}$ from the content of the register designated by $\mathbf{S}_{1}$, and stores the difference in the register designated by D; subtraction is performed entirely using binary floating point numbers.
- If the source operand $\mathbf{S}_{1}$ or $\mathbf{S}_{2}$ designates a constant K or H , the command converts that constant into a binary floating point number for use in subtraction.
- In the situation when $\mathbf{S}_{1}$ and $\mathbf{S}_{\mathbf{2}}$ designate identical register numbers, if a "continuous execution" command is employed, when conditional contact is ON, the register performs subtraction once during each scan. You generally use pulse execution type commands (DESUBP) under ordinary circumstances.

Example

- When $\mathrm{X} 0=\mathrm{ON}$, subtracts a binary floating point number (D1, D0) from a binary floating point number (D3, D2), and stores the results in (D11, D10).

X0	DESUB	D0	D2	D10

- When X2 =ON, subtracts the binary floating point number (D1, D0) from K1234 (which is automatically converted to a binary floating point number), and stores the results in (D11, D10).

X2	DESUB	K1234	D0	D10



	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1				*	*						*				
S2				*	*						*	32-bit command (13 STEP)			
D											*	DEMUL	Continuous execution type	DEMULP	Pulse execution type
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												Flag signal: none			

- $\quad \mathbf{S}_{1}$ : multiplicand. $\mathbf{S}_{2}$ : multiplier. D: product.
- Multiplies the content of the register designated by $\mathbf{S}_{1}$ by the content of the register designated by $\mathbf{S}_{2}$, and stores the product in the register designated by $\mathbf{D}$; multiplication is performed entirely using binary floating point numbers.
- If the source operand $\mathbf{S}_{1}$ or $\mathbf{S}_{2}$ designates a constant K or H , the command converts that constant into a binary floating point number for use in multiplication.
- In the situation when $\mathbf{S}_{1}$ and $\mathbf{S}_{\mathbf{2}}$ designate identical register numbers, if you employ a "continuous execution" command, when conditional contact is ON, the register performs multiplication once during each scan. You generally use pulse execution type commands (DEMULP) under ordinary circumstances.
- When $\mathrm{X} 1=\mathrm{ON}$, multiplies the binary floating point number (D1, D0) by the binary floating point number (D11, D10), and stores the product in the register designated by (D21, D20).

X1	DEMUL	D0	D10	D20

- When X2 =ON, multiplies the binary floating point number (D1, D0) by K1234 (which is automatically converted to a binary floating point number), and stores the results in (D11, D10).

X 2	DEMUL	K1234	D0	D10
$\mathbf{y y y}$				



	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1				*	*						*				
S2				*	*						*	32-bit command (13 STEP)			
D											*	DEDIV	Continuous	DEDIVP	Pulse
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												Flag signal: none			

Explanation $-\quad \mathbf{S}_{1}$ : dividend. $\mathbf{S}_{\mathbf{2}}$ : divisor. $\mathbf{D}:$ quotient.

- Divides the content of the register designated by $\mathbf{S}_{1}$ by the content of the register designated by $\mathbf{S}_{\mathbf{2}}$ and stores the quotient in the register designated by $\mathbf{D}$; division is performed entirely using binary floating point numbers.
- If the source operand $\mathbf{S}_{1}$ or $\mathbf{S}_{\mathbf{2}}$ designates a constant K or H , the command converts that constant into a binary floating point number for use in division.

Example

- When $\mathrm{X} 1=\mathrm{ON}$, divides the binary floating point number (D1, D0) by the binary floating point number (D11, D10), and stores the quotient in the register designated by (D21, D20).

X1	DEDIV	D0	D10	D20

- When X2 =ON, divides the binary floating point number (D1, D0) by K1,234 (which is automatically converted to a binary floating point number), and stores the results in (D11, D10).

X2	DEDIV	D0	K1234	D10



	bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S				$*$	$*$						$*$
D											$*$

Notes on operand usage:
Refer to the function specifications table for each device in series

16-bit command     - - -			
32-bit command (9 STEP)      DEXP Continuous   execution type DEXPP Pulse   execution type			

Flag signal: none
Explanation

- S: operation source device. D: operation results device
- Taking e =2.71828 as a base, $\mathbf{S}$ is the exponent in the EXP operation:
- $\quad[\mathbf{D}+1, \mathbf{D}]=E X P[\mathbf{s + 1}, \mathbf{s}$ ]
- Valid regardless of whether the content of $\mathbf{S}$ has a positive or negative value. The designated register D must have a 32-bit data format. Performs the operation using floating point numbers, and converts $\mathbf{S}$ to a floating point number.
- Content of operand $\mathbf{D}=e^{s} ; e=2.71828, S$ is the designated source data. When M0 is ON, converts the value of (D1, D0) to a binary floating point number, and stores the result in register (D11, D10).
- When M1 is ON, performs the EXP operation on the exponent of (D11, D10), converts the result to a binary floating point number and stores it in register (D21, D20).



	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												DLN	Continuous execution type	DLNP	Pulse execution type
												Flag signal: none			

[^1]- S: operation source device. D: operation results device.
- Taking e $=2.71828$ as a base, $\mathbf{S}$ is the exponent in the EXP operation.
- $\quad[\mathbf{D}+1, \mathbf{D}]=\operatorname{EXP}^{[\mathrm{s}+1, \mathrm{~s}]}$
- Valid regardless of whether the content of $\mathbf{S}$ has a positive or negative value. The designated register D must have a 32-bit data format. Performs the operation using floating point numbers, and converts $\mathbf{S}$ to a floating point number.
- Content of operand $\mathbf{D}=e^{s} ; e=2.71828, \mathbf{S}$ is the designated source data.
- When MO is ON, converts the value of (D1, D0) to a binary floating point number, and stores the result in register (D11, D10).
- When M1 is ON, performs the EXP operation on the exponent of (D11, D10); converts the result to a binary floating point number and stores it in register (D21, D20).



		,					ord	devic				16-bit com	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												DESQR	Continuous execution type	$\begin{gathered} \text { DESQR } \\ \mathrm{P} \\ \hline \end{gathered}$	Pulse execution type
												Flag signal: none			

Explanation
S: source device for which square root is desired. D: result of finding square root.

- Finds the square root of the content of the register designated by $\mathbf{S}$, stores the result in the register designated by $\mathbf{D}$. Square roots are performed entirely using binary floating point numbers.
- If the source operand $\mathbf{S}$ refers to a constant K or H , the command converts that constant into a binary floating point number for use in the operation.
- When $\mathrm{X} 0=\mathrm{ON}$, finds the square root of the binary floating point number (D1, D0), and stores the result in the register designated by (D11, D10).

$\begin{array}{cc}\sqrt{(D 1, D 0)} \rightarrow & (\mathrm{D} 11, \mathrm{D} 10) \\ \text { Binary floating point }\end{array} \begin{gathered}\text { Binary floating point }\end{gathered}$
- When $\mathrm{X} 2=\mathrm{ON}$, finds the square root of $\mathrm{K} 1,234$ (which is automatically converted to a binary floating point number), and stores the result in (D11, D10).



	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S											*	32-bit command (9 STEP)			
D											*				
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												DINT	Continuous execution type	DINTP	Pulse execution type
												Flag signal: none			

Explanation - S: the source device to be converted. D: results of conversion.

- Converts the content of the register designated by $\mathbf{S}$ from a binary floating point number format to a BIN whole number, and stores the results in D. The BIN whole number floating point number is discarded.
- The action of this command is the opposite of that of command API 49 (FLT).

Example

- When $\mathrm{X} 0=\mathrm{ON}$, converts the binary floating point number (D1, D0) into a BIN whole number, and stores the result in (D10); the BIN whole number floating point number is discarded.


API					
130	D	SIN	P	(S) D	Find the sine of a binary floating point number


		ev					ord	devic				16-bit co	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												DSIN	Continuous execution type	DSINP	Pulse execution type
												Flag sign	l: none		

Explanation

- S: the designated source value. D: the SIN value result.
- $\mathbf{S}$ is the designated source in radians.
- The value in radians (RAD) is equal to (angle $\times \pi / 180$ ).
- Finds the SIN from the source value designated by $\mathbf{S}$ and stores the result in $\mathbf{D}$. The following figure displays the relationship between the arc and SIN results:
(SIN value)
- When $\mathrm{XO}=\mathrm{ON}$, finds the SIN value of the designated binary floating point number (D1, D0) in radians (RAD) and stores the result in (D11, D10), as a binary floating point number.



	bit device			Word device								16-bit command			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												DCOS	Continuous execution type	DCOSP	Pulse execution type
												Flag signal: none			

Explanation - S: the designated source value. D: the COS value result.
Finds the COS of the source value designated by $\mathbf{S}$ and stores it in $\mathbf{D}$.
The following figure displays the relationship between the arc and COS results:


When $\mathrm{XO} 0=\mathrm{ON}$, finds the COS value of the designated binary floating point number (D1, D0) in radians and stores the result in (D11, D10), as a binary floating point number.


API	O	TAN		P	S
132	D		Find the tangent of a binary floating point number		


		dev					ord	devic				16-bit co	mmand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												DTAN	Continuous execution type	DTANP	Pulse execution type
												Flag signal: none			

Explanation

- S: the designated source value. D: the TAN value result.
- Finds the TAN of the source value designated by $\mathbf{S}$ and stores it in $\mathbf{D}$.

The following figure displays the relationship between the arc and TAN results:


S: arc angle data
R: result (TAN value)

Example
When $\mathrm{XO}=\mathrm{ON}$, finds the TAN value of the designated binary floating point number (D1, D0) in radians (RAD) and stores the result in (D11, D10), as a binary floating point number.

(S) $\square$ RAD value $=$ angle $X(\pi / 180)$
binary floating point
(D)
D 1 D 10
TAN value binary floating point


		dev					ord	devic				16-bit co	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												DASIN	Continuous execution type	DASINP	Pulse execution type
												Flag signal: none			

Explanation

- S: the designated source (binary floating point number).

D: the ASIN value result.
ASIN value $=\sin ^{-1}$
The figure below shows the relationship between input data and result:


Example

- When $\mathrm{XO}=\mathrm{ON}$, finds the ASIN value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.


| API |  | ACOS |  | (S | D |
| :--- | :--- | :--- | :--- | :--- | :--- |$\quad$ Find the arccosine of a binary floating point number


		dev					ord	devic				16-bit com	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage												DACOS	Continuous execution type	$\begin{gathered} \hline \text { DACOS } \\ \mathrm{P} \end{gathered}$	Pulse execution type
												Flag signal: none			

Explanation - $\quad \begin{aligned} & \text { S: the designated so } \\ & \text { ACOS value }=\cos ^{-1}\end{aligned}$
The figure below shows the relationship between input data and result:


Example

- When $\mathrm{XO}=\mathrm{ON}$, finds the ACOS value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.



		dev					ord	devic				16-bit com	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												DATAN	Continuous execution type	DATANP	Pulse execution type
												Flag signa:	l: none		

Explanation

- $\quad \mathbf{S}$ : the designated source (binary floating point number). D: the ATAN value result. ATAN value $=\tan ^{-1}$
The figure below shows the relationship between input data and result:


Example

- When $\mathrm{XO}=\mathrm{ON}$, finds the ATAN value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.


API	D	SINH	P	(S) D	Find the hyperbolic sine of at binary floating point


		V					ord	evic				16-bit co	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												DSINH	Continuous execution type	DSINHP	Pulse execution type
												Flag signal: none			

Explanation

- S: the designated source (binary floating point number). D: the SINH value result.
planation
- $\operatorname{SINH}$ value $=\left(e^{s}-e^{-s}\right) \div 2$

Example

- When $\mathrm{XO}=\mathrm{ON}$, finds the SINH value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.



		dev					/ord	devic				16-bit con	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S				*	*						*				
D											*	32-bit command (9 STEP)			
Notes on operand usage:   Refer to the function specifications table for each device in series for the scope of device usage.												DCOSH	Continuous execution type	DCOSHP	Pulse execution type
												Flag signal: none			

Explanation

- S: the designated source (bin
- $\operatorname{COSH}$ value $=\left(\mathrm{e}^{\mathrm{s}}+\mathrm{e}^{-\mathrm{s}}\right) \div 2$


## Example

- When $\mathrm{XO}=\mathrm{ON}$, finds the COSH value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.



	bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
s				*	*						*
D											*

Notes on operand usage:
Refer to the function specifications table for each device in series

16-bit command			
-	-	-	-
32-bit command (9 STEP)			
DTANH	Continuous execution type	DTANHP	Pulse execution type

Flag signal: none

Explanation

- S: the designated source (binary floating point number).

D: the TANH value result.
ion
TANH value $=\left(e^{s}-e^{-s}\right) \div\left(e^{s}+e^{-s}\right)$

## Example

- When $\mathrm{X} 0=\mathrm{ON}$, finds the TANH value of the designated binary floating point number (D1, D0) and stores the result in (D11, D10), as a binary floating point number.



	Bit device			Word device								
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	
S1				*	*						*	
S2				*	*						*	
S3				*	*						*	
S											*	*
n				*	*						*	*

Explanation

- S1: online device address. S2: communications function code. S3: address of data to read / write. S: register for data to be read/written is stored. $N$ : length of data to be read/written.
- COM1 must be defined as controlled by the PLC (set Pr.09-31 = -12) before using this command, and the corresponding communications speed and format must also be set (set Pr.09-01 and Pr.09-04). S2: communications function code. Currently only supports the following function code; the remaining function code cannot be executed.

Function	Description
H 02	Input read
H 03	Read word
H 06	Write single word
H 0F	Write multiple coils
H 10	Write single word

- After executing this command, M1077, M1078 and M1079 will be immediately changed to 0 .
- As an example, when MH300 must control another converter and PLC, if the converter has a station number of 10 and the PLC has a station number of 20 , see the following example:

Control slave device converter

Serial No.	Example	MODRW command				
		S1	S2	S3	S4	n
		Node ID	Function code	Address	Register	Length
1	Reads 4 sets of data comprising the converter slave device parameters Pr.01-00 to Pr.01-03, and saves the read data in D0 to D3	K10	H3	H100	D0	K4
2	Reads 3 sets of data comprising the converter slave device addresses H2100 to H2102, and saves the read data in D5 to D7	K10	H3	H2100	D5	K3
3	Writes 3 sets of data comprising the converter slave device parameters Pr.05-00 to Pr.05-03, and writes the values as D10 to D12	K10	H10	H500	D10	K3
4	Writes 2 sets of data comprising the converter slave device addresses H2000 to H2001, and writes the values as D15 to D16	K10	H10	H2000	D15	K2

PLC controlling slave device

Serial No.	Example	MODRW command				
		S1	S2	S3	S4	n
		Node ID	Function code	Address	Register	Length
1	Reads 4 sets of data comprising the PLC slave device's X0 to X3 state, and saves the read data in bits 0 to 3 of DO	K20	H2	H400	D0	K4
2	Reads 4 sets of data comprising the PLC slave device's Y0 to Y3 state, and saves the read data in bits 0 to 3 of D1	K20	H2	H500	D1	K4
3	Reads 4 sets of data comprising the PLC slave device's M0 to M3 state, and saves the read data in bits 0 to 3 of D2	K20	H2	H800	D2	K4
4	Reads 4 sets of data comprising the PLC slave device's T0 to T3 state, and saves the read data in bits 0 to 3 of D3	K20	H2	H600	D3	K4
5	Reads 4 sets of data comprising the PLC slave device's C0 to C3 state, and saves the read data in bits 0 to 3 of D4	K20	H2	HEOO	D4	K4
6	Reads 4 sets of data comprising the PLC slave device's T0 to T3 count value, and saves the read data of D10 to D13	K20	H3	H600	D10	K4
7	Reads 4 sets of data comprising the PLC slave device's C0 to C3 count value, and saves the read data of D20 to D23	K20	H3	HEOO	D20	K4
8	Reads 4 sets of data comprising the PLC slave device's D0 to D3 count value, and saves the read data of D30 to D33	K20	H3	H1000	D30	K4
9	Writes 4 sets of the PLC slave device's Y 0 to Y 3 state, and writes the values as bits 0 to 3 of D1	K20	HF	H500	D1	K4
10	Writes 4 sets of the PLC slave device's M0 to M3 state, and writes the values as bits 0 to 3 of D2	K20	HF	H800	D2	K4
11	Writes 4 sets of the PLC slave device's T0 to T3 state, and writes the values as bits 0 to 3 of D3	K20	HF	H600	D3	K4
12	Writes 4 sets of the PLC slave device's CO to C 3 state, and writes the values as bits 0 to 3 of D4	K20	HF	HEOO	D4	K4
13	Writes 4 sets of the PLC slave device's T0 to T3 state, and writes the values of D10 to D13	K20	H10	H600	D10	K4
14	Writes 4 sets of the PLC slave device's C 0 to C 3 state, and writes the values of D20 to D23	K20	H10	HEOO	D20	K4
15	Writes 4 sets of the PLC slave device's D0 to D3 state, and writes the values of D30 to D33	K20	H10	H1000	D30	K4

## Example

- Will trigger M0 On when the PLC begins to operate, and sends instruction to execute one MODRW command.
- After receiving the slave device's response, if the command is correct, it will execute one ROL command, which will cause M1 to be On.
- After receiving the slave device's response, will trigger M50 = 1 after a delay of 10 PLC scanning cycles, and then execute one MODRW command.
- After again receiving the slave device's response, if the command is correct, it will execute one ROL command, and M2 will change to On at this time (and M2 can be defined as a repeat of M ); K4M0 will change to K 1 , and only M0 will remain 1. Transmission can proceed in a continuous cycle. If you wish to add a command, merely add the desired command in the empty frame, and change repeat $M$ to $\mathrm{Mn}+1$.


API		GRY		S (D)	Convert BIN to GRAY code
170	D	P	(		


	bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$
D							$*$	$*$	$*$	$*$	$*$


16-bit command (5 STEP)			
GRY	Continuous   execution type	GRYP	Pulse   execution type
32 -bit command (9 STEP)      DGRY Continuous   execution type DGRYP Pulse   execution type			

Flag signal: none

Explanation

- S: source device. D: device storing GRAY code.
- Converts the BIN value of the device designated by $\mathbf{S}$ to a GRAY code, and stores the result in the device designated by $\mathbf{D}$.
- The valid range for $\mathbf{S}$ is as shown below; if you exceed this range, it is an error, and the command does not execute.
16-bit command: 0-32,767
32-bit command: 0-2,147,483,647


## Example

- When $\mathrm{X} 0=\mathrm{ON}$, converts the constant K6513 to a GRAY code and stores it in D0.


K6513=H1971 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 b0


DO


	bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$
D							$*$	$*$	$*$	$*$	$*$

Notes on operand usage:
Refer to the function specifications table for each device in series for the scope of device usage.
$\left.\begin{array}{|c|}\hline \text { 16-bit command (5 STEP) } \\ \hline \text { GBIN } \\ \begin{array}{c}\text { Continuous } \\ \text { execution type }\end{array} \\ \text { GBINP }\end{array} \begin{array}{c}\text { Pulse } \\ \text { execution type }\end{array}\right]$

Flag signal: none

- S: source device storing GRAY code. D: device storing BIN value after conversion.
- Converts the GRAY code corresponding to the value of the device designated by $\mathbf{S}$ that is transformed into a BIN value, and stores it in the device designated by $\mathbf{D}$.
- This command converts the value of the absolute position encoder connected with the PLC's input (this encoder usually has an output value in the form of GRAY code) into a BIN value, and stores it in the designated register.
- The valid range of $\mathbf{S}$ is as shown below; if you exceed this range, it is an error, and the command does not execute.
16-bit command: 0-32,767
32-bit command: 0-2,147,483,647

Example

- When $X 20=O N$, converts the GRAY code of the absolute position encoder connected with input points X0-X17 to a BIN value and stores it in D10.


b15
H1971=K6513
$0\|c\| c\|c\| c\|c\| c\|c\| c\|c\| c\|c\| c\|c\| c \mid$
0




Notes on operand usage:
Refer to the function specifications table for each device in series Flag signal: none for the scope of device usage.

Explanation

- The operation equation in the instruction: $\mathrm{D}=(\mathrm{S} 1 \times \mathrm{S} 2) \div 1000+\mathrm{S} 3$
- To obtain the values in S2 and S3, users have to use the slope equation and the offset equation below first, and then round off the results to the nearest whole digit. The final 16-bit value are entered into S2 and S3.
- The slope equation: $\mathrm{S} 2=[($ maximum destination value - minimum destination value) $\div$ (maximum source value -maximum source value)] $\times 1000$
- The offset equation: S3 = minimum destination value - maximum source value $\times$ S2 $\div 1000$
- The output curve is as shown below:



## Example

- Suppose the values in S1, S2, and S3 are 500, 168, and -4 respectively. When XO is ON , the instruction SCAL is executed, and the scale value is stored in DO.



API		LD\#	(S1) S2	Contact form logical operation LD\#
$\begin{array}{r}215- \\ \hline 217\end{array}$	D			


		dev					/ord	devic				16-bit co	mand (5 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	LD\#	Continuous	-	-
S1				*	*	*	*	*	*	*	*				
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: \#, :, \&, \|, ^   Refer to the function specifications table for each device in series for the range of device usage.												DLD\#	Continuous execution type	-	-
												Flag signal: none			

Explanation $\quad \mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2.

- This command compares the contents of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$. When the result of comparison is not 0 , this command activates; when the result of comparison is 0 , this command does not activate.
- You can use the LD\# command directly to connect with the busbar.

API No.	16-bit   commands	32-bit   commands	Conditions for   activation				Conditions for   inactivation			
215	LD\&	DLD\&	$\mathbf{S}_{1}$	$\&$	$\mathbf{S}_{2}$	$\neq 0$	$\mathbf{S}_{1}$	$\&$	$\mathbf{S}_{2}$	$=0$
216	LD	DLD	$\mathbf{S}_{1}$	$\mid$	$\mathbf{S}_{2}$	$\neq 0$	$\mathbf{S}_{1}$	$\mid$	$\mathbf{S}_{2}$	$=0$
217	LD $^{\wedge}$	DLD $^{\wedge}$	$\mathbf{S}_{1}$	$\wedge$	$\mathbf{S}_{2}$	$\neq 0$	$\mathbf{S}_{1}$	$\wedge$	$\mathbf{S}_{2}$	$=0$

\&: logical AND operation.
|: logical OR operation.
^: logical XOR operation.

## Example

- When you compare the contents of C 0 and C 10 with the logical AND operation, and the result is not equal to 0 , then $\mathrm{Y} 10=\mathrm{ON}$.
- When you compare the content of D200 and D300 with the logical OR operation, and the result is not equal to 0 , and $\mathrm{X} 1=\mathrm{ON}$, then $\mathrm{Y} 11=\mathrm{ON}$ and remains in that state.



		ev					ord	evic				16-bit co	mand (5 ST		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	AND\#	Continuous	-	-
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: \#,:, \& , \|, ^   Refer to the function specifications table for each device in series for the scope of device usage.												DAND\#	Continuous execution type	-	-
												Flag signal: none			

Explanation

- $\quad \mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2.
- This command compares the contents of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$. When the result of comparison is not 0 , this command activates; when the result of comparison is 0 , this command does not activate.
- The AND\# command is an operation command in series with the contact.

API No.	16 -bit   commands	32 -bit   commands	Conditions for   activation				Conditions for   inactivation				
218	AND\&	DAND\&	$\mathbf{S}_{1}$	$\&$	$\mathbf{S}_{\mathbf{2}}$	$\neq 0$	$\mathbf{S}_{1}$	$\&$	$\mathbf{S}_{2}$	$=0$	
219	AND	DAND $\mid$	$\mathbf{S}_{1}$	\|	$\mathbf{S}_{2}$	$\neq 0$	$\mathbf{S}_{1}$	\|	$\mathbf{S}_{2}$	$=0$	
220	AND^ $^{\wedge}$	DAND^ $^{\wedge}$	$\mathbf{S}_{1}$	$\wedge$	$\mathbf{S}_{2}$	$\neq 0$	$\mathbf{S}_{1}$	$\wedge$	$\mathbf{S}_{2}$	$=0$	

\&: logical AND operation.
|: logical OR operation.
$\wedge$ : logical XOR operation.

Example

- When $\mathrm{X} 0=\mathrm{ON}$ and you compare the contents of CO and C 10 with the logical AND operation, and the result is not equal to 0 , then $\mathrm{Y} 10=\mathrm{ON}$.
- When X1=OFF and you compare the contents D10 and D0 with the logical OR operation, and the result is not equal to 0 , then $\mathrm{Y} 11=\mathrm{ON}$ and remains in that state.
- When X2 =ON and compare the contents of the 32-bit register D200 (D201) and the 32-bit register D100 (D101) with the logical XOR operation, and the result is not equal to 0 or $\mathrm{M} 3=\mathrm{ON}$, then $\mathrm{M} 50=\mathrm{ON}$.


API   $221-$   223	D OR\#		S1	S2	Contact form logical operation OR\#


	bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S 1				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$
S 2				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$

Notes on operand usage: \#: \& |, ^
Refer to the function specifications table for each device in series for the scope of device usage.

16-bit command (5 STEP)		
OR\#	Continuous   execution type	-
32-bit command (9 STEP)	-	
DOR\#	Continuous   execution type	-

Flag signal: none

Explanation

- $\mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2.
- This command compares the contents of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$. When the result of comparison is not 0 , this command activates; when the result of comparison is 0 , this command does not activate.
- The OR\# command is an operation command in series with the contact.

API No.	16 -bit   commands	32-bit   commands	Conditions for   activation				Conditions for   inactivation				
221	OR\&	DOR\&	$\mathbf{S}_{1}$	$\&$	$\mathbf{S}_{2}$	$\neq 0$	$\mathbf{S}_{1}$	$\&$	$\mathbf{S}_{2}$	$=0$	
222	OR	DOR	$\mathbf{S}_{1}$	\|	$\mathbf{S}_{2}$	$\neq 0$	$\mathbf{S}_{1}$	\|	$\mathbf{S}_{2}$	$=0$	
223	OR^ $^{\wedge}$	DOR $^{\wedge}$	$\mathbf{S}_{1}$	$\wedge$	$\mathbf{S}_{2}$	$\neq 0$	$\mathbf{S}_{1}$	$\wedge$	$\mathbf{S}_{2}$	$=0$	

\&: logical AND operation.
|: logical OR operation.
^: logical XOR operation.

## Example

- When $\mathrm{X} 1=\mathrm{ON}$ and you compare the contents of C 0 and C 10 with the logical AND operation, and the result is not equal to 0 , then $\mathrm{Y} 0=\mathrm{ON}$.
- When X2 and M30 are both equal to ON, or you compare the contents of the 32-bit register D10 (D11) and the 32-bit register D20 (D21) with the logical OR operation, and the result is not equal to 0 , or you compare the contents of the 32-bit counter C235 and the 32-bit register D200 (D201) with the logical XOR operation, and the result is not equal to 0 , then $\mathrm{M} 60=\mathrm{ON}$.



		ev					Vord	devic				16-bit c	mand (5 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	LD\%	Continuous	-	-
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: $※,:,=,>,<,<>, \leq, \geq$ Refer to the function specifications table for each device in series for the scope of device usage.												DLD\%	Continuous execution type	-	-
												Flag signal: none			

Explanation

- $\quad \mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2.
- This command compares the contents of $\mathbf{S}_{1}$ and $\mathbf{S}_{\mathbf{2}}$. Taking API 224 (LD=) as an example, this command activates when the result of comparison is "equal", and does not activate when the result is "unequal".
- You can use the LD* directly to connect with the busbar.

API No.	16-bit commands	32-bit commands	Conditions for   activation	Conditions for   inactivation
224	LD $=$	DLD $=$	$\mathbf{S}_{1}=\mathbf{S}_{2}$	$\mathbf{S}_{1} \neq \mathbf{S}_{2}$
225	LD <	DLD $<$	$\mathbf{S}_{1}<\mathbf{S}_{2}$	$\mathbf{S}_{1} \leq \mathbf{S}_{2}$
226	LD $>$	DLD $>$	$\mathbf{S}_{1}>\mathbf{S}_{2}$	$\mathbf{S}_{1} \geq \mathbf{S}_{2}$
228	LD < >	DLD $<>$	$\mathbf{S}_{1} \neq \mathbf{S}_{2}$	$\mathbf{S}_{1}=\mathbf{S}_{2}$
229	LD $=>$	DLD $=>$	$\mathbf{S}_{1} \leq \mathbf{S}_{2}$	$\mathbf{S}_{1}<\mathbf{S}_{2}$
230	LD $=<$	DLD $=<$	$\mathbf{S}_{1} \geq \mathbf{S}_{2}$	$\mathbf{S}_{1}>\mathbf{S}_{2}$

Example
When the content of C 10 is equal to K 200 , then $\mathrm{Y} 10=\mathrm{ON}$.
When the content of D200 is greater than $\mathrm{K}-30$, and $\mathrm{X} 1=\mathrm{ON}$, then $\mathrm{Y} 11=\mathrm{ON}$ and remains in that state.


API   $232-$   238	D AND				Contact form compare AND*


	bit device				Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	
S 1				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	
S 2				$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$	

Notes on operand usage: $※,:,=,>,<,<>, \leq, \geq$
Refer to the function specifications table for each device in series for the scope of device usage.

16-bit command (5 STEP)			
AND※	Continuous execution type	-	-
32-bit command (9 STEP)			
DAND※	Continuous execution type	-	-

Flag signal: none

Explanation

- $\quad \mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2.
- This command compares the contents of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$. Taking API 232 (AND=) as an example, when the result of comparison is "equal", this command activates; when the result of comparison is "unequal", this command does not activate.
- The AND* command is a comparison command in series with a contact.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
232	AND $=$	DAND =	$\mathbf{S}_{1}=\mathbf{S}_{2}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
233	AND <	DAND <	$\mathbf{S}_{1}<\mathbf{S}_{2}$	$\mathbf{S}_{1} \leq \mathrm{S}_{2}$
234	AND >	DAND>	$\mathrm{S}_{1}>\mathrm{S}_{2}$	$\mathrm{S}_{1} \geq \mathrm{S}_{2}$
236	AND < >	DAND < >	$\mathbf{S}_{1} \neq \mathbf{S}_{2}$	$\mathbf{S}_{1}=\mathbf{S}_{2}$
237	AND $=>$	DAND = >	$\mathrm{S}_{1} \leq \mathrm{S}_{2}$	$\mathrm{S}_{1}<\mathrm{S}_{2}$
238	AND $=<$	DAND $=$ <	$\mathbf{S}_{1} \geq \mathbf{S}_{2}$	$\mathrm{S}_{1}>\mathrm{S}_{2}$

## Example

- When $\mathrm{X} 0=\mathrm{ON}$ and the current value of C 10 is also equal to K 200 , then $\mathrm{Y} 10=\mathrm{ON}$.
- When $\mathrm{X} 1=O F F$ and the content of register D0 is not equal to $\mathrm{K}-10$, then $\mathrm{Y} 11=\mathrm{ON}$ and remains in that state.
- When $\mathrm{X} 2=\mathrm{ON}$ and the content of the 32-bit register D0 (D11) is less than 678,493 , or $\mathrm{M} 3=\mathrm{ON}$, then $\mathrm{M} 50=\mathrm{ON}$.



		dev					ord	devic				16-bit co	mand (5 ST		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	OR※	Continuous	-	-
S1				*	*	*	*	*	*	*	*		execution type		
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)			
Notes on operand usage: $※,:,=,>,<,<>, \leq, \geq$ Refer to the function specifications table for each device in series for the scope of device usage.												DOR\%	Continuous execution type	-	-
												Flag signal: none			

Explanation

- $\quad \mathbf{S}_{1}$ : data source device $1 . \mathbf{S}_{2}$ : data source device 2.
- This command compares the contents of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$. Taking API 240 (OR=) as an example, when the result of comparison is "equal", this command activates; when the result of comparison is "unequal", this command does not activate.
- The OR* command is a comparison command in parallel with a contact.

API No.	16-bit commands	32-bit commands	Conditions for   activation	Conditions for   inactivation
240	OR $=$	DOR $=$	$\mathbf{S}_{1}=\mathbf{S}_{2}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{2}$
241	OR $<$	DOR $<$	$\mathbf{S}_{1}<\mathbf{S}_{2}$	$\mathbf{S}_{1} \leq \mathbf{S}_{2}$
242	OR $>$	DOR $>$	$\mathbf{S}_{1}>\mathbf{S}_{2}$	$\mathbf{S}_{1} \geq \mathbf{S}_{2}$
244	OR < $>$	DOR $<>$	$\mathbf{S}_{1} \neq \mathbf{S}_{2}$	$\mathbf{S}_{1}=\mathbf{S}_{2}$
245	OR $=>$	DOR $=>$	$\mathbf{S}_{1} \leq \mathbf{S}_{2}$	$\mathbf{S}_{1}<\mathbf{S}_{2}$
246	OR $=<$	DOR $=<$	$\mathbf{S}_{1} \geq \mathbf{S}_{2}$	$\mathbf{S}_{1}>\mathbf{S}_{2}$

## Example

- When $\mathrm{X} 0=\mathrm{ON}$ and the current value of C 10 is also equal to K 200 , then $\mathrm{Y} 10=\mathrm{ON}$.
- When $\mathrm{X} 1=\mathrm{OFF}$ and the content of register D0 is not equal to $\mathrm{K}-10$, then $\mathrm{Y} 11=\mathrm{ON}$ and remains in that state.
- When $\mathrm{X} 2=\mathrm{ON}$ and the content of the 32-bit register D0 (D11) is less than 678,493 , or $\mathrm{M} 3=\mathrm{ON}$, then $\mathrm{M} 50=\mathrm{ON}$.


API   $275-$   280	$\square$	FLD $\%$	$\square$	S1 S2


	bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S									$*$	$*$	$*$
S2									$*$	$*$	$*$

Notes on operand usage: ※, : =, >, <, <>, $\leq, \geq$
Refer to the function specifications table for each device in series for the scope of device usage.

16-bit command							
-	-	-	$	$	32-bit command (9 STEP)		
:---:	:---:	:---:					
FLD*	Continuous   execution type	-					

Flag signal: none

Explanation - $\mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2.

- This command compares the contents of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$. Taking "FLD=" as an example, if the result of comparison is "equal", this command activates; but it does not activate when the result is "unequal".
- The FLD* command can directly input floating point numbers (for instance: F1.2) to the $\mathbf{S}_{1}$ and $\mathbf{S}_{\mathbf{2}}$ operands, or store the floating point numbers in register D for use in operations.
- You can use this command directly to connect with the busbar.

API No.	32-bit commands	Conditions for   activation	Conditions for   inactivation
275	FLD $=$	$\mathbf{S}_{1}=\mathbf{S}_{2}$	$\mathbf{S}_{1} \neq \mathbf{S}_{2}$
276	FLD $<$	$\mathbf{S}_{1}<\mathbf{S}_{2}$	$\mathbf{S}_{1} \leq \mathbf{S}_{2}$
277	FLD $>$	$\mathbf{S}_{1}>\mathbf{S}_{2}$	$\mathbf{S}_{1} \geq \mathbf{S}_{\mathbf{2}}$
278	FLD $<>$	$\mathbf{S}_{1} \neq \mathbf{S}_{2}$	$\mathbf{S}_{1}=\mathbf{S}_{2}$
279	FLD $=>$	$\mathbf{S}_{1} \leq \mathbf{S}_{2}$	$\mathbf{S}_{1}<\mathbf{S}_{2}$
280	FLD $=<$	$\mathbf{S}_{1} \geq \mathbf{S}_{2}$	$\mathbf{S}_{1}>\mathbf{S}_{\mathbf{2}}$

Example

- When the floating point number in register D200 (D201) is less than or equal to F1.2, and X 1 is activated, then contact Y21 activates and remains in that state.



	bit device			Word device								16-bit com	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	-	-	-	-
S1									*	*	*	32-bit command (9 STEP)			
S2									*	*	*				
Notes on operand usage: $※,:,=,>,<,<>, \leq, \geq$ Refer to the function specifications table for each device in series for the scope of device usage.												FAND※ Continuous   execution type		-	-
												Flag signal: none			

Explanation $\quad \mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2.

- This command compares the contents of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$. Taking "FAND=" as an example, if the result of comparison is "equal", this command activates; but it does not activate when the result is "unequal".
- The FAND* command can directly input floating point numbers (for instance: F 1.2 ) to the $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ operands, or store floating point numbers in register D for use in operations.
- You can use this command directly to connect with the busbar.

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
281	FAND $=$	$\mathbf{S}_{1}=\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}$
282	FAND >	$\mathbf{S}_{1}<\mathbf{S}_{2}$	$\mathbf{S}_{1} \leq \mathrm{S}_{2}$
283	FAND <	$\mathrm{S}_{1}>\mathrm{S}_{2}$	$\mathrm{S}_{1} \geq \mathrm{S}_{2}$
284	FAND < >	$\mathbf{S}_{1} \neq \mathbf{S}_{2}$	$\mathrm{S}_{1}=\mathbf{S}_{\mathbf{2}}$
285	FAND < =	$\mathbf{S}_{1} \leq \mathrm{S}_{2}$	$\mathbf{S}_{1}<\mathbf{S}_{2}$
286	FAND > =	$\mathrm{S}_{1} \geq \mathrm{S}_{2}$	$S_{1}>S_{2}$

Example
When X1=OFF, and the floating point number in register D100 (D101) is not equal to F 1.2 , then $\mathrm{Y} 21=\mathrm{ON}$ and remains in that state.


| API <br> $287-$ <br> 292 | $\square$ | FOR※ |  | S1 S2 |
| :---: | :---: | :---: | :---: | :--- | Floating point number contact form compare OR*



16-bit command			
-	-	-	-
32-bit command (9 STEP)			
FOR\%	Continuous execution type	-	-

Refer to the function specifications table for each device in series for the scope of device usage.

Flag signal: none
Explanation

- $\quad \mathbf{S}_{1}$ : data source device 1. $\mathbf{S}_{2}$ : data source device 2.
- This command compares the contents of $\mathbf{S}_{1}$ and $\mathbf{S}_{2}$. Taking "FOR=" as an example, if the result of comparison is "equal", this command activates; but it does not activate when the result is "unequal".
- The FOR* command can directly input floating point numbers (for instance: F1.2) to the $\mathbf{S}_{\mathbf{1}}$ and $\mathbf{S}_{\mathbf{2}}$ operands, or store floating point numbers in register D for use in operations.
- You can use this command directly to connect with the busbar.

API No.	32-bit commands	Conditions for   activation	Conditions for   inactivation
287	FOR $=$	$\mathbf{S}_{1}=\mathbf{S}_{2}$	$\mathbf{S}_{1} \neq \mathbf{S}_{2}$
288	FOR $<$	$\mathbf{S}_{1}<\mathbf{S}_{2}$	$\mathbf{S}_{1} \leq \mathbf{S}_{2}$
289	FOR $>$	$\mathbf{S}_{1}>\mathbf{S}_{2}$	$\mathbf{S}_{1} \geq \mathbf{S}_{\mathbf{2}}$
290	FOR $<>$	$\mathbf{S}_{1} \neq \mathbf{S}_{2}$	$\mathbf{S}_{1}=\mathbf{S}_{2}$
291	FOR $=>$	$\mathbf{S}_{1} \leq \mathbf{S}_{2}$	$\mathbf{S}_{1}<\mathbf{S}_{2}$
292	FOR $=<$	$\mathbf{S}_{1} \geq \mathbf{S}_{2}$	$\mathbf{S}_{1}>\mathbf{S}_{2}$

## Example

- When X2 and M30 are both equal to ON, or the floating point number in register D 100 (D101) is greater than or equal to F 1.234 , then $\mathrm{M} 60=\mathrm{ON}$.


16-6-5 Detailed explanation of drive special application commands

API	RPR	P	(S1) ${ }^{\text {S2 }}$	Read servo parameter


		dev					Vord	devic				16-bit	nand (5 STE		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D		Continuous		Pulse
S1				*	*						*	RPR	execution type	RPRP	execution type
S2											*	32-bit command			
Notes on operand usage: none															
												Flag sign	al: none		

Explanation - $\mathbf{S}_{1}$ : Parameter address of data to be read. $\mathbf{S}_{2}$ : Register where data that is read is stored.

API	WPR		S1	S2	Write servo parameter
140					


	bit device			Word device							
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D
S1				*	*						*
S2				*	*						*

Notes on operand usage: none

16-bit command (5 STEP)			
WPR	Continuous execution type	WPRP	Pulse execution type
32-bit command			
-	-	-	-
Flag signal: M1017 parameter written successfully.			

Explanation

- $\quad \mathbf{S}_{1}$ : Data to write to specified page. $\mathbf{S}_{2}$ : Parameter address of data to be written.

Example

- When the data in the MH300 drive's parameter H01.00 is read and written to D0, data from H01.01 is read and written to D1.
- When M0 $=$ ON, the content of D10 is written to the MH300 drive Pr. 04.00 (first speed of multiple speed levels).
- When M1017=ON, the parameter has been written successfully.
- The MH300's WPR command does not support writing to the 20XX address, but the RPR command supports reading of $21 \mathrm{XX}, 22 \mathrm{XX}$.


Recommendation Be cautious when using the WPR command. When writing parameters, most parameters are recorded when they are written, and these parameters may only be revised $10^{9}$ times: a memory write error may occur if parameters are written more than (MS) $10^{6}$ or (MH) $10^{9}$ times.

The number of times a parameter is written is based on whether the written value is modified. For instance, writing the same value 100 times at the same time counts as writing only once.

The following commonly-used parameters have special treatment, so there are no limits for the number of times that they can be written.

Pr. 00-10: Control method
Pr. 00-11: Speed mode selection
Pr. 00-13: Torque mode select
Pr. 00-27: User-defined value
Pr. 01-12: Acceleration time 1
Pr. 01-13: Deceleration time 1
Pr. 01-14: Acceleration time 2
Pr. 01-15: Deceleration time 2
Pr. 01-16: Acceleration time 3
Pr. 01-17: Deceleration time 3
Pr. 01-18: Acceleration time 4
Pr. 01-19: Deceleration time 4
Pr. 02-12: Select MI Conversion Time mode:
Pr. 02-18: Select MO Conversion Time mode:
Pr. 04-50-Pr. 04-69: PLC register parameter 0-19
Pr. 08-04: Upper limit of integral
Pr. 08-05: PID output upper limit
Pr. 10-17: Electronic gear A
Pr. 10-18: Electronic gear B
Pr. 11-34: Torque command


		de					Vord	devic				16-bit com	mand		
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	FPID	Contin	FPIDP	Pulse
S1				*	*						*	FPID	executi	FPIDP	execution type
S2				*	*						* 32-bit command				
S3				*	*										
S4				*	*						*	Flag signal: none			
Notes on operand usage: none															

Explanation

- $\quad \mathbf{S}_{1}$ : PID reference target value input terminal selection. $\mathbf{S}_{2}$ : PID function proportional gain P. $\mathbf{S}_{3}$ : PID function integral time $\mathrm{I} . \mathbf{S}_{4}$ : PID function differential time D.
- The FPID command can directly control the drive's PID feedback control Pr.0800 Terminal Selection of PID Feedback, Pr.08-01 Proportional Gain (P), Pr.08-02 Integral Time (I), and Pr.08-03 Differential Time (D).
- When $\mathrm{MO}=\mathrm{ON}$, the set PID reference target value input terminal selection is 0 (no PID function), the PID function proportional gain $P$ is 0 , the PID function integral time I is 1 (units: 0.01 sec .), and the PID function differential time $D$ is 1 (units: 0.01 sec .).
- When $\mathrm{M} 1=\mathrm{ON}$, the set PID reference target value input terminal selection is 0 (no PID function), the PID function proportional gain $P$ is 1 (units: 0.01 ), the PID function integral time I is 0 , and the PID function differential time $D$ is 0 .
- When $\mathrm{M} 2=\mathrm{ON}$, the set PID reference target value input terminal selection is 1 (target frequency input is controlled through the digital keypad), the PID function proportional gain P is 1 (units: 0.01 ), the PID function integral time I is 0 , and the PID function differential time D is 0 .
- D1027: Frequency command after PID operation.


API	$\square$	FREQ		S1
	$\mathbf{P}$	S2 S3	Drive speed control mode	


	bit device				Word device								
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D		
S1				$*$	$*$						$*$		
S2				$*$	$*$						$*$		
S3				$*$	$*$						$*$		


16-bit command (7 STEP)     FREQ Continuous   execution type FREQP				Pulse   execution type
32-bit command - -   - - -				
Flag signal: M1015				

Explanation

## Example

- M1025: Drive RUN (ON)/STOP (OFF), M1026: drive operating direction FWD (OFF)/REV (ON). M1015: frequency reached.
- When M10=ON, sets the drive frequency command K300 $(3.00 \mathrm{~Hz})$ with an acceleration and deceleration time of 0 .
When M11=ON, sets the drive frequency command K3000 ( 30.00 Hz ), with an acceleration time of 50 ( 0.5 sec .) and deceleration time of 60 ( 0.6 sec .) (when Pr.01-45=0).
- When M11=OFF, the drive frequency command changes to 0 .

- Parameters Pr.09-33 are defined on the basis of whether reference commands have been cleared before the PLC operation.
bit 0: Prior to PLC scanning procedures, acts on whether the target frequency has been cleared to 0 . This is written to the FREQ command when the PLC is On.
bit 1: Prior to PLC scanning procedures, acts on whether the target torque has been cleared to 0 . This is written to the TORQ command when the PLC is On.
bit 2: Prior to PLC scanning procedures, acts on whether speed limits in the torque mode have been cleared to 0 . This is written to the TORQ command when the PLC is On.

Example: When using $r$ to write a program,


If we force M0 to 1 , the frequency command is 20.00 Hz ; but when M 0 is set to 0 , there is a different situation.
Case 1: When the Pr.09-33 bit 0 is 0 , and M0 is set as 0 , then the frequency command remains at 20.00 Hz .
Case 2: When the Pr.09-33 bit 0 is 1 , and M0 is set as 0 , then the frequency command changes to 0.00 Hz

This is because when Pr.09-33 bit 0 is 1 prior to PLC scanning procedures, the frequency first reverts to 0 . When Pr.09-33 bit 0 is 0 , the frequency does not revert to 0 .


	Bit device			Word device								16-bit command (5 STEP)			
	X	Y	M	K	H	KnX	KnY	KnM	T	C	D	TORQ	Continuous	TORQ P	Pulse
S1				*	+						*		execution type		execution type
S2				*	*						*	32-bit command			
Notes on operand usage: none															

Explanation - S1: Torque command (numbered, no more than one digit). S2: Speed limit.

- The TORQ command can control the drive torque command and speed limits; it also uses special register control actions, such as:
M1040: Controls Servo On/Servo Off. When Servo is ON, if a TORQ command is executed, the torque will output the torque defined by the TORQ command, and the frequency restrictions will similarly be controlled by the TORQ command.


## Example

- M1040: Control Servo On/Servo Off. M1063: set torque attained. D1060 is the mode controls. D1053 is the actual torque.
- When M0=Off, set the drive torque command $\mathrm{K}+500$ (+50.0\%), rotational speed restrictions is $3000(30 \mathrm{~Hz})$.
- When $\mathrm{MO}=\mathrm{On}$, sets the drive torque command $\mathrm{K}-300$ (-30.0\%), rotational speed restrictions is $3000(30 \mathrm{~Hz})$.
- When M10=On, drive began output torque command.
- When set torque is attained, M1063 will go On; this flag usually jumps continuously, however.

- Pr. 09-33 are defined on the basis of whether reference commands have been cleared before PLC operation.
bit0: Prior to PLC scanning procedures, whether the target frequency has been cleared is 0 . (This will be written to the FREQ command when the PLC is On)
bit1: Prior to PLC scanning procedures, whether the target torque has been cleared is 0 . (This will be written to the TORQ command when the PLC is On)
bit2: Prior to PLC scanning procedures, whether speed limits in the torque mode have been cleared is 0 . (This will be written to the TORQ command when the PLC is On)

Example:


If we now force M 1 to be 1 , the torque command will be $\mathrm{K}+300$ (+30\%), and the speed limit will be $400(40 \mathrm{~Hz})$. But when M1 is set as 0 , there will be a different situation.
Case 1: When bit 1 and bit 2 of Pr. 09-33 are both set as 0 , and M 1 is set as 0 , the torque command will remain at $+30 \%$, and the speed limit will be set as 40 Hz .
Case 2: When bit 2 of Pr. 09-33 are both 1, and M1 is set as 0, the torque command will revert $0 \%$, and the speed limit will be set as 0 Hz .

## 16-7 Display and Treatment of PLC Related Faults and Codes

Code	ID*	Description	Recommended error resolution
PLod	50	The addresses in program exceed the range during PLC downloading. For example, T only supports T0T159, however, if you use T160, PLod warning shows during PLC downloading.	Check whether the program has an error, correct it and download the program again.
PLSv	51	The program detects incorrect written address during PLC operation, then PLSv warning occurs.	Check if the program is correct and download the program again.
PLdA	52	The program detects incorrect read / written address from Modbus during PLC operation, then PLdA warning occurs.	Check if the command that the host controller transmits is correct.
PLFn	53	When unsupported commands are found during PLC downloading, then PLFn warning shows.	Check if the firmware of the drive is the old version. If yes, please contact Delta.
PLor	54	When internal program code errors are detected during PLC operation, then PLor warning shows.	1. Disable PLC function   2. Clear PLC program (set Pr.00-02 = 6)   3. Enable PLC function   4. Download PLC program again
PLFF	55	When the corresponding command that PLC executes is unreasonable during PLC operation, then PLFF warning shows.	When PLC function is enabled and there is no program in the internal PLC program, then PLFF warning shows. This is a normal situation. You can download the program directly.
PLSn	56	Checksum error occurs during PLC operation.	1. Disable PLC function   2. Clear PLC program (set Pr.00-02 = 6)   3. Enable PLC function   4. Download PLC program again
PLEd	57	No END command during PLC operation.	1. Disable PLC function   2. Clear PLC program (set Pr.00-02 = 6)   3. Enable PLC function   4. Download PLC program again
PLCr	58	MC command has been used continuously more than nine times.	Cannot continuously use MC command more than nine times. Check whether the program has an error and download the program again.
PLdF	59	Forced to stop during PLC downloading and causes incomplete writing.	Check whether the program has an error and download again.
PLSF	60	PLC scan time excessively long	Check whether the program code has a writing error and download again.

[^2]
## 16-8 Explanation of Each PLC Mode Control (Speed, Torque)

Torque mode must be based on FOC vector control, and speed mode can also support FOC vector control. So for torque mode or FOC-based speed mode, you must complete the motor parameter auto-tuning in advance; otherwise, the control cannot be completed.

In addition, there are two types of motors: IM and PM. The IM motor only needs to perform motor parameter auto-tuning, while PM motor must complete auto-tuning of the motor origin offset angle after the motor parameter auto-tuning is complete. Refer to Pr.05-00 for details.
※ If the PM motor is one of the Delta ECMA series, you can directly input the motor parameters according to the servo motor catalog. There is no need to perform motor parameter auto-tuning.

## Speed control:

Register table for speed mode:
Control special M

Special M	Function Description	Attributes
M1025	Drive frequency = set frequency (ON) / drive frequency = 0 (OFF)	RW
M1026	Drive operating direction FWD (OFF) / REV (ON)	RW
M1040	Hardware power (Servo On)	RW
M1042	Quick Stop	RW
M1044	Pause (Halt)	RW
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW

Status special M

Special M	Function Description	Attributes
M1015	Frequency reached (when used with M1025)	RO
M1056	Hardware already has power (Servo On Ready)	RO
M1058	On Quick Stopping	RO

Control special D

Special D	Function Description	Attributes
D1060	Operation mode setting (speed mode is 0)	RW

Status special D

Special D	Function Description	Attributes
D1037	Drive output frequency $(0.00-599.00 \mathrm{~Hz})$	RO
D1050	Actual operation mode (speed mode is 0$)$	RO

Speed mode control commands:

## FREQ(P)

S1
S2
S3
Target speed The first acceleration time setting The first deceleration time setting

Example of speed mode control:
Before using speed control, if you use the FOC (magnetic field orientation) control method, you must first complete the setting of the electro-mechanical parameters.

1. Setting D1060 $=0$ shifts the drive to speed mode (default).
2. Use the FREQ command to control frequency, acceleration time, and deceleration time.
3. Setting M1040 $=1$, the drive is now excited, but the frequency is 0 .
4. Setting $\mathrm{M} 1025=1$, the drive Frequency command now jumps to the frequency designated by FREQ, and acceleration and deceleration is controlled on the basis of the acceleration time and deceleration time specified by FREQ.
5. Use M1052 to lock the current operation frequency.
6. Use M1044 to temporarily pause the operation, and the deceleration method uses the deceleration settings.
7. Use M1042 to perform Quick Stop, and deceleration is as fast as possible without causing an error. There may still be a jump error if the load is too large.
8. Control user rights: M1040 (Servo On) > M1042 (Quick Stop) > M1044 (Halt) > M1052 (LOCK)


## Torque control:

Register table for torque mode:
Control special M

Special M	Function Description	Attributes
M1040	Hardware power (Servo On)	RW

Status special M

Special M	Function Description	Attributes
M1056	Hardware already has power (Servo On ready)	RO
M1063	Torque reached	RO

Control special D

Special D	Function Description	Attributes
D1060	Operation mode setting (torque mode is 2)	RW

## Status special D

Special D	Function Description	Attributes
D1050	Actual operation mode (torque mode is 2)	RO
D1053	Actual torque	RO

Torque mode control commands:

## TORQ(P) <br> S1

Target torque (with numbers)

S2
Frequency restrictions

## Example of torque mode control:

You must complete the setting of the electro-mechanical parameters involved in torque control before using torque control.

1. Set D1060 $=2$ to change to torque mode.
2. Use the TORQ command to implement torque control and the speed limits.
3. Set $\mathrm{M} 1040=1$; the drive is now excited, and immediately jumps to the target torque or speed limit. Use D1053 to find the current torque.


## 16-9 Count Function Using Pulse Input

## 16-9-1 High-speed count function

The MH300's MI7 supports one-way pulse counting, or you can use MI6+MI7 to support AB-phase two-way pulse counting, with a maximum speed of 33 k . The starting method is very simple, and only requires setting M1038 to begin counting. The 32 bit count value is stored in D1054 and D1055 in non-numerical form. M1039 resets the count value to 0 .

Take MI7 one-way pulse input as an example:


NOTE: When the PLC program defines MI7 for use as a high-speed counter, that is when M1038 or M1039 is written in PLC procedures, the other functions of MI7 are disabled.

## 16-9-2 Frequency calculation function

Apart from high-speed counting, the MH300's MI7 (one-way pulse counting) or MI6+MI7 (AB-phase two-way pulse counting) can also convert a received pulse to a frequency. The following figure shows that there is no conflict between frequency conversion and count calculations, which the MH300 can perform simultaneously.

PLC speed calculation formula
D1057 Speed
D1058 Interval between calculations
D1059 Decimal places
Assume that there are five input pulses each second, (see figure below) we set D1058 = $1000 \mathrm{~ms}=$ 1.0 seconds as the calculation interval. This enables five pulses to be sent to the drive each second.


Assume that each five pulses correspond to 1 Hz , we set D1057 $=5$.
Setting D1059 $=2$ displays numbers to two decimal places, which is also 1.00 Hz . The numerical value displayed at D1056 is 100. For simplicity, the D1059 conversion formula can be expressed in the following formula:

D1056 $=(\text { Pulses per second } / \mathrm{D} 1057)^{*}(1000 /$ D1058 $) ~ *\left(10^{\wedge} \mathrm{D} 1059\right)$

## 16-10 CANopen Master control applications

Control of a simple multi-axis application is required in certain situations. If the device supports the CANopen protocol, a MH300 can serve as the master in implementing simple control (position, speed, homing, and torque control). The setting method comprises the following seven steps:

## Step 1: Activating CANopen Master functions

1.Pr. 09-45=1 (initiates Master functions); restart power after completing setting, the status bar on the KPC-CC01 digital keypad will display "CAN Master".
2.Pr. 00-02=6 reset PLC (please note that this action will reset the program and PLC registers to the default values)
3. Turn power off and on again.
4. Use the KPC-CC01 digital keypad to set the PLC control mode as "PLC 2" (if a newly-introduced drive is used, the blank internal PLC program will cause a PLFF warning code to be issued).

## Step 2: Master memory settings

1. After connecting the 485 communications cable, use WPL Soft to set the PLC status as Stop (if the PLC mode has been switched to the "PLC 2" mode, the PLC status should already be Stop)
2. Set the address and corresponding station number of the slave station to be controlled. For instance, if it is wished to control two slave stations (a maximum of 4 stations can be controlled simultaneously), and the station numbers are 21 and 22, it is only necessary to set D2000 and D2100 as 20 and 21, and then set D2200, D2300, D2400, D2500, D2600, and D2700 as 0 . The setting method involves use of the PLC's WPL editing software WPL as follows:

■ Open WPL and implement communications > register edit (T C D) function


- After leaving the PLC register window, the register setting screen will appear, as shown below:


If there is a new PLC program and no settings have been made yet, you can read default data from the converter, and merely edit it to suit the current application. If settings have already been made, however, the special $D$ in the CANopen area will display the saved status (the CANopen D area is located at D1090 to D1099 and D2000 to D2399). Assuming it is a new program, we will first read the default data from the converter; check the communications format if there is no communications link (the default PLC station number is 2 , 9600, 7N2, ASCII). Perform the following steps:

1. Switch the PLC to Stop status
2. Press the transmit button
3. Click on read memory after exiting the window
4. Ignore D0-D399
5. Click on the confirm button.


After reading the data, it is necessary to perform some special D settings. Before proceeding, we will first introduce the special D implications and setting range.

The CANopen Master's special D range is currently D1070 to D1099 and D2000 to D2399; this range is divided into 3 blocks:

- The first block is used to display CANopen's current status, and has a range of D1070-D1089
- The second block is used for CANopen's basic settings, and has a range of D1090-D1099
- The third block is the slave station mapping and control area, and has a range of D2000D2399.

These areas are therefore introduced as follows:
The first contains the current CANopen status display:
When the master initializes a slave station, we can find out from D1070 whether configuration of the slave device has been completed; we can find out whether an error occurred in the configuration process from D1071 and whether the configuration is inappropriate from D1074. After entering normal control, we can find out whether the slave device is offline from D1073. In addition, we can check the slave device's read/write information using the CANRX, CANTX, and CANFLS commands; error information can be obtained from D1076 to D1079 if there has been a read/write failure.

Special D	Description of Function	$\mathrm{R} / \mathrm{W}$
D1070	Channel opened by CANopen initialization (bit0=Machine   code0 ......)	R
D1071	Error channel occurring in CANopen initialization process   (bit0=Machine code0 ......)	R
D1072	Reserved	-
D1073	CANopen break channel (bit0=Machine code0 ......)	R
D1074	Error code of master error   0: No error   1: Slave station setting error   2: Synchronizing cycle setting error (too small)	R
D1075	Reserved	-
D1076	SDO error message (main index value)	R
D1077	SDO error message (secondary index value)	R
D1078	SDO error message (error code L)	R
D1079	SDO error message (error code H)	R

The second area is for basic CANopen settings: (the PLC must have stopped when this area is used to make settings)
We must set the information exchange time for the master and slave station,

Special D	Description of Function	Default:	R/W
D1090	Synchronizing cycle setting	4	RW

Use D1090 to perform settings; setting time relationships include:

## Sync time $\geqslant \frac{1 \mathrm{M}}{\text { Rate }} * \frac{\mathrm{~N}}{4}$

## N: TXPDO + RXPDO

For instance, when communications speed is 500 K , TXPDO + RXPDO have 8 sets, and synchronizing time will require more than 4 ms

We must also define how many slave stations will be opened. D1091 is the channel for defining station opening, and D2000+100*n is the station number defining this channel. See the detailed explanation below.

Slave station number $\mathbf{n}=0-3$

Special D	Description of Function	R/W
D1091	Sets slave station On or Off (bit 0-bit 3 correspond to   slave stations number 0-3)	RW
D2000+100*n	Slave station number	RW



If slave devices have a slow start-up, the master can delay for a short time before performing slave station configuration; this time delay can be set via D1092.

Special D	Description of Function	Default	R/W
D1092	Delay before start of initialization	0	RW

With regard to slave device initialization, a delay time can be set to judge whether failure has occurred. If the communications speed is relatively slow, the delay time can be adjusted to judge whether initialization has been completed, which will ensure that there is time to perform slave device initialization.

Special D	Description of Function	Default	R/W
D1099	Initialization completion delay time   Setting range: 1 to 60000 sec.	15 sec.	RW

After communication is successful, the system must detect whether there is a break in communications with the slave station. D1093 is used to set detection time, and D1094 sets the number of consecutive errors that will trigger a break error.

Special D	Description of Function	Default	R/W
D1093	Break time detection	1000 ms	RW
D1094	Break number detection	3	RW

The packet type transmitted by PDO is set before establishing normal communications and generally does not require adjustment.

Special D	Description of Function	Default	R/W
D1097	Corresponding real-time transmission type   (PDO)   Setting range: $1-240$	1	RW
D1098	Corresponding real-time receiving type (PDO)   Setting range: $1-240$	1	RW

The third block is the slave station mapping and control area.

CANopen provides a PDO method to perform mapping of the master and slave station memory， and enables the master to directly access read／write data in a certain memory area．The master will automatically perform data exchange with the corresponding slave device，and the read／write values can be seen directly from the special D area after real－time exchange（M1034＝ 1 time） has been established．The MH300 currently supports real－time mapping of two PDOs，and there are two types of PDO RXPDO（reads slave device information）and TXPDO（writes to slave device）．In addition，in order to facilitate control，the MH300 cannot perform mapping of commonly－used registers；the following is an overview of the current PDO mapping situation：

TXPDO				RXPDO			
PDO2（Remote I／O）		PDO1（Speed）		PDO2（Remote I／O）		PDO1（Speed）	
Description	Special D						
Slave device   DO	D2027＋100＊n	Controller   word	D2008＋100＊n	Slave device   DI	D2026＋100＊n	Mode word	D2009＋100＊n
Slave device   AO1	D2031＋100＊n	Target speed	D2012＋100＊n	Slave device   Al1	D2028＋100＊n	Actual   frequency	D2013＋100＊n
從機 AO2	D2032＋100＊n			從機 AI2	D2029＋100＊n		
Slave device   AO2	D2033＋100＊n			Slave device   AI2	D2030＋100＊n		

Because usage requires only simple to open the corresponding PDO，where TXPDO employs D2034＋100＊n settings and RXPDO employs D2067＋100＊n settings．

These two special D areas are defined as follows：

	PDO2		PDO1	
Default   definition	Remote I／O		Speed	
bit	7	$6-4$	3	$2-0$
Definition	En	Length	En	Length

En：indicates whether PDO is used
Length：indicates mapping of several variables
In a simple example，if we want to control a MH300 slave device and make it to operate in speed mode，we only have to make the following settings：

D2034＋100＊n＝000Ah ：

Length：	TXPDO			
	PDO2（Remote I／O）		PDO1（Speed）	
	Description	Special D	Description	Special D
1	Slave device DO	D2027＋100＊n	Controller Word	D2008＋100＊n
2	Slave device AO1	D2031＋100＊n	Target speed	D2012＋100＊n
3	Slave device AO2	D2032＋100＊n		
4	Slave device AO3	D2033＋100＊n		


	PDO2		PDO1	
Definition	Remote I／O		Speed	
bit	7	$6-4$	3	$2-0$
Definition	0	0	1	2

D2067+100*n =000Ah :

Length:	TXPDO			
	PDO2 (Remote I/O)		Description	Special D
	Description	Special D	PDO1 (Speed)	
1	Slave device DI	D2026+100*n	Controller Word	D2009+100*n
2	Slave device AI1	D2028+100*n	Actual frequency	D2013+100*n
3	Slave device AI2	D2029+100*n		
4	Slave device AI3	D2030+100*n		


	PDO2		PDO1	
Definition	Remote I/O		Speed	
bit	7	$6-4$	3	$2-0$
Definition	0	0	1	2

Switch the PLC to Run after completing settings. Now wait for successful initialization of CANopen (M1059 = 1 and M1061 = 0), and then initiate CANopen memory mapping (M1034 = 1). The control word and frequency command will now automatically refresh to the corresponding slave device (D2008+n*100 and D2012+n*100), and the slave device's status word and currently frequency will also be automatically sent back to the master station (D2009+n*100 and D2013+n*100). This also illustrates how the master can handle these tasks through read/write operations in the special $D$ area.
Furthermore, it should be noted that the remote I/O of PDO2 can obtain the slave device's current DI and AI status, and can also control the slave device's DO and AO status. Nevertheless, after introducing a fully automatic mapping special D, the MH300 CANopen master also provides additional information refreshes. For instance, while in speed mode, acceleration/deceleration settings may have been refreshed. The special D therefore also stores some seldom-used real-time information, and these commands can be refreshed using the CANFLS command. The following is the MH300's current CANopen master data conversion area, which has a range of D2001+100*nD2033+100*n, as shown below:

1. The range of $n$ is $0-3$
2.     - Indicates PDOTX, $\Delta$ Indicates PDORX; unmarked special D can be refreshed using the CANFLS command

Special D	Description of Function	Default	PDO Default		R/W
			1	2	
D2000+100*n	Station number n of slave station   Setting range: 0-127   0 : No CANopen function	0			RW
D2002+100*n	Manufacturer code of slave station number $\mathrm{n}(\mathrm{L})$	0			R
D2003+100*n	Manufacturer code of slave station number $\mathrm{n}(\mathrm{H})$	0			R
D2004+100*n	Manufacturer's product code of slave station number $\mathrm{n}(\mathrm{L})$	0			R
D2005+100*n	Manufacturer's product code of slave station number $n(H)$	0			R

Basic definitions

Special D	Description of Function		Default	PDO Default	R/W
		1			
D2006+100*n	Communications break handling method of slave   station number n	0			RW
D2007+100*n	Error code of slave station number n error	0		R	
D2008+100*n	Control word of slave station number n	0	$\bullet$	RW	
D2009+100*n	Status word of slave station number n	0	$\mathbf{A}$	R	
D2010+100*n	Control mode of slave station number n	2		RW	
D2011+100*n	Actual mode of slave station number n	2		R	

## Velocity Control

Special D	Description of Function		Default	PDO Default	R/W
		1			
D2001+100*n	Torque restriction on slave station number n	0			RW
D2012+100*n	Target speed of slave station number n (rpm)	0	$\bullet$		RW
D2013+100*n	Actual speed of slave station number n (rpm)	0	$\mathbf{\Delta}$	R	
D2014+100*n	Error speed of slave station number n (rpm)	0			R
D2015+100*n	Acceleration time of slave station number n (ms)	1000			RW
D2016+100*n	Deceleration time of slave station number n (ms)	1000		RW	

Torque control

Special D	Description of Function	Default	PDO Default		R/W
			1	2	
D2017+100*n	Target torque of slave station number n $(-100.0 \%-+100.0 \%)$	0			RW
D2018+100*n	Actual torque of slave station number $\mathrm{n}(\mathrm{XX} . \mathrm{X} \%)$	0			R
D2019+100*n	Actual current of slave station number n(XX.XA)	0			R

Position control

Special D	Description of Function	Default	PDO Default		R/W
			1	2	
D2020+100*n	Target of slave station number n (L)	0			RW
D2021+100*n	Target of slave station number $\mathrm{n}(\mathrm{H})$	0	-		RW
D2022+100*n	Actual position of slave station number $\mathrm{n}(\mathrm{L})$	0			R
D2023+100*n	Actual position of slave station number $\mathrm{n}(\mathrm{H})$	0			R
D2024+100*n	Speed chart of slave station number $\mathrm{n}(\mathrm{L})$	10000			RW
D2025+100*n	Speed chart of slave station number $\mathrm{n}(\mathrm{H})$	0			RW

Remote I/O

Special D	Description of Function	Default	PDO Default		R/W
			1	2	
D2026+100*n	MI status of slave station number $n$	0		-	R
D2027+100*n	MO setting of slave station number n	0		$\bullet$	RW
D2028+100*n	Al1 status of slave station number $n$	0		$\Delta$	R
D2029+100*n	Al2 status of slave station number n	0		$\Delta$	R
D2030+100*n	Al3 status of slave station number n	0		-	R
D2031+100*n	AO1 setting of slave station number $n$	0		-	RW
D2032+100*n	AO2 setting of slave station number $n$	0		$\bullet$	RW
D2033+100*n	AO3 setting of slave station number $n$	0		-	RW

After gaining an understanding of special $D$ definitions, we return to setting steps. After entering the values corresponding to D1090 to D1099, D2000+100*n, D2034+100*n and D2067+100*n, we can begin to perform downloading, which is performed in accordance with the following steps:

1. D2000 and D2100 are set as 20 and 21, and D2200, D2300, D2400, D2500, D2600, and D2700 are set as 0 ; if a setting of 0 causes problems, D1091 can be set as 3 , and slave stations 2 to 3 can be closed.
2. Switch PLC to Stop status.
3. Press the transmit button.
4. Click on write memory after exiting the window.
5. Ignore D0-D399.
6. Change the second range to D1090-D1099.
7. Click on Confirm.


- Another method can be used to set D1091: Determine which of slave stations 0 to 3 will not be needed, and set the corresponding bits to 0 . For instance, if it is not necessary to control slave stations 1 and 3, merely set D1091 = 000A, and the setting method is the same as described above: Use WPL to initiate communications > use register edit (TCD) function to perform settings.

Step 3: Set the master's communications station number and communications speed
■ When setting the master's station number (Pr. 09-46, default is set as 100), make sure not to use the same number as a slave station.
$\boxtimes$ Set the CANopen communications speed (Pr. 09-37); regardless of whether the drive is defined as a master or slave station, the communications speed is set via this parameter.

## Step 4: Write program code

Real-time access: Can directly read / write to or from the corresponding D area.
Non real-time access:

- Read command: Use the CANRX command for reading. M1066 will be 1 when reading is completed; M1067 will be 1 if reading is successful, and M1067 will be 0 if an error has occurred.
- Write command: Use the CANTX command for writing. M1066 will be 1 when writing is completed; M1067 will be 1 if writing is successful, and M1067 will be 0 if an error has occurred.
- Refresh command: Use CANFLS command to refresh (if there are RW attributes, the master will write to the slave station; if there are RO attributes, the slave station will return the read values to the master); M1066 will be 1 if refresh has been completed; M1067 will be 1 if refresh is successful, and M 1067 will be 0 if an error has occurred.


## NOTE:

When using CANRX, CANTX or CANFLS, internal implementation commands will wait until M1066 is completed before executing the next CANRX, CANTX or CANFLS.
Afterwards, download program to the drive (Please note that the PLC's default communications format is ASCII 7N2 9600, and the station number is 2 . The WPL must therefore be modified, and the WPL setting pathway is settings >communications settings)

Step 5: Set the slave stations' station numbers, communications speed, control source, and command source

Delta's MH300 and MS300 series devices currently support the CANopen communications interface drive, and the corresponding slave station numbers and communications speed parameters are as follows:

	Corresponding device parameters		Value	Definition
	MH300	MS300		
Slave station address	09-36	09-36	,	Disable CANopen hardware interface
Slave station address	09-36	09-36	1-127	CANopen Communication address
Communication speed	09-37	09-37	0	1Mbps
			1	500Kbps
			2	250Kbps
			3	125Kbps
			4	100Kbps
			5	50Kbps
Control source	00-21	00-21	3	
	-	-	5	
Frequency source	00-20	00-20	6	
	-	-	5	
Torque source	11-33	11-33	3	
	-	-	-	
Position source	11-40	-	3	
	-	-	-	

Step 6: Connect hardware wiring
When performing wiring, note the head and tail terminal resistance; connection methods are as follows:

*1. Turn the terminal resistor setting switch SW to ON.
*2. Turn the terminal resistor setting switch SW to OFF.
*3. Turn the terminal resistor setting switch SW to ON.

Step 7: Initiate control
After a program has been written and downloaded, switch the PLC mode to Run. Merely turn power to master and slave stations off and then on again.

## 16-11 Modbus Remote IO Control Applications (use MODRW)

The MH300's internal PLC supports 485 read/write functions, which can be realized using the MODRW command. However, the 485 serial port must be defined as available for the PLC's 485 use before writing a program, and the Pr. 09-31 must be set as -12 . After completing settings, the standard functions defined by 485 can be used to implement read/write commands at other stations. Communications speed is defined by parameter 09-01, the communications format is defined by Pr. $09-04$, and the PLC's current station number is defined by Pr. 09-35. The MH300 currently supports the functions read coil ( $0 \times 01$ ), read input ( $0 \times 02$ ), read register ( $0 \times 03$ ), write to single register ( $0 \times 06$ ), write to several coils ( $0 \times 0 \mathrm{~F}$ ), and write to several registers ( $0 \times 10$ ). Explanations and the usage of these functions are provided as follows:

MODRW command					General meaning	Slave device is Delta's PLC meaning	Slave device is Delta's converter meaning
S1	S2	S3	S4	S5			
Node ID	Command	Address	Return: D area	Length			
K3	H01	H500	D0	K18	Read coil (bit)	Read 18 bits of data corresponding to slave station 3 PLC Y0 to Y21. This data is stored by bit 0 to 15 of the station's D0 and bit 0 to bit 3 of D1.	Does not support this function
K3	H02	H400	D10	K10	Read input (bit)	Read 10 bits of data corresponding to slave station 3 PLC X0 to X11. This data is stored by bit 0 to 9 of this station's D10.	Does not support this function
K3	H03	H600	D20	K3	Read register (word)	Read 3 words of data corresponding to slave station 3 PLC T0 to T2. This data is stored by D20 to D22.	Read 3 words of data corresponding to slave station 3 converter parameters 06-00 to 06-02. This data is stored by D20 to D22
K3	H06	H610	D30	XX	Write to single register (word)	Write slave station 3 PLC's T16 to this station's D30 value	Write slave station 3 converter 06 to 16 parameter to this station's D30 value
K3	H0F	H509	D40	K10	Write to multiple coils (Bit)	Write slave station 3 PLC's Y11 to Y22 to bit 0 to 9 of D40.	Does not support this function
K3	H10	H602	D50	K4	Write to multiple registers (word)	Write slave station 3 PLC's T2 to T5 to D50 to D53	Write slave station 3 converter 06-02 to 06-05 parameters to this station's D50 to D53

NOTE: XX means this can be ignored.
After implementing MODRW, the status will be displayed in M1077 (485 read/write complete), M1078 ( 485 read/write error), and M1079 ( $485 \mathrm{read} / \mathrm{write}$ time out). M1077 is defined so as to immediately revert to 0 after the MODRW command has been implemented. However, any of three situations-a report of no error, a data error report, or time out with no report-will cause the status of M1077 to change to On.

Example program: Testing of various functions
At the start, will cause the transmitted time sequence to switch to the first data unit.
0


When the reported message indicates no error, it will switch to the next transmitted command

6 |
If time out occurs or an error is reported, the M1077 will change to On. At this time, after a delay of 30 scanning cycles, it will re-issue the original command once


It will repeat after sending all commands


Practical applications:
Actual use to control the RTU-485 module.
Step 1: Set the communications format. Assume that the communications format is $115200,8, \mathrm{~N}, 2$,
RTU
MH300 : The default PLC station number is set as 2 (09-35)
Pr. 09-31=-12 (COM1 is controlled by the PLC), Pr. 09-01=115.2 (The communications speed is 115200)

Pr. 09-04=13 (The format is $8, \mathrm{~N}, 2$, RTU)

RTU-485: The station number = 8 (give example)


Communication station \#:
ID0~ ID7 are defined as $2^{0}, 2^{1}, 2^{2} \ldots 2^{6}, 2^{7}$

Communication protocol

PA3	PA2	PA1	PAO	A/R	Communication Protocol
OFF	OFF	OFF	OFF	ON	$7, \mathrm{E}, 1, \mathrm{ASCII}$
OFF	OFF	OFF	ON	ON	$7, \mathrm{Q}, 1, \mathrm{ASCII}$
OFF	OFF	ON	OFF	ON	$7, \mathrm{E}, 2, \mathrm{ASCII}$
OFF	OFF	ON	ON	ON	$7, \mathrm{O}, 2, \mathrm{ASCII}$
OFF	ON	OFF	OFF	ON	$7, \mathrm{~N}, 2, \mathrm{ASCII}$
OFF	ON	OFF	ON	ON	$8, \mathrm{E}, 1, \mathrm{ASCII}$
OFF	ON	ON	OFF	ON	$8, \mathrm{O}, 1, \mathrm{ASCII}$
OFF	ON	ON	ON	ON	$8, \mathrm{~N}, 1, \mathrm{ASCII}$
ON	OFF	OFF	OFF	ON	$8, \mathrm{~N}, 2, \mathrm{ASCII}$
OFF	ON	OFF	ON	OFF	$8, \mathrm{E}, 1, \mathrm{RTU}$
OFF	ON	ON	OFF	OFF	$8, \mathrm{O}, 1, \mathrm{RTU}$
OFF	ON	ON	ON	OFF	$8, \mathrm{~N}, 1, \mathrm{RTU}$
ON	OFF	OFF	OFF	OFF	$8, \mathrm{~N}, 2, \mathrm{RTU}$


DR2	DR1	DR0	Communicaton Speed
OFF	OFF	OFF	$1,200 \mathrm{bps}$
OFF	OFF	ON	$2,400 \mathrm{bps}$
OFF	ON	OFF	$4,800 \mathrm{bps}$
OFF	ON	ON	$9,600 \mathrm{bps}$
ON	OFF	OFF	$19,200 \mathrm{bps}$
ON	OFF	ON	$38,400 \mathrm{bps}$
ON	ON	OFF	$57,600 \mathrm{bps}$
ON	ON	ON	$115,200 \mathrm{bps}$

Step 2: Install control equipment. We sequentially connect a DVP16-SP (8 IN 8 OUT), DVP-04AD (4 channels AD), DVP02DA ( 2 channels DA), and DVP-08ST (8 switches) to the RTU-485.
The following corresponding locations can be obtained from the RTU-485's configuration definitions:

Module	Terminals	485 Address
DVP16-SP	X0-X7	$0400 \mathrm{H}-0407 \mathrm{H}$
	Y0-Y7	$0500 \mathrm{H}-0507 \mathrm{H}$
DVP-04AD	AD0-AD3	$1600 \mathrm{H}-1603 \mathrm{H}$
DVP02DA	DA0-DA1	$1640 \mathrm{H}-1641 \mathrm{H}$
DVP-08ST	Switch $0-7$	$0408 \mathrm{H}-040 \mathrm{FH}$

Step 3: Physical configuration


NOTE: Digital frequency signal common (Sink) can switch to SGND.

## Step 4: Write to PLC program



Chapter 16 PLC Function Applications | MH300


Step 5: Actual testing situation:
I/O testing: When the switch is activated, it can be discovered that the display corresponds to M115-M108.
Furthermore, it can be seen that one output point light is added every 1 sec . (the display uses a binary format)


AD DA testing: It can be discovered that D200 and D201 are roughly twice the D300, and continue to increase progressively. For their part, the D202 and D203 are roughly twice the D301, and continue to decrease progressively.


Monitor ADO ~ AD3 ( 0 ~ 8000)


Control Out $Y$


1s clock p
ulse, 0.5 s
Control DA Value ( 0 ~ 4000)


## Chapter 17 Safe Torque Off Function

17-1 Basic Function Description
17-2 Safe Torque Off Terminal Function Description
17-3 Wiring Diagram
17-4 Failure Rate of the Drive Safety Function
17-5 Reset the Parameter Settings
17-6 Timing Diagram Description
17-7 Fault Codes and Troubleshooting Instructions
17-8 Test and Fault Confirmation

## 17-1 Basic Function Description

The MH300 series provides a Safe Torque Off (STO) function. The MH300 series uses dual-channel S1 and S2 signal inputs to turn off IGBT switching, further preventing the generation of motor torque in order to achieve a safe stop. Refer to Figure 1 for the Safe Torque Off function circuit diagram.

The MH300 Safe Torque Off function meets the following international standards:

- ISO 13849-1: 2015 Category 3 PL d
- IEC 61508 SIL2
- EN 62061 SIL CL 2
- EN 60204-1 Category 0


Fig.17-1 The circuit diagram for the Safe Torque Off function

## 17-2 Safe Torque Off Terminal Function Description

STO (Safe Torque Off) related terminal functions are shown as Table 17-1.

Terminals	Terminal Function	Description
+24 V	When the STO function is not used, you can disable the STO function by shorting S1 and S2 with + 24 V .	Output voltage range: $+24 \mathrm{~V} \pm 10 \%$   Output voltage capacity: 100 mA
S1	Signal input for STO function channel 1	S1-DCM / S2-DCM $\begin{aligned} & \text { Rated input voltage: }+24 \mathrm{~V}_{\mathrm{DC}} \pm 10 \% \text {; maximum input voltage: } \\ &+30 \mathrm{~V}_{\mathrm{DC}} \pm 10 \% \end{aligned}$
S2	Signal input for STO function channel 2	Rated input current: $6.67 \mathrm{~mA} \pm 10 \%$   STO activation mode   Input voltage level: $0 \mathrm{~V}_{\mathrm{DC}}<\mathrm{S} 1-\mathrm{DCM}<5 \mathrm{~V}_{\mathrm{DC}}$   or $0 V_{D C}<S 2-D C M<5 V_{D C}$
DCM	Reference ground for S1 and S2 signal	STO response time: $\leq 20 \mathrm{~ms}$ (time required for S1 / S2 to operate until the drive stops outputting)   STO cut-off mode   Input voltage level: $11 \mathrm{~V}_{\mathrm{DC}}<\mathrm{S} 1-\mathrm{DCM}<30 \mathrm{~V}_{D C}$   and $11 \mathrm{~V}_{\mathrm{DC}}<\mathrm{S} 2-\mathrm{DCM}<30 \mathrm{~V} \mathrm{DC}$

Table 17-1 STO terminal function description

The action logic and keypad display after the S1 / S2 signal input are shown as Table 17-2.

Signal	Status			
S1-DCM	ON	ON	OFF	OFF
S2-DCM	ON	OFF	ON	OFF
Drive output	Ready to output	STL2 mode   (torque output off)	STL1 mode   (torque output off)	STO mode   (torque output off)
Error displays on   keypad	No error displays	STL2	STL1	STO

Table 17-2 Action logic and keypad display description
STO means channel 1 and 2 operate simultaneously and enter Safe Torque Off.
STL1 means channel 1 operates.
[1] STL2 means channel 2 operates.
LId STL3 means there is an error detected in the internal loop of channel 1 or channel 2.
dal S1-DCM / S2-DCM ON: means S1-DCM / S2-DCM inputs a power supply > 11 V DC.
S1-DCM / S2-DCM OFF: means S1-DCM / S2-DCM inputs a power supply < 5 VDC.

## 17-3 Wiring Diagram

17-3-1. The internal circuit diagram of the safe control loop is shown as Fig.17-2.
17-3-2. The terminals of the safe control loop +24V-S1-S2 are short-circuited together with jumper wire at the factory, see the red circle marked in Fig. 17-2.
17-3-3. The safe control loop wiring diagram is as follows:

1. Remove the jumper wire from +24 V -S1-S2.
2. The wiring is shown in Fig. 17-3 below. Normally, you must close the ESTOP contact switch, so the drive can output without displaying an error.
3. In STO mode, the switch ESTOP is turned on. The drive stops outputting and the keypad displays STO.


Fig.17-2


Fig.17-3

## NOTE:

*1 is factory jumper wire shorting +24V-S1-S2. To use the Safety function, remove this jumper wire. To disable the Safety function, short-circuit $+24 \mathrm{~V}-\mathrm{S} 1-\mathrm{S} 2$ with a jumper wire.

## 17-4 Failure Rate of the Drive Safety Function

The relevant safe loop parameters are shown as Table 17-3.

Item	Definition	Standard	Performance
SFF	Safe failure fraction	IEC61508	S1-DCM $=88.35 \%$   S2-DCM $=88.2 \%$
HFT (Type A   subsystem)	Hardware fault tolerance	IEC61508	1
SIL	Safety integrity level	IEC61508	SIL 2
	IEC62061	SILCL 2	
PFH	Average frequency of dangerous   failure [h-1]	IEC61508	$1.36 \times 10^{-9}$
PFD av $^{2}$	Probability of dangerous failure on   demand	IEC61508	$5.99 \times 10^{-6}$
PTI	Proof test interval	IEC61508	1 year
Category	Category	ISO13849-1	Category 3
PL	Performance level	ISO13849-1	d
MTTF	Mean time to dangerous failure	ISO13849-1	High
DC	Diagnostic coverage	ISO13849-1	Low

Table 17-3 Relevant safe loop parameters

## 17-5 Reset the Parameter Settings

Use Pr.06-44 to specify the reset method when an STO alarm occurs.

## 06-44 STO Latch Selection

Default: 0
Settings
0: STO Latch
1: STO no Latch
(1) Pr.06-44 = 0: STO Alarm Latch. After you clear the cause of the STO Alarm, use a Reset command to clear the STO Alarm.
[1] Pr.06-44 = 1: STO Alarm no Latch. After you clear the cause of the STO Alarm, the STO Alarm clears automatically.
All of the STL1-STL3 errors are "Alarm Latch" mode (in STL1-STL3 mode, the Pr.06-44 function is not effective).

## 17-6 Timing Diagram Description

The following timing diagrams show the status of relevant signals under different conditions.
17-6-1 Normal operation status
As shown in Fig. 17-4, when S1-DCM and S2-DCM is ON (STO function is not required), the drive executes Operating or Output Stop according to RUN command.


Fig.17-4

17-6-2 STO status, Pr.06-44 $=0$
17-6-2-1 STO, Pr.06-44 = 0, Pr.02-35=0
(external control operation after reset / power on, $0=$ not valid)
As shown in Fig. 17-5, when both S1-DCM and S2-DCM are OFF during operation (STO function is required), the drive stops outputting when it enters safe mode regardless of whether the RUN command is in ON or OFF status.


Fig.17-5

17-6-2-2 STO, Pr.06-44=0, Pr.02-35=1
(external control operation after reset / power on, 1= the drive executes RUN if the command remains after reset)
As shown in Fig. 17-6, the action is the same as in Figure 5; however, because Pr.02-35=1, if the RUN command remains after reset, the drive immediately executes the RUN command again.


Fig.17-6

## 17-6-3 STO, Pr.06-44=1

As shown in Fig. 17-7, when both of S1-DCM and S2-DCM are OFF during operation (STO function is required), the drive stops outputting. When the S1 / S2 status is restored (ON), the STO alarm clears automatically. The drive outputs when the RUN command is executed again.


Fig.17-7

## 17-6-4 STL1, Pr.06-44=0 or 1

As shown in Fig. 17-8, when S1-DCM is OFF during operation (STO function is required) and S2-DCM is ON (STO function is not required), the drive stops outputting and the keypad shows the STL1 error. However, you cannot reset the STL1 error even if the S1 status is restored (ON) regardless of the parameter setting. You must cycle the power to reset and to restore the drive to the normal standby state.


Fig.17-8

## 17-6-5 STL2, Pr.06-44=0 or 1

As shown in Fig. 17-9, when S1-DCM is ON during operation (STO function is not required) and S2-DCM is OFF (STO function is required), the drive stops outputting and the keypad shows the STL2 error. However, you cannot reset the STL2 error even if the S2 status is restored (ON) regardless of the parameter setting. You must cycle the power to reset and to restore the drive to the normal standby state.


Fig.17-9

## 17-7 Fault Codes and Troubleshooting Instructions

## 17-7-1 Fault Code Description

Refer to Pr.06-17-Pr.06-22 for the fault record; the relevant STO error code is 72 / 76 / 77 / 78. The definition is as follows and in Table 4.

$06-17$	Fault Record 1
$\mathbf{0 6 - 1 8}$	Fault Record 2
$\mathbf{0 6 - 1 9}$	Fault Record 3
$\mathbf{0 6 - 2 0}$	Fault Record 4
$\mathbf{0 6 - 2 1}$	Fault Record 5
$\mathbf{0 6 - 2 2}$	Fault Record 6

Display
72: Channel 1 (S1-DCM) safety loop error (STL1)
76: Safe Torque Off (STo)
77: Channel 2 (S2-DCM) safety loop error (STL2)
78: Internal loop error (STL3)

Fault code	Name	Description
76 (STo)	Safe Torque Off	Safe Torque Off function active
72 (STL1)	Channel 1 (S1-DCM)   safety loop error	S1-DCM internal loop detection error
77 (STL2)	Channel 2 (S2-DCM)   safety loop error	S2-DCM internal loop detection error
78 (STL3)	Internal loop error	S1-DCM and S2-DCM internal loop   detection error

Table 17-4 Fault code description

## 17-7-2 Troubleshooting Instructions

Refer to the following instructions for troubleshooting when STO / STL1 / STL2 / STL3 appears on the keypad. Refer to Chapter 14 Fault Codes.

| ID No. | KPMH-LC01 <br> Display | Descriptions |
| :--- | :--- | :--- |$|$| S1-DCM internal loop detection error |
| :--- |
| 72 |


| ID No. | $\begin{array}{c}\text { KPMH-LC01 } \\ \text { Display }\end{array}$ | Descriptions |
| :--- | :--- | :--- |\(\left.| \begin{array}{l}S2-DCM internal loop detection error <br>


Possible cause and corrective actions\end{array}\right\}\)| The short-circuit wire of S2 and DCM does not connect. |
| :--- |
| $\rightarrow$ Re-connect the short-circuit wire |
| Hardware failure |
| $\rightarrow$ After you make sure all the wiring is correct, if STL2 fault |
| still exists after cycling the power, contact with Delta. |$|$| S1-DCM \& S2-DCM internal loop detection error |
| :--- |

Table 17-5

## 17-8 Test and Fault Confirmation

After wiring the STO circuit in accordance with Section 17-3 Wiring Diagram, follow the steps below to verify that the STO and related detection functions are working normally.

1. When the drive is powered on, make sure that the S1-DCM and S2-DCM voltage falls between $11-30 V_{D C}$. At this time, the drive should enter Standby mode and wait for RUN command. There is no error displayed on the keypad.
2. Press RUN on the keypad and use the emergency button or other method to make the S1-DCM and $\mathrm{S} 2-\mathrm{DCM}$ voltage fall between $0-5 \mathrm{~V}_{\mathrm{Dc}}$. At the same time, after the output frequency is reached, the drive should enter Torque Stop mode STO and stop outputting voltage. The keypad displays the STO error, and the response time of the S1 and S2 signals to cause the drive to stop outputting voltage should be $\leq 20 \mathrm{~ms}$. Then restore the S1-DCM and S2-DCM voltage to $11-30 V_{D C}$, and press RESET on the keypad to clear the STO error. The drive should enter Standby mode and wait for RUN command.
3. Press RUN on the keypad and use the emergency button or other method to make the S1-DCM voltage fall between $0-5 \mathrm{~V}_{\mathrm{DC}}$, and the $\mathrm{S} 2-\mathrm{DCM}$ voltage remain between $11-30 \mathrm{~V}_{\mathrm{DC}}$ after the output frequency is reached. At this time, the drive should enter Torque Stop mode STL1 and stop outputting voltage. The keypad displays the ST1 error, and the response time of S1 signals to cause the drive to stop outputting voltage should be $\leq 20 \mathrm{~ms}$. Then restore the S1-DCM voltage to $11-30 V_{\mathrm{Dc}}$. However, pressing RESET on the keypad cannot clear the STL1 error. You must cycle the power to the drive. Make sure that the S1-DCM and S2-DCM voltage falls between $11-30 \mathrm{~V}_{\mathrm{DC}}$, and then cycle the power to the drive, then the STL1 error is cleared. The drive should enter Standby mode and wait for RUN command.
4. Press RUN on the keypad and use the emergency button or other method to make the S2-DCM voltage fall between $0-5 \mathrm{~V}_{\mathrm{DC}}$, and the $\mathrm{S} 1-\mathrm{DCM}$ voltage remain between $11-30 \mathrm{~V}_{\mathrm{DC}}$ after the output frequency is reached. At this time, the drive should enter Torque Stop mode STL2 and stop outputting voltage. The keypad displays the ST2 error, and the response time of S2 signals to cause the drive to stop outputting voltage should be $\leq 20 \mathrm{~ms}$. Then restore the S2-DCM voltage to $11-30 V_{D C}$. However, pressing RESET on the keypad cannot clear the STL2 error. You must cycle the power to the drive. Make sure that the S1-DCM and S2-DCM voltage falls between $11-30 V_{D C}$, and then cycle the power to the drive, then the STL2 error is cleared. The drive should enter Standby mode and wait for RUN command.
5. If you can conduct these four steps normally in sequence with no other error, then the Safe Torque Off function loop is normal, as shown in Table 5 below. However, if a situation that differs from these four steps, or if STL3 occurs, then the Safe Torque Off function loop is not working normally. Please refer to Section 17-7 Error Code and Troubleshooting Instructions.

Signal	Status			
S1-DCM	ON	ON	OFF	OFF
S2-DCM	ON	OFF	ON	OFF
Drive output	Ready to output	STL2 mode (torque output off)	STL1 mode (torque output off)	STO mode (torque output off)
Error displays on keypad	No error displayed	STL2	STL1	STO
Response time	N/A	$\leq 20 \mathrm{~ms}$		
RESET mechanism	N/A	Cycle power to the drive	Cycle power to the drive	Press RESET directly

STO means channel 1 and 2 operate simultaneously and enter Safe Torque Off.STL1 means channel 1 operates.
(1) STL2 means channel 2 operates.
$\square]$
STL3 means there is an error detected in the internal loop of channel 1 or channel 2.S1-DCM / S2-DCM ON: means S1-DCM / S2-DCM inputs a power supply > 11 VDC.S1-DCM / S2-DCM OFF: means S1-DCM / S2-DCM inputs a power supply < 5 V DC.

## Appendix A. Modbus Protocol

A-1 Code Description<br>A-2 Data Format<br>A-3 Communication Protocol<br>A-4 Address List<br>A-5 Exception Response

- This appendix helps users to control by computers and monitor drive parameters and status through Modbus by using RS-485 serial communication interface
- When using the communication interface, the diagram on the right shows the communication port pin definitions. It is recommended that you connect the AC motor drive to your PC by using Delta IFD6530 or IFD6500 as a communication converter.


RS-485

Modbus RS-485
PIN 1: CAN_H
PIN 2: CAN_L
PIN 3, 7: SGND
PIN 4: SG-
PIN 5: SG+
PIN 6: Reserved PIN 8: +10VS

- The default communication formats for communication port:

1. Modbus ASCII mode
2. 9600 bps serial communication baud rates
3. 7-bit data character
4. No calibration
5. 2 stop bit

- Modbus ASCII (American Standard Code for Information Interchange): Each byte of data is the combination of two ASCII characters. For example, one byte of data: 64 Hex, shown as ' 64 ' in ASCII, consists of ' 6 ' ( 36 Hex ) and ' 4 ' ( 34 Hex )


## A-1 Code Description

The communication protocol is in hexadecimal, ASCII: "0"..." 9 ", "A"..."F", every hexadecimal value represents an ASCII code. The following table shows some examples.

Character	$' 0 '$	$' 1 '$	$' 2 '$	$' 3 '$	$' 4 '$	$' 5 '$	$' 6 '$	$' 7$
ASCII code	30 H	31 H	32 H	33 H	34 H	35 H	36 H	37 H


Character	$' 8$ '	$' 9 '$	'A'	'B'	'C'	'D'	' $E$ '	' $F$ '
ASCII code	38 H	39 H	41 H	42 H	43 H	44 H	45 H	46 H

## A-2 Data Format

10-bit character frame (For ASCII):
(7, N, 2)

(7, E, 1)

(7, O, 1)


11-bit character frame (For RTU):
( $8, \mathrm{~N}, 2$ )

(8, E, 1)

(8, O, 1)


## A-3 Communication Protocol

1. Communication data frame

ASCII mode:

STX	Start character = ' ${ }^{\prime}$ (3AH)
Address High	Communication address: one 8-bit address consists of 2 ASCII codes
Address Low	
Function High	Command code: one 8 -bit command consists of 2 ASCII codes
Function Low	
DATA ( $\mathrm{n}-1$ )	Contents of data:   $\mathrm{n} \times 8$-bit data consists of 2 n ASCII codes   $n \leq 16$, maximum of 32 ASCII codes ( 20 sets of data)
.......	
DATA 0	
LRC Check High	LRC checksum: one 8 -bit checksum consists of 2 ASCII codes
LRC Check Low	
END High	End characters:END Hi = CR (0DH), END Lo = LF (OAH)
END Low	

RTU mode:

START	Defined by a silent interval of larger than / equal to 3.5 char
Address	Communication address: 8-bit binary address
Function	Command code: 8-bit binary command
DATA $(\mathrm{n}-1)$	Contents of data:
DATA	$\mathrm{N} \times 8$-bit data, $\mathrm{n} \leq 16$
CRC Check Low	CRC checksum:   one 16-bit CRC checksum consists of 2 8-bit binary   characters
CRC Check High	Defined by a silent interval of larger than / equal to 3.5 char
END	

2. Communication address (Address)

00 H : broadcast to all AC motor drives
01 H : AC motor drive of address 01
OFH: AC motor drive of address 15
10H: AC motor drive of address 16
:
FEH: AC motor drive of address 254
3. Function (function code) and data (data characters)

03H: read data from a register
Example: Reading two continuous data from register address 2102 H, AMD address is 01 H .

## ASCII mode:

Command Message

STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'3'
Starting register	'2'
	'1'
	'0'
	'2'
Number of register (count by word)	'0'
	'0'
	'0'
	'2'
LRC Check	'D'
	'7'
END	CR
	LF

## RTU mode:

Command Message

Address	01 H
Function	03 H
Starting data register	21 H
	02 H
(count by word)	00 H
CRC Check Low	02 H
CRC Check High	6 FH


STX	$\because$
Address	'0'
	'1'
Function	'0'
	'3'
Number of register (count by byte)	'0'
	'4'
Content of starting register 2102 H	'1'
	'7'
	'7'
	'0'
Content of register 2103H	'0'
	'0'
	'0'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

Response Message

Response Message
$\left.\begin{array}{|c|c|}\hline \text { Address } & 01 \mathrm{H} \\ \hline \text { Function } & 03 \mathrm{H} \\ \hline \text { Number of register } \\ \text { (count by byte) } & 04 \mathrm{H} \\ \hline \text { Content of register } \\ \text { address 2102H }\end{array}\right] 17 \mathrm{H}$
4. 06 H : single write, write single data to a register.

Example: Writing data $6000(1770 \mathrm{H})$ to register 0100 H . AMD address is 01 H .
ASCII mode:

Command Message

STX	' ${ }^{\prime}$
Address	'0'
	'1'
Function	'0'
	'6'
Target register	'0'
	'1'
	'0'
	'0'
Register content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

Response Message

STX	':'
Address	'0'
	'1'
Function	'0'
	'6'
Target register	'0'
	'1'
	'0'
	'0'
Register content	'1'
	'7'
	'7'
	'0'
LRC Check	'7'
	'1'
END	CR
	LF

RTU mode:

Command Message

Address	01 H
Function	06 H
Target register	01 H
	00 H
Register content	17 H
	70 H
CRC Check High	86 H
	22 H

Response Message

Address	01 H
Function	06 H
Target register	01 H
	00 H
Register content	17 H
	70 H
CRC Check High	86 H

5. 10 H : write multiple registers (can write at most 20 sets of data simultaneously).

Example: Set the multi-step speed of an AC motor drive (address is 01 H ),
Pr. 04-00 $=50.00$ ( 1388 H ), Pr. $04-01=40.00$ ( 0 FAOH.)

## ASCII mode:

Command Message		Response Message	
STX	' ${ }^{\prime}$	STX	' ${ }^{\prime}$
ADR 1	'0'	ADR 1   ADR 0	'0'
ADR 0	'1'		'1'
CMD 1	'1'	ADR 0	'1'
CMD 0	'0'	CMD 0	'0'
Target register	'0'	Target register	'0'
	'5'		'5'
	'0'		'0'
	'0'		'0'
Number of register (count by word)	'0'	Number of register (count by word)	'0'
	'0'		'0'
	'0'		'0'
	'2'		'2'
Number of register (count by byte)	'0'	LRC Check	'E'
	'4'		'8'
The first data content	'1'	END	CR
	'3'		LF
	'8'		
	'8'		
The second data content	'0'		
	'F'		
	'A'		
	'0'		
LRC Check	'9'		
	' A '		
END	CR		
	LF		

RTU mode:

Command Message

ADR	01 H
CMD	10 H
Target register	05 H
	00 H
(Count by word)	00 H
Quantity of data (byte)	02 H
The first data content	04
	13 H
	88 H
CRC Check Low	A 0 H
CRC Check High	'9'

Response Message

ADR	01 H
CMD	10 H
Target register	05 H
	00 H
Number of register	00 H
(Count by word)	02 H
CRC Check Low	41 H
CRC Check High	04 H

6. Checksum

ASCII mode (LRC Check):
LRC (Longitudinal Redundancy Check) is calculated by summing up the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.
Example:
$01 \mathrm{H}+03 \mathrm{H}+21 \mathrm{H}+02 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}=29 \mathrm{H}$, the 2 's-complement negation of 29 H is D 7 H .

RTU mode (CRC Check):
CRC (Cyclical Redundancy Check) is calculated by the following steps:
Step 1: Load a 16-bit register (called CRC register) with FFFFh.
Step 2: Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16bit CRC register, putting the result in the CRC register.
Step 3: Examine the LSB of CRC register.
Step 4: If the LSB of CRC register is 0 , shift the CRC register one bit to the right, fill MSB with zero, then repeat step 3. If the LSB of CRC register is 1 , shift the CRC register one bit to the right, fill MSB with zero, Exclusive OR the CRC register with the polynomial value A 001 H , then repeat step 3.
Step 5: Repeat step 3 and 4 until you perform eight shifts. This processes a complete 8-bit byte.
Step 6: Repeat step 2 through 5 for the next 8 -bit byte of the command message. Continue doing this until all bytes are processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, that is, the lower order byte is transmitted first.
7. The following is an example of CRC generation using $C$ language.

Unsigned char* data $\leftarrow$ a pointer to the message buffer
Unsigned char length $\leftarrow$ the quantity of bytes in the message buffer unsigned int crc_chk(unsigned char* data, unsigned char length)

## Appendix A. Modbus Protocol | MS300

```
{
 int j;
 unsigned int reg_crc=0xffff;
 while(length--){
 reg_crc ^= *data++;
 for(j=0;j<8;j++){
 if(reg_crc & 0x01){ /* LSB(b0)=1 */
 reg_crc=(reg_crc>>1)^ 0xa001;
 }else{
 reg_crc=reg_crc >>1;
 }
 }
 }
 return reg_crc; // return register CRC
}
```


## A-4 Address List

1. ASCII
(1) Reads one or more parameter values: 3Ah (start bit' : ') +30 h 31 h (station address 01) +30 h 33h (function code 03h) +30 h 30 h xxh xxh-32h 36h xxh xxh (Modbus address 00xxh-26xxh) + xxh xxh xxh xxh (reading length 1 ) + LRC (checksum) + CR/LF
(2) Writes one parameter value: 3Ah (start bit' : ') + 30h 31h (station address 01) + 30h 36h (function code 06 h ) +30 h 30 h xh $\mathrm{xxh}-32 \mathrm{~h} 36 \mathrm{~h}$ xh xxh (Modbus address $00 \mathrm{xxh}-26 \mathrm{xxh})+\mathrm{xxh}$ xxh xxh xxh (writing value) + LRC (checksum) + CR/LF
(3) Writes 20 parameter values: 3Ah (start bit : ') + 30h 31 h (station address 01) + 31h 30h (function code 10h) +30 h 30 h xxh xxh-32h 36h xxh xxh (Modbus address 00xxh-26xxh) + 30h 30h 31h 34h (word data length) +30 h 30 h 32 h 38 h (byte data length) $+\mathrm{xxh} \times \mathrm{xh} \times \mathrm{xh} \times \mathrm{xh}$ (the first writing value) + ... + xxh xxh xxh xxh (the 20th writing value) + LRC (checksum) + CR/LF
2. RTU
(1) Reads one or more parameter values: 01 h (station address 01 ) +03 h (function code 03h) + $00 x x h-26 x x h$ (Modbus address) + xxxxh (reading length) + CRC (checksum)
(2) Writes one parameter value: 01h (station address 01) +06 h (function code 06 h ) $+00 \mathrm{xxh}-26 x x h$ (Modbus address) + xxxxh (writing value) + CRC (checksum)
(3) Writes 20 parameter values: 01h (station address 01 ) +10 h (function code 10h) $+00 x x h-26 x x h$ (Modbus address) +0014 h (data length, count by word) +0028 (data length, count by byte) + xxxxh (the first writing value) $+\ldots+$ xxxxh (the 20th writing value) + CRC (checksum)
3. AC motor drive parameters (GGnnH): communication station address is Pr.09-00 setting value

Modbus   Address	Attribute (Function Code)	Description
GGnnH	$\mathrm{R}(03 \mathrm{H}) / \mathrm{W}(06 \mathrm{H}, 10 \mathrm{H})$	GG means parameter group, nn means parameter number. For   example, the Modbus address of Pr.04-10 is 040AH when reading   by Delta VFDsoft.

4. Control command (20xx): communication station address is Pr.09-00 setting value

Function Name	Modbus   Address	Attribute (Function Code)	Size		Descripti	tion
Operation command	2000H	$\begin{gathered} \mathrm{R}(03 \mathrm{H}) / \\ \mathrm{W}(06 \mathrm{H}, \\ 10 \mathrm{H}) \end{gathered}$	U16	bit1-0	O0B: No function	1. Remains the status specified by a first command until a second command is received.   2. Valid only when operation command source is set to communication (Pr.00$03=2$ ).
					01B: Stop	
					10B: Run	
					11B: JOG + Run	
				bit3-2	Reserved	
				bit5-4	O0B: No function	
					01B: FWD	
					10B: REV	
					11B: Change direction	
				bit7-6	O0B: 1st accel. / decel.	1. Valid only when 2000 h bit12 is set to 1 .   2. Obtain the current running speed by reading 2107 h .
					01B: 2nd accel. / decel.	
					10B: 3rd accel. / decel.	
					11B: 4th accel. / decel.	
				bit11-8	0000B: zero step speed	
					0001B: 1st step speed	


Function Name	Modbus   Address	Attribute (Function Code)	Size	Description		
				bit11-8	0010B: 2nd step speed	
					0011B: 3rd step speed	
					0100B: 4th step speed	
					0101B: 5th step speed	
					0110B: 6th step speed	
					0111B: 7th step speed	
					1000B: 8th step speed	
					1001B: 9th step speed	
					1010B: 10th step speed	
					1011B: 11th step speed	
					1100B: 12th step speed	
					1101B: 13th step speed	
					1110B: 14th step speed	
					1111B: 15th step speed	
				bit12 1: Enable bit06-11 function		
				bit15 Reserved		
Frequency command	2001H	$\begin{gathered} \mathrm{R}(03 \mathrm{H}) / \\ \mathrm{W}(06 \mathrm{H}, \\ 10 \mathrm{H}) \end{gathered}$		Frequency command (XXX.XX Hz).   There are two decimal places for general-purpose drives.		
Fault / control command source	2002H	$\begin{gathered} \mathrm{R}(03 \mathrm{H}) / \\ \mathrm{W}(06 \mathrm{H}, \\ 10 \mathrm{H}) \end{gathered}$	U16	bit0	1: External Fault (E.F.) ON	To trigger an external fault to the drive to make it stop running. Drive's stop method can be set through drive parameters.
				bit1	1: Reset	To clear the fault status
				bit2	1: Base block (B.B) ON	To trigger an external base block to the drive to suspend the operation. When bit $=0$ and clear BB situation, the drive returns to the previous operation.
				bit5	1: Fire mode ON	To prevent the drive from shutting down due to its own protection, and to maintain the important fan operation without controlling by any control signal or alarm.
				bit15-3	Reserved	

5. Status monitor read only ( 21 xx ): communication station address is Pr.09-00 setting value


## Appendix A. Modbus Protocol | MS300

Function Name	Modbus   Address	Attribute (Function Code)	Size	Description
Counter value	2109H	R(03H)		The present value of MI
Output power factor angle	210AH	R(03H)		Drive's output power factor angle (XXX. $\mathrm{X}^{\circ}$ ) (0.0-180.0 ${ }^{\circ}$ )
Output torque	210BH	R (03H)		Output torque (XXX. ${ }^{\text {\% \% ) }}$
Motor actual speed	210CH	R(03H)		Actual motor speed (XXXXX rpm)
Number of PG feedback pulses	210DH	R(03H)		Number of PG feedback pulses (0~65535)
Number of pulse commands	210EH	R(03H)		Number of PG2 pulse commands (0~65535)
Power output	210FH	$\mathrm{R}(03 \mathrm{H})$		Drive's output power (X.XXX kW)
Multi-function display	2116H	R(03H)	U16	Display the low word value (Pr.00-04) of user-defined items, the value is low 16 bits data.
Maximum userdefined value	211BH	R(03H)		Maximum Operation Frequency (Pr.01-00) or Maximum User-defined Value (Pr.00-26)   When Pr.00-26 is 0 , this value is equal to $\operatorname{Pr} .01-00$ setting   When Pr.00-26 is not 0 , and the command source is keypad, this value $=$ Pr.00-24 $\times$ Pr.00-26 $/$ Pr.01-00   When Pr.00-26 is not 0 , and the command source is 485 , this value $=\operatorname{Pr} .09-10 \times$ Pr.00-26 $/$ Pr.01-00
Output current digit	211FH	$\mathrm{R}(03 \mathrm{H})$		High byte: Current digit (display)
Multi-point positioning	2157H	R(03H)		Display the position of multi-point positioning

6. Status monitor read only (22xx): communication station address is Pr.09-00 setting value

Function Name	Modbus   Address	Attribute   (Function Code)	Size	Description
Output current	2200 H	R(03H)		Display output current (A). When current is higher than 655.35, it shifts the decimal as (XXX.XA). The decimal can refer to High byte of 211 F .
Counter value	2201H	R(03H)		Display counter value (c)
Output frequency	2202H	$\mathrm{R}(03 \mathrm{H})$		Actual output frequency (XXXXX Hz)
DC bus voltage	2203H	$\mathrm{R}(03 \mathrm{H})$		DC bus voltage ( $\mathrm{XXX}$. . V )
Output voltage	2204H	$\mathrm{R}(03 \mathrm{H})$		Output voltage (XXX.X V)
Power factor angle	2205H	R(03H)		Power angle (XXX.X)
Power output	2206H	$\mathrm{R}(03 \mathrm{H})$		Display actual motor speed kW of U, V, W (XXXX. ${ }^{\text {kWW) }}$
Motor actual speed	2207H	R(03H)		Display motor speed in rpm estimated by the drive or encoder feedback (XXXXX rpm)
Output torque	2208H	R(03H)		Display positive/negative output torque in \%, estimated by the drive ( t 0.0 : positive torque, -0.0 : negative torque) (XXX.X \%)
Feedback position	2209H	R(03H)		Display PG feedback (see NOTE 1 in Pr.00-04)
PID feedback value	220AH	R(03H)		PID feedback value after enabling PID function (XXX.XX \%)
AVI analog input	220BH	R(03H)		Display signal of AVI analog input terminal, 0-10 V corresponds to $0.00-100.00 \%$ (1.) (see NOTE 2 in Pr.00-04)
ACl analog input	220CH	R(03H)		Display signal of ACl analog input terminal, $4-20 \mathrm{~mA} / 0-10$ V corresponds to $0.00-100.00 \%$ (2.) (see NOTE 2 in Pr.0004)
AUI analog input	220DH	R(03H)	U16	Display signal of AUI analog input terminal, $-10 \mathrm{~V}-10 \mathrm{~V}$ corresponds to -100.00-100\% (3.) (see NOTE 2 in Pr.0004)
IGBT temperature	220EH	R (03H)		IGBT temperature of drive power module (XXX. $\mathrm{X}^{\circ} \mathrm{C}$ )
Drive capacitance temperature	220FH	R(03H)		The temperature of capacitance ( $\mathrm{XXX} . \mathrm{X}^{\circ} \mathrm{C}$ )
Digital input status	2210 H	R(03H)		The status of digital input (ON/OFF), refer to Pr.02-12. (see NOTE 3 in Pr.00-04)
Digital output status	2211H	R(03H)		The status of digital output (ON/OFF), refer to Pr.02-18. (see NOTE 4 in Pr.00-04)
Multi-step speed	2212H	$\mathrm{R}(03 \mathrm{H})$		The multi-step speed that is executing (S)
The co-rresponding CPU pin status of digital input	2213H	R(03H)		The corresponding CPU pin status of digital input (d.) (see NOTE 3 in Pr.00-04)
The co-rresponding CPU pin status of digital output	2214H	R(03H)		The corresponding CPU pin status of digital output (O.) (see NOTE 4 in Pr.00-04)
Actual motor position	2215 H	R(03H)		Number of actual motor revolution (PG1 of PG card) (P.) it starts from 9 when the actual operation direction is changed or the keypad displays at stop is 0 . The maximum is 65535 .
Pulse input frequency	2216H	$\mathrm{R}(03 \mathrm{H})$		Pulse input frequency (PG2 of PG card) (XXX. XX Hz )
Pulse input position	2217H	R(03H)		Pulse input position (PG card PG2), the maximum setting is 65535.



Function Name	Modbus   Address	Attribute   (Function   Code)	Size	Description
Frequency value after   addition and   subtraction of master   and auxiliary   frequency	2234 H	$\mathrm{R}(03 \mathrm{H})$	U16	Display the frequency value after addition and subtraction of   master and auxiliary frequency

7. Remote IO (26xx) : communication station address is Pr.09-00 setting value

Function Name	Modbus   Address	Attribute   (Function   Code)	Size	

## A-5 Exception Response

When the drive is using the communication connection, if an error occurs, the drive responds to the error code and sets the highest bit (bit 7) of the command code to 1 (function code AND 80H) then responds to the control system to signal that an error occurred.

If the keypad displays "CE-XX" as a warning message, " XX " is the error code at that time. Refer to the table of error codes for communication error for reference.

ASCII mode		RTU mode	
STX	$\because$	Address	01H
	'0'	Function	86H
Address	'1'	Exception code	02H
Function	'8’	CRC Check Low	C3H
Function	'6'	CRC Check High	A1H
Exception code	'0'		
	2'		
LRC Check	'7'		
	CR		
END	LF		

The explanation of exception codes:

Error code	Explanation
1	Function code is not supported or unrecognized.
2	Address is not supported or unrecognized.
3	Data is not correct or unrecognized.
4	Failure to execute this function code

修改歷程（不轉 PDF）
幃體版本：V2．01
手冊版本：VOO

日期	頁碼	
2022／7／29	All	1．從 CH12－Grp．09 的參數 09－04 擷取出來獨立成附錄 A   2．以 C2000 Plus V3．07 檔案＂C2000 Plus＿附錄 A．Modbus 通訊協定   ＿20220722＿Snow＿BK＂為基底，修改為 MS300 適用內容（mail：RE：   ［MS300］問題確認＿參數 09 群＿Pohan＿20220729）
$2022 / 8 / 22$	4	4．RTU 模式下的 START／END：保持無輸入訊號大於等於 10 ms，改為 3．5   char（Rational \＃291083）
$2022 / 11 / 9$	10	5．删除原新增的 $2101 H$ bit13（mail：RE：   MS300＿2101H＿bit13＿Pohan＿20221109）

# Appendix B. Revision History 

New information	
Description	Related part
New parameters and functions according to firmware V2.00:   - Parameter group 00: 00-10 (setting 10), 01-43 (setting 16), 01-72-01-77   - Parameter group 02: 02-01-02-07 + 02-26-02-28 (setting 78-80), 02-13 + 02-16 + 02-17 + 02-36-02-38 (setting 49)   - Parameter group 06: 06-02 setting 2-3   - Parameter group 07: 07-63   - Parameter group 08: 08-79-08-82   - Parameter group 09: 09-31, 09-60   - Parameter group 11: 11-40, 11-43-11-46, 11-50-11-54, 11-56-11-60, 11-62-11-64, 11-68-11-76, 11-78   - Parameter group 13: 13-00 (setting 10)	Chapter 11, 12
Add 16-10 CANopen Master Control Applications and 16-11 Modbus Remote IO Control Applications (Use MODRW).	Chapter 16


Updated information	
Description	Related part
Update the specification of the heat shrink tube.	Chapter 5
Update the information of the control terminal specifications: +24V, S1 / S2, and DCM.	Chapter 6
Update the information of optional accessories of magnetic contactor, air circuit breaker and AC / DC reactors.	Chapter 7
Update the overload capability information of general specifications.   Add the link of the information on Certifications and Declaration of Conformity (DoC).	Chapter 9
Update the keypad operation process-shifting datas.	Chapter 10
Update parameter settings and descriptions:   - Parameter group 00: 00-01, 00-02, 00-04, 00-07, 00-16, 00-20, 00-21, 00-25, 00-27, 00-30, 00-31, 00-35, 00-36, 00-47   - Parameter group 02: 02-01-02-07 + 02-26-02-28, 02-13 + 02-16 + 02-17 + 02-36-02-38, 02-54   - Parameter group 03: 03-19, 03-20   - Parameter group 05: 05-26-05-30, 05-43   - Parameter group 06: 06-01, 06-02, 06-08, 06-11   - Parameter group 07: 07-13, 07-19, 07-23   - Parameter group 08: 08-01, 08-15, 08-23, 08-31   - Parameter group 09: 09-04 (Upadat Modbus Protocol information and move to Appendix A), 09-30   - Parameter group 11: 11-26, 11-29-11-32   - Parameter group 12: 12-15, 12-16	Chapter 11, 12


Updated information	
Description	Related part
$\bullet \quad$ Parameter group 14: 14-24, 14-26, 14-28, 14-30, 14-32, 14-34, 14-36, 14-37	
Update the information of 15-2 Wiring for CANopen, 15-3 CANopen Communication   Interface Descreptions and 15-4 CANopen Supporting Index.	Chapter 15
Update the operating system of the WPLSoft editing software.	Chapter 16


[^0]:    Explanation - S: Call subprogram pointer

    - Write the subprogram after the FEND command.
    - The subprogram must end after the SRET command.
    - Refer to the FEND command explanation and sample content for detailed command functions.

[^1]:    Explanation

[^2]:    *ID: Warning code

